Exponential Parameterization of the Neutrino Mixing Matrix — Comparative Analysis with Different Data Sets and CP Violation

Total Page:16

File Type:pdf, Size:1020Kb

Exponential Parameterization of the Neutrino Mixing Matrix — Comparative Analysis with Different Data Sets and CP Violation Exponential parameterization of the neutrino mixing matrix — comparative analysis with different data sets and CP violation K. Zhukovsky1, A. Borisov2 Abstract The exponential parameterization of Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for neutrino is used for comparative analysis of different neutrino mixing data. The UPMNS matrix is considered as the element of the SU(3) group and the second order matrix polynomial is constructed for it. The inverse problem of constructing the logarithm of the mixing matrix is addressed. In this way the standard parameterization is related to the exponential parameterization exactly. The exponential form allows easy factorization and separate analysis of the rotation and the CP violation. With the most recent experimental data on the neutrino mixing (May 2016), we calculate the values of the exponential parameterization matrix for neutrinos with account for the CP violation. The complementarity hypothesis for quarks and neutrinos is demonstrated to hold, despite significant change in the neutrino mixing data. The values of the entries of the exponential mixing matrix are evaluated with account for the actual degree of the CP violation in neutrino mixing and without it. Various factorizations of the CP violating term are investigated in the framework of the exponential parameterization. 1 Deptartment of Theoretical Physics, Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow 119991, Russia. Phone: +7(495)9393177, e-mail: [email protected] 2 Deptartment of Theoretical Physics, Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow 119991, Russia. Phone: +7(495)9393177. e-mail: [email protected] 1. Introduction The Standard Model (SM) [1]–[3] gives the description of electromagnetic and weak interactions by the unified theory. The neutrino plays important role in it. The original formulation of the SM presumed the neutrino had zero mass. However, the existence of at least three massive neutrino states, ν1, ν2, ν3, was proposed and, consequently, the neutrino oscillations [4] were predicted by Pontecorvo [5], [6]. The discovery of the neutrino oscillations was awarded the Nobel Prize in physics in 2015. The neutrino has three flavours and the latter vary during the neutrino propagation. The neutrino states constitute the full and normalized orthogonal basis, confirmed by numerous experiments and observations of neutrino oscillations with solar, atmospheric, reactor and accelerator neutrinos [7], [8], [9]. The neutrino flavour states, νe, νμ, ντ, are constructed of different mass states, ν1, ν2, ν3, by the unitary Pontecorvo-Maki- Nakagawa-Sakata (PMNS) matrix UPMNS [10]: * ν α = ∑UPMNS αi ν i , UPMNS αi ≡ ν α ν i , (1) i=1,2,3 similarly to the way it is done for quarks by the CKM matrix. Mixing in the lepton sector of the SM means that a charged W-boson interacts with mass states of charged leptons e, + μ, τ and with neutrino states ν1, ν2, ν3. The boson W decays into a pair of lepton α and neutrino i with the amplitude Uαi. The above formula (1) evidences that the production of the pair of the lepton α and of the neutrino in the state α implies the superposition of all three neutrino mass states, ν1, ν2, ν3. There are several proposals of the mixing matrix parameterization, as well as there are different parameterizations for quarks. This, however, does not cause any contradiction, if the unitarity, which is the only strict requirement, is ensured. The most common standard parameterization Ust for three neutrino species is implemented by the unitary 3×3 mixing matrix Ust: UPMNS = UstPMj , (2) where c c s c s e −iδCP 12 13 12 13 13 = −s c −c s s eiδCP c c −s s s eiδCP s c Ust 12 23 12 23 13 12 23 12 23 13 23 13 , (3) iδ iδ − CP − − CP s12s23 c12c23s13e c12s23 s12c23s13e c23c13 iα1 / 2 iα2 / 2 PMj = diag(1,e ,e ), (4) cij = cosθij , sij = sinθij , i,j=1,2,3, and PMj stands for the possible Majorana nature of the neutrino. For Majorana neutrinos, identical to their antiparticles, the phases α1,2 ≠ 0 play role in the processes with violation of the lepton number. The sterile neutrino, which does not interact with Z- and with W-bosons (see, for example, [11], [12], [13]), is also possible, but not considered here. The role of the matrix Ust in the parameterization (3) is very similar to that of the CKM matrix in quark mixing [14], [16]–[19], and the form of the matrix (3) is identical to that of the standard CKM mixing matrix for quarks. Historically first proposal of the mixing matrix parameterisation for quarks by Kobayashi and Maskawa differed in phase placement from (3): c −s c −s s 1 1 3 1 3 iδCP iδCP VKM = s1c2 c1c2c3 −s2s3e c1c2s3 + s2c3e , (5) iδCP iδCP s1s2 