Doctoral Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

Doctoral Dissertation Template UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE IMPACT OF LONG-TERM ELEVATED ATMOSPHERIC CARBON DIOXIDE ON BELOWGROUND MICROBIAL COMMUNITY AT CONTRAST NITROGEN CONDITIONS A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By FEIFEI LIU Norman, Oklahoma 2017 THE IMPACT OF LONG-TERM ELEVATED ATMOSPHERIC CARBON DIOXIDE ON BELOWGROUND MICROBIAL COMMUNITY AT CONTRAST NITROGEN CONDITIONS A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Jizhong Zhou, Chair ______________________________ Dr. Elizabeth Karr ______________________________ Dr. Bradley Stevenson ______________________________ Dr. Yiqi Luo ______________________________ Dr. Michael Patten © Copyright by FEIFEI LIU 2017 All Rights Reserved. Acknowledgements This is a dissertation studying microbial community and it is really a work of a community. Many people contributed to this study and I would like to express my gratitude to all of them who encouraged me and helped me out through the past years. First, my advisor, Jizhong Zhou, was generous to take me on as a student and introduced me to the field of environmental microbiology. Dr. Zhou is an excellent, incredibly hard- working scientist. He has provided much guidance, encouragement, and patience over the years. This project would not be possible without his support. Dr. Zhili He and Dr. Kai Xue also contributed much to this project for instructing me to gather, analyze, and interpret of the large datasets. Dr. Liyou Wu spent lots of efforts to develop the high-throughput sequencing pipelines. Without their help, I could be still struggling working on generating data and making sense of it. I truly learned a lot from them in organizing massed results into logical scientific work. I also owe great thanks to my committee members—Dr. Elizabeth Karr, Dr. Yiqi Luo, Dr. Bradley Steven, and Dr. Michael Patten for serving as my committee members for this long time. As a graduate student trying to develop his own background in a multidisciplinary area, I deeply appreciated their guidance by providing valuable suggestions and assistance for every stages throughout this degree period. The different perspectives they look at questions greatly benefitted me to address problems comprehensively. Members of IEG have been very helpful, particularly Dr. Joy Van Nostrand, Dr. Daliang Ning, Dr. Renmao Tian, Dr. Arthur Escalas, Dr, Anyi Hu, Dr. Jialiang Kuang, Dr. Ye Deng, and Yujia Qin. The data analysis methods and scientific writing skills I iv learned from them would also benefit me for life. Dr. Peter Reich and Dr. Sarah Hobbie from the University of Minnesota also kindly offered perspective on potential research ideas, helped me collect samples, and generously shared data. Grants from several agencies have supported my research including the US Department of Energy and the China Scholarship Council. Thank you for the investment and the trust placed in me. My final sincerest gratitude belongs to my family, my parents, and my fiancée, for their continuous encouragements and support in my whole life. It is them who helped me to survive all the stress for years and not letting me give up. Nothing could compensate the great efforts and sacrifice they have made for my achievements. v Table of Contents Acknowledgements ......................................................................................................... iv Table of Contents ............................................................................................................ vi List of Tables ................................................................................................................... xi List of Figures ................................................................................................................. xii Abstract ......................................................................................................................... xvii Chapter 1: Introduction ..................................................................................................... 1 1.1 Atmospheric CO2: the background ....................................................................... 1 1.2 Consequences of elevated atmospheric CO2 for macroecosystems ..................... 2 1.3 Consequences of elevated atmospheric CO2 for microbial communities belowground ................................................................................................... 3 1.4 Foci of this study .................................................................................................. 7 Chapter 2: Responses of soil microbial communities to elevated carbon dioxide and nitrogen deposition differ by C3 and legume plants .......................................... 11 2.1 Abstract ............................................................................................................... 11 2.2 Introduction ........................................................................................................ 13 2.3 Materials and Methods ....................................................................................... 16 2.3.1 Site description and experimental design: ................................................. 16 2.3.2 Plant and soil property measurements ....................................................... 17 2.3.3 DNA isolation, PCR amplification of the 16S rRNA gene and Illumina sequencing .............................................................................................. 18 2.3.4 Sequence data preprocessing and statistical analysis ................................ 18 2.4 Results ................................................................................................................ 19 vi 2.4.1 Structure of soil bacterial and archaeal communities ................................ 19 2.4.2 Effect of eCO2 and eN on microbial community diversity and structure .. 21 2.4.3 Changes in community composition along eCO2 and eN ......................... 22 2.4.4 Distribution of copiotrophic-, oligotrophic-like microorganisms along treatments in C3 grass and legume plots ................................................ 25 2.4.5 Linkages between microbial composition and selected environmental properties ................................................................................................ 