c1s2c3 +c2s3e c1s2s3 −c2c3e si = sinθi ci = cos(θi ), i, j=1,2,3. When θ2=θ3=0 we obtain the Cabibbo form of the mixing matrix in quark sector, where θ1=θc is the Cabibbo angle. In the standard parameterization the Cabibbo case is realized when θ23=θ13=0 and θ12=θc. Moreover, the small parameter for quark mixing exists: λ=sinθc≈0.22 [20], which is not present for neutrinos. While parameterisations of the mixing matrix may differ from each other — physics does not depend on its choice — we are free to choose the most convenient for us. The PMNS matrix is fully determined by four parameters: three mixing angles θ12, θ23, θ13 and the phase δ in charge of the CP violation [14]. Other parameterisations of the neutrino mixing matrix exist (see, for example, [21]– [28]), of which the exactly unitary tri-bimaximal parameterization (TBM) (see, for example, [21]) of UPMNS was for long rather consistent with the experimental data. Completed parameterization, based on the TBM pattern, was described in [21], [28], [29]). The TBM parameterization has the mixing angles θ12 = arctan(1/ 2)≅ 35.25° , θ23 = π / 4 = 45°, which agree very well with the values, obtained from experimental sets, and only θ13 = 0 contradicts recent data, which indicates it is not zero. The TBM mixing matrix reads as follows: 2 3 1 3 0 UTBM = −1 6 1 3 −1 2 . (6) −1 6 1 3 1 2 Since there are no convincing reasons for the TBM form to be exact, and, moreover, it follows from recent experimental data that θ13 ≠ 0 , the approximate parameterisations of the PMNS matrix are developed, based upon the deviations from the TBM form (see, for example, [29], [30]). In contrast with the parameterisations in the quark sector, constructed with a single parameter, parameterisations for the neutrino mixing include 3 parameters, defining the deviations of the reactor, solar and atmospheric neutrino mixing angles from their tri-bimaximal values. Triminimal expansion around the bimaximal basis for quark and lepton mixing parameterization matrices was developed in [30]. The authors also discussed the unified description between different kinds of parameterizations for quark and lepton sectors: the standard parameterizations, the Wolfenstein-like parameterizations and the triminimal parameterizations in the context of the quark-lepton complementarity (QLC) hypothesis [22], [31]. The latter consists in the phenomenological relations of quark and lepton mixing angles θqij and θij in the standard parameterization: θ12 +θq12 = 45° , θ23 +θq 23 = 45°. The QLC is an important subject of this study, and there are many other studies in this line, such as [32], [33], [34]. In what follows we will explore this topic in the context of the rotation axes direction in three dimensional space in the exponential parameterization of the mixing matrix. The pioneering proposal of the unitary exponential parameterization for the neutrino mixing was done in [35] by A. Strumia, F. Vissani. The exponential parameterization for quarks was proposed in [37]; very similar parameterization for neutrinos was studied in [36] in the following form: Uexp = exp A , (7) where 0 λ λ eiδ 1 3 A = A0 = − λ1 0 − λ2 . (8) − λ −iδ λ 3e 2 0 The anti-Hermitian form of the matrix A ensures the unitarity of the transforms by the mixing matrix Uexp (7) (see [38]). The parameter δ accounts for the CP violation and the parameters λi are responsible for the flavour mixing. For neutrinos, in contrast with that for quarks, the mixing angles θ12 and θ23 are large and, therefore, the hierarchy in the 2 exponential quark mixing matrix, based on the single parameter λ: λ1 ∝ λ , λ2 ∝ λ , 3 λ3 ∝ λ , does not hold for neutrinos. For δ=2πn and for δ=π(2n+1) the matrix A0 (8) turns into the three dimensional rotation matrix in angle–axis presentation [39]. The most important advantage of the exponential parameterization of the mixing matrix respectively to the commonly known standard parameterization is that the exponential parameterization allows easy factorization of the rotational part, the CP-violating terms and possible Majorana term [39], [40]. Note, that the above exponential parameterization with the matrix A0 (8) is not the only one possible, and it just represents the simplest attempt to account for the mixing and for the CP violation in the framework of the most general exponential parameterization. Importantly, the exponential matrix Uexp (7) with the ansatz (8) does not reduce to the standard parameterization Ust (3). The difference in the results is negligible for small values of δ, but it becomes significant for big values of δ. In the following chapters we will address this topic in details. 2. Exponential parameterization and the matrix logarithm In general, an exponential of a matrix Aˆ can be treated similarly to the exponential ˆ ∞ of the operator if viewed as the expansion in series eA = Aˆ n n!; the latter can be ∑n=0 computed with any given precision, if proper number of terms are calculated.