28 2.5 Discussion ........................................................................................................... 30 Chapter 3: Contingency in belowground microbial functional responses to rising atmospheric CO2 at contrast nitrogen conditions ............................................... 37 3.1 Abstract ............................................................................................................... 37 3.2 Introduction ........................................................................................................ 39 3.3 Materials and Methods ....................................................................................... 42 3.3.1 Site description and sampling .................................................................... 42 3.3.2 Soil DNA extraction, amplification, and labeling ..................................... 43 3.3.3 Microarray hybridization ........................................................................... 43 3.3.4 Microarray scanning and data pre-processing ........................................... 44 3.3.5 Ecosystem C flux measurement ................................................................ 45 3.3.6 Stable isotope analysis of soil C sequestration and N fixation .................. 45 3.3.7 Statistical analysis ..................................................................................... 46 3.4 Results ................................................................................................................ 47 3.4.1 Effects of eCO2 and eN on plant and soil attributes .................................. 47 3.4.2 Overall responses of soil microbial functional genes to eCO2 and eN ...... 48 vii 3.4.3 Effects of eCO2 and eN on key functional genes ...................................... 50 3.4.4 Soil and microbial heterotrophic respiration ............................................. 56 3.4.5 Stable isotope analysis of soil C sequestration and N fixation .................. 56 3.4.6 Linkages between microbial functional structure and selected environmental attributes ......................................................................... 57 3.5 Discussion ........................................................................................................... 60 3.6 Conclusions ........................................................................................................ 64 Chapter 4: Impact of Elevated CO2 and N Addition on Metabolic Diversity of C3 grass- and Legume-associated Microbial Communities ............................................... 66 4.1 Abstract ............................................................................................................... 66 4.2 Introduction ........................................................................................................ 68 4.3 Materials and Methods ....................................................................................... 69 4.3.1 Site description and sample collection ...................................................... 69 4.3.2 Sample preparation ...................................................................................
Recommended publications
  • Patterns, Processes and Models of Microbial Recovery in a Chronosequence Following Reforestation of Reclaimed Mine Soils
    PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Crop and Soil Environmental Sciences Brian Badgley, Chair Song Li Brian Strahm Michael Strickland Carl Zipper Virginia Polytechnic Institute and State University Blacksburg, Virginia July 2017 Keywords: soil microorganism, recovery, chronosequence, reclaimed mine soils, amplicon sequencing, shotgun metagenomics, bacterial co-occurrence groups, artificial neural network PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Abstract Soil microbial communities mediate important ecological processes and play essential roles in biogeochemical cycling. Ecosystem disturbances such as surface mining significantly alter soil microbial communities, which could lead to changes or impairment of ecosystem functions. Reforestation procedures were designed to accelerate the reestablishment of plant community and the recovery of the forest ecosystem after reclamation. However, the microbial recovery during reforestation has not been well studied even though this information is essential for evaluating ecosystem restoration success. In addition, the similar starting conditions of mining sites of different ages facilitate a chronosequence approach for studying decades-long microbial community change, which could help generalize theories about ecosystem succession. In this study, the recovery of microbial communities in a chronosequence of reclaimed mine sites spanning 30 years post reforestation along with unmined reference sites was analyzed using next-generation sequencing to characterize soil-microbial abundance, richness, taxonomic composition, interaction patterns and functional genes.
    [Show full text]
  • Assemblage and Functioning of Bacterial Communities in Soil and Rhizosphere Issue Date: 2016-06-08
    Cover Page The handle http://hdl.handle.net/1887/40026 holds various files of this Leiden University dissertation. Author: Yan Y. Title: Assemblage and functioning of bacterial communities in soil and rhizosphere Issue Date: 2016-06-08 Assemblage and functioning of bacterial communities in soil and rhizosphere Yan Yan 闫 燕 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere PhD thesis, Leiden University, The Netherlands. The research described in this thesis was performed at the Netherlands Institute of Ecology, NIOO-KNAW and at the Institute of Biology of Leiden University. 2016 闫燕 Yan Yan. No part of this thesis may be reoroduced or transmitted without prior written permission of the author. Cover (封面): Tree Roots (树根), Vincent van Gogh (梵⾼), 1890. Inspiration to rhizosphere. Lay-out by Yan Yan Printed by Ipskamp Printing ISBN: 978-94-028-0205-4 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr.C.J.J.M.Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 8 juni 2016 klokke 16.15 uur door Yan Yan geboren te Shijiazhuang, Hebei, China in 1986 503396-L-bw-Yan Promotiecommissie Promotor: Prof. dr. J. A. van Veen Promotor: Prof. dr. P. G. L. Klinkhamer Co-promotor: Dr. E. E. Kuramae, Nederlands Instituut voor Ecologie-KNAW Overige leden Prof. dr. H.P.Spaink Prof. dr. G.A.Kowalchuk, Universiteit Utrecht Prof. dr. Jos Raaijmakers Prof.