Recommended publications
  • Lecture Notes: Qubit Representations and Rotations
    Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1.
    [Show full text]
  • Theory of Angular Momentum and Spin
    Chapter 5 Theory of Angular Momentum and Spin Rotational symmetry transformations, the group SO(3) of the associated rotation matrices and the 1 corresponding transformation matrices of spin{ 2 states forming the group SU(2) occupy a very important position in physics. The reason is that these transformations and groups are closely tied to the properties of elementary particles, the building blocks of matter, but also to the properties of composite systems. Examples of the latter with particularly simple transformation properties are closed shell atoms, e.g., helium, neon, argon, the magic number nuclei like carbon, or the proton and the neutron made up of three quarks, all composite systems which appear spherical as far as their charge distribution is concerned. In this section we want to investigate how elementary and composite systems are described. To develop a systematic description of rotational properties of composite quantum systems the consideration of rotational transformations is the best starting point. As an illustration we will consider first rotational transformations acting on vectors ~r in 3-dimensional space, i.e., ~r R3, 2 we will then consider transformations of wavefunctions (~r) of single particles in R3, and finally N transformations of products of wavefunctions like j(~rj) which represent a system of N (spin- Qj=1 zero) particles in R3. We will also review below the well-known fact that spin states under rotations behave essentially identical to angular momentum states, i.e., we will find that the algebraic properties of operators governing spatial and spin rotation are identical and that the results derived for products of angular momentum states can be applied to products of spin states or a combination of angular momentum and spin states.
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • Unipotent Flows and Applications
    Clay Mathematics Proceedings Volume 10, 2010 Unipotent Flows and Applications Alex Eskin 1. General introduction 1.1. Values of indefinite quadratic forms at integral points. The Op- penheim Conjecture. Let X Q(x1; : : : ; xn) = aijxixj 1≤i≤j≤n be a quadratic form in n variables. We always assume that Q is indefinite so that (so that there exists p with 1 ≤ p < n so that after a linear change of variables, Q can be expresses as: Xp Xn ∗ 2 − 2 Qp(y1; : : : ; yn) = yi yi i=1 i=p+1 We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer). One can still ask what will happen if one substitutes integers for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients, then the set of values Q(Zn) is a discrete subset of R. Much deeper is the following conjecture: Conjecture 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra- tional form and n ≥ 5. Then Q(Zn) is dense in the real line. This conjecture was extended by Davenport to n ≥ 3. Theorem 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as n ≥ 3. Thus, if n ≥ 3 and Q is not proportional to a rational form, then Q(Zn) is dense in R. This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim Conjecture was attacked by analytic number theory methods. (In particular it was known for n ≥ 21, and for diagonal forms with n ≥ 5).
    [Show full text]
  • Linear Operators Hsiu-Hau Lin [email protected] (Mar 25, 2010)
    Linear Operators Hsiu-Hau Lin [email protected] (Mar 25, 2010) The notes cover linear operators and discuss linear independence of func- tions (Boas 3.7-3.8). • Linear operators An operator maps one thing into another. For instance, the ordinary func- tions are operators mapping numbers to numbers. A linear operator satisfies the properties, O(A + B) = O(A) + O(B);O(kA) = kO(A); (1) where k is a number. As we learned before, a matrix maps one vector into another. One also notices that M(r1 + r2) = Mr1 + Mr2;M(kr) = kMr: Thus, matrices are linear operators. • Orthogonal matrix The length of a vector remains invariant under rotations, ! ! x0 x x0 y0 = x y M T M : y0 y The constraint can be elegantly written down as a matrix equation, M T M = MM T = 1: (2) In other words, M T = M −1. For matrices satisfy the above constraint, they are called orthogonal matrices. Note that, for orthogonal matrices, computing inverse is as simple as taking transpose { an extremely helpful property for calculations. From the product theorem for the determinant, we immediately come to the conclusion det M = ±1. In two dimensions, any 2 × 2 orthogonal matrix with determinant 1 corresponds to a rotation, while any 2 × 2 orthogonal HedgeHog's notes (March 24, 2010) 2 matrix with determinant −1 corresponds to a reflection about a line. Let's come back to our good old friend { the rotation matrix, cos θ − sin θ ! cos θ sin θ ! R(θ) = ;RT = : (3) sin θ cos θ − sin θ cos θ It is straightforward to check that RT R = RRT = 1.
    [Show full text]
  • Inclusion Relations Between Orthostochastic Matrices And
    Linear and Multilinear Algebra, 1987, Vol. 21, pp. 253-259 Downloaded By: [Li, Chi-Kwong] At: 00:16 20 March 2009 Photocopying permitted by license only 1987 Gordon and Breach Science Publishers, S.A. Printed in the United States of America Inclusion Relations Between Orthostochastic Matrices and Products of Pinchinq-- Matrices YIU-TUNG POON Iowa State University, Ames, lo wa 5007 7 and NAM-KIU TSING CSty Poiytechnic of HWI~K~tig, ;;e,~g ,?my"; 2nd A~~KI:Lkwe~ity, .Auhrn; Al3b3m-l36849 Let C be thc set of ail n x n urthusiuihaatic natiiccs and ;"', the se! of finite prnd~uctpof n x n pinching matrices. Both sets are subsets of a,, the set of all n x n doubly stochastic matrices. We study the inclusion relations between C, and 9'" and in particular we show that.'P,cC,b~t-~p,t~forn>J,andthatC~$~~fori123. 1. INTRODUCTION An n x n matrix is said to be doubly stochastic (d.s.) if it has nonnegative entries and ail row sums and column sums are 1. An n x n d.s. matrix S = (sij)is said to be orthostochastic (0.s.) if there is a unitary matrix U = (uij) such that 2 sij = luijl , i,j = 1, . ,n. Following [6], we write S = IUI2. The set of all n x n d.s. (or 0s.) matrices will be denoted by R, (or (I,, respectively). If P E R, can be expressed as 1-t (1 2 54 Y. T POON AND N K. TSING Downloaded By: [Li, Chi-Kwong] At: 00:16 20 March 2009 for some permutation matrix Q and 0 < t < I, then we call P a pinching matrix.
    [Show full text]
  • 2 Rotation Kinematics
    2 Rotation Kinematics Consider a rigid body with a fixed point. Rotation about the fixed point is the only possible motion of the body. We represent the rigid body by a body coordinate frame B, that rotates in another coordinate frame G, as is shown in Figure 2.1. We develop a rotation calculus based on trans- formation matrices to determine the orientation of B in G, and relate the coordinates of a body point P in both frames. Z ZP z B zP G P r yP y YP X x P P Y X x FIGURE 2.1. A rotated body frame B in a fixed global frame G,aboutafixed point at O. 2.1 Rotation About Global Cartesian Axes Consider a rigid body B with a local coordinate frame Oxyz that is origi- nally coincident with a global coordinate frame OXY Z.PointO of the body B is fixed to the ground G and is the origin of both coordinate frames. If the rigid body B rotates α degrees about the Z-axis of the global coordi- nate frame, then coordinates of any point P of the rigid body in the local and global coordinate frames are related by the following equation G B r = QZ,α r (2.1) R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_2, © Springer Science+Business Media, LLC 2010 34 2. Rotation Kinematics where, X x Gr = Y Br= y (2.2) ⎡ Z ⎤ ⎡ z ⎤ ⎣ ⎦ ⎣ ⎦ and cos α sin α 0 − QZ,α = sin α cos α 0 .
    [Show full text]
  • Rotation Averaging
    Noname manuscript No. (will be inserted by the editor) Rotation Averaging Richard Hartley, Jochen Trumpf, Yuchao Dai, Hongdong Li Received: date / Accepted: date Abstract This paper is conceived as a tutorial on rota- Single rotation averaging. In the single rotation averaging tion averaging, summarizing the research that has been car- problem, several estimates are obtained of a single rotation, ried out in this area; it discusses methods for single-view which are then averaged to give the best estimate. This may and multiple-view rotation averaging, as well as providing be thought of as finding a mean of several points Ri in the proofs of convergence and convexity in many cases. How- rotation space SO(3) (the group of all 3-dimensional rota- ever, at the same time it contains many new results, which tions) and is an instance of finding a mean in a manifold. were developed to fill gaps in knowledge, answering funda- Given an exponent p ≥ 1 and a set of n ≥ 1 rotations p mental questions such as radius of convergence of the al- fR1;:::; Rng ⊂ SO(3) we wish to find the L -mean rota- gorithms, and existence of local minima. These matters, or tion with respect to d which is defined as even proofs of correctness have in many cases not been con- n p X p sidered in the Computer Vision literature. d -mean(fR1;:::; Rng) = argmin d(Ri; R) : We consider three main problems: single rotation av- R2SO(3) i=1 eraging, in which a single rotation is computed starting Since SO(3) is compact, a minimum will exist as long as the from several measurements; multiple-rotation averaging, in distance function is continuous (which any sensible distance which absolute orientations are computed from several rel- function is).
    [Show full text]
  • Numerically Stable Coded Matrix Computations Via Circulant and Rotation Matrix Embeddings
    1 Numerically stable coded matrix computations via circulant and rotation matrix embeddings Aditya Ramamoorthy and Li Tang Department of Electrical and Computer Engineering Iowa State University, Ames, IA 50011 fadityar,[email protected] Abstract Polynomial based methods have recently been used in several works for mitigating the effect of stragglers (slow or failed nodes) in distributed matrix computations. For a system with n worker nodes where s can be stragglers, these approaches allow for an optimal recovery threshold, whereby the intended result can be decoded as long as any (n − s) worker nodes complete their tasks. However, they suffer from serious numerical issues owing to the condition number of the corresponding real Vandermonde-structured recovery matrices; this condition number grows exponentially in n. We present a novel approach that leverages the properties of circulant permutation matrices and rotation matrices for coded matrix computation. In addition to having an optimal recovery threshold, we demonstrate an upper bound on the worst-case condition number of our recovery matrices which grows as ≈ O(ns+5:5); in the practical scenario where s is a constant, this grows polynomially in n. Our schemes leverage the well-behaved conditioning of complex Vandermonde matrices with parameters on the complex unit circle, while still working with computation over the reals. Exhaustive experimental results demonstrate that our proposed method has condition numbers that are orders of magnitude lower than prior work. I. INTRODUCTION Present day computing needs necessitate the usage of large computation clusters that regularly process huge amounts of data on a regular basis. In several of the relevant application domains such as machine learning, arXiv:1910.06515v4 [cs.IT] 9 Jun 2021 datasets are often so large that they cannot even be stored in the disk of a single server.
    [Show full text]
  • Lecture 13: Complex Eigenvalues & Factorization
    Lecture 13: Complex Eigenvalues & Factorization Consider the rotation matrix 0 1 A = . (1) 1 ¡0 · ¸ To …nd eigenvalues, we write ¸ 1 A ¸I = ¡ ¡ , ¡ 1 ¸ · ¡ ¸ and calculate its determinant det (A ¸I) = ¸2 + 1 = 0. ¡ We see that A has only complex eigenvalues ¸= p 1 = i. § ¡ § Therefore, it is impossible to diagonalize the rotation matrix. In general, if a matrix has complex eigenvalues, it is not diagonalizable. In this lecture, we shall study matrices with complex eigenvalues. Since eigenvalues are roots of characteristic polynomials with real coe¢cients, complex eigenvalues always appear in pairs: If ¸0 = a + bi is a complex eigenvalue, so is its conjugate ¸¹0 = a bi. ¡ For any complex eigenvalue, we can proceed to …nd its (complex) eigenvectors in the same way as we did for real eigenvalues. Example 13.1. For the matrix A in (1) above, …nd eigenvectors. ¹ Solution. We already know its eigenvalues: ¸0 = i, ¸0 = i. For ¸0 = i, we solve (A iI) ~x = ~0 as follows: performing (complex) row operations to¡get (noting that i2 = 1) ¡ ¡ i 1 iR1+R2 R2 i 1 A iI = ¡ ¡ ¡ ! ¡ ¡ ¡ 1 i ! 0 0 · ¡ ¸ · ¸ = ix1 x2 = 0 = x2 = ix1 ) ¡ ¡ ) ¡ x1 1 1 0 take x1 = 1, ~u = = = i x2 i 0 ¡ 1 · ¸ ·¡ ¸ · ¸ · ¸ is an eigenvalue for ¸= i. For ¸= i, we proceed similarly as follows: ¡ i 1 iR1+R2 R2 i 1 A + iI = ¡ ! ¡ = ix1 x2 = 0 1 i ! 0 0 ) ¡ · ¸ · ¸ 1 1 1 0 take x = 1, ~v = = + i 1 i 0 1 · ¸ · ¸ · ¸ is an eigenvalue for ¸= i. We note that ¡ ¸¹0 = i is the conjugate of ¸0 = i ¡ ~v = ~u (the conjugate vector of eigenvector ~u) is an eigenvector for ¸¹0.
    [Show full text]
  • 3. Translational and Rotational Dynamics MAE 345 2017.Pptx
    Translational and Rotational Dynamics! Robert Stengel! Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html 1 Reference Frame •! Newtonian (Inertial) Frame of Reference –! Unaccelerated Cartesian frame •! Origin referenced to inertial (non-moving) frame –! Right-hand rule –! Origin can translate at constant linear velocity –! Frame cannot rotate with respect to inertial origin ! x $ # & •! Position: 3 dimensions r = # y & –! What is a non-moving frame? "# z %& •! Translation = Linear motion 2 Velocity and Momentum of a Particle •! Velocity of a particle ! $ ! x! $ vx dr # & # & v = = r! = y! = # vy & dt # & # ! & # & " z % vz "# %& •! Linear momentum of a particle ! v $ # x & p = mv = m # vy & # & "# vz %& 3 Newtons Laws of Motion: ! Dynamics of a Particle First Law . If no force acts on a particle, it remains at rest or continues to move in straight line at constant velocity, . Inertial reference frame . Momentum is conserved d ()mv = 0 ; mv = mv dt t1 t2 4 Newtons Laws of Motion: ! Dynamics of a Particle Second Law •! Particle acted upon by force •! Acceleration proportional to and in direction of force •! Inertial reference frame •! Ratio of force to acceleration is particle mass d dv dv 1 1 ()mv = m = ma = Force ! = Force = I Force dt dt dt m m 3 ! $ " % fx " % fx # & 1/ m 0 0 $ ' = $ ' f Force = # fy & = force vector $ 0 1/ m 0 '$ y ' $ ' # & #$ 0 0 1/ m &' f fz $ z ' "# %& # & 5 Newtons Laws
    [Show full text]
  • Lecture 42: Orthogonal Matrices & Rotations
    Rotations & reflections Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations. In this lecture we work over the fields F = R & C. We let cos θ − sin θ R = θ sin θ cos θ 0 the 2 × 2-matrix which rotates anti-clockwise about 0 through angle θ. Note that det Rθ = 1 & that Rπ is the diagonal matrix −I2 = (−1) ⊕ (−1). Defn Let A 2 Mnn(R). We say that A is a rotation matrix if it is orthogonally similar to In−2 ⊕ Rθ for some θ. We say that A is a reflection matrix if it is orthogonally similar to In−1 ⊕ (−1). Rem Note that this generalises the usual notions in dim 2 & 3. Also, rotations are orthogonal with determinant 1 whilst reflections are orthogonal with det -1. Daniel Chan (UNSW) Lecture 42: Orthogonal matrices & rotations Semester 2 2012 1 / 7 Orthogonal matrices in O2; O3 Recall that orthogonal matrices have det ±1. We defer the proof of Theorem 1 Let A 2 O2. If det A = 1 then A is orthog sim to Rθ for some θ (so tr A = 2 cos θ) & if det A = −1 then A is a reflection. 2 Let A 2 O3. If det A = 1 then A is orthog sim to (1) ⊕ Rθ (so tr A = 1 + 2 cos θ) & if det A = −1 then A is orthog sim to (−1) ⊕ Rθ (so tr A = −1 + 2 cos θ) for some θ. Corollary Let A; B 2 M22(R) or A; B 2 M33(R).
    [Show full text]