    [Show full text]
  • Validation of the Asaim Framework and Its Workflows on HMP Mock Community Samples
    Validation of the ASaiM framework and its workflows on HMP mock community samples The ASaiM framework and its workflows have been tested and validated on two mock metagenomic data of an artificial community (with 22 known microbial strains). The datasets are available on EBI metagenomics database (project accession number: SRP004311). First we checked that the targeted abundances (based on number of PCR product) from both mock datasets were similar to the effective abundance (by mapping reads on reference genomes). Second, taxonomic and functional results produced by the ASaiM framework have been extensively analyzed and compared to expectations and to results obtained with the EBI metagenomics pipeline (S. Hunter et al. 2014). For these datasets, the ASaiM framework produces accurate and precise taxonomic assignations, different functional results (gene families, pathways, GO slim terms) and results combining taxonomic and functional information. Despite almost 1.4 million of raw metagenomic sequences, these analyses were executed in less than 6h on a commodity computer. Hence, the ASaiM framework and its workflows are proven to be relevant for the analysis of microbiota datasets. 1Data On EBI metagenomics database, two mock community samples for Human Microbiome Project (HMP) are available. Both samples contain a genomic mixture of 22 known microbial strains. Relative abundance of each strain has been targeted using the number of PCR product of their respective 16S sequences (Table 1). In first sample (SRR072232), the targeted 16S copies of the strains vary by up to four orders of magnitude between the strains (Table 1), whereas in second sample (SRR072233) the same 16S copy number is targeted for each strain (Table 1).
    [Show full text]
  • A Report of 26 Unrecorded Bacterial Species in Korea, Isolated from Urban Streams of the Han River Watershed in 2018
    Journal of Species Research 8(3):249-258, 2019 A report of 26 unrecorded bacterial species in Korea, isolated from urban streams of the Han River watershed in 2018 Yochan Joung§,1, Hye-Jin Jang§,1, Myeong Woon Kim§,2, Juchan Hwang1, Jaeho Song1 and Jang-Cheon Cho1,* 1Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea 2Department of Energy and Environmental Engineering, Daejin University, Hoguk-ro 1007, Pocheon-si, Gyeonggi-do 11159, Republic of Korea *Correspondent: [email protected] §These authors contributed equally to this work. Owing to a distinct environmental regime and anthropogenic effects, freshwater bacterial communities of urban streams are considered to be different from those of large freshwater lakes and rivers. To obtain unrecorded, freshwater bacterial species in Korea, water and sediment samples were collected from various urban streams of the Han River watershed in 2018. After plating the freshwater samples on R2A agar, approximately 1000 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 26 strains, with >98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, were determined to be unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, six classes, 12 orders, 16 families, and 21 genera. At the generic level, the unreported species were assigned to Nocardioides, Streptomyces, Microbacterium, Kitasatospora, Herbiconiux, Corynebacterium, and Microbacterium of the class Actinobacteria; Paenibacillus and Bacillus of the class Bacilli; Caulobacter, Methylobacterium, Novosphingobium, and Porphyrobacter of the class Alphaproteobacteria; Aquabacterium, Comamonas, Hydrogenophaga, Laribacter, Rivicola, Polynucleobacter, and Vogesella of the class Betaproteobacteria; Arcobacter of the class Epsilonproteobacteria; and Flavobacterium of the class Flavobacteriia.
    [Show full text]
  • Phylogenetic Rooting Using Minimal Ancestor Deviation
    Phylogenetic rooting using minimal ancestor deviation Fernando D. K. Tria1, Giddy Landan1*, Tal Dagan Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany 1 Equally contributed. * Corresponding author: [email protected] This preprint PDF is the revised manuscript as submitted to Nature Ecology & Evolution on 30-Mar-2017. It includes both the main text and the supplementary information. The final version published in Nature Ecology & Evolution on 19-Jun-2017 (and submitted on 08-May-2017), is here: https://www.nature.com/articles/s41559-017-0193 Readers without subscription to NatE&E can see a read-only (no save or print) version here: http://rdcu.be/tywU The main difference between the versions is that the ‘Detailed Algorithm’ section is part of the main text 'Methods' section in the NatE&E final version, but is part of the supplementary information of this preprint version. Be sure to page beyond the references to see it. 1 Abstract Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relatio ns are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. We present a novel rooting approach, the minimal ancestor deviation (MAD) method, which embraces heterotachy by utilizing all pairwise topological and metric information in unrooted trees. We demonstrate the method in comparison to existing rooting methods by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the kno wn root of eukaryotes and uncovers evidence for cyanobacteria origins in the ocean. MAD is more robust and co nsistent than existing methods, provides measures of the root inference quality, and is applicable to any tree with branch lengths.
    [Show full text]
  • Contrasting Environmental Preferences of Photosynthetic and Non-Photosynthetic Soil Cyanobacteria Across the Globe
    Received: 31 October 2019 | Revised: 8 July 2020 | Accepted: 20 July 2020 DOI: 10.1111/geb.13173 RESEARCH PAPER Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe Concha Cano-Díaz1 | Fernando T. Maestre2,3 | David J. Eldridge4 | Brajesh K. Singh5,6 | Richard D. Bardgett7 | Noah Fierer8,9 | Manuel Delgado-Baquerizo10 1Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain 2Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 3Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 4Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 5Global Centre for Land-Based Innovation, University of Western Sydney, Penrith, New South Wales, Australia 6Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia 7Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK 8Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA 9Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA 10Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain Correspondence Concha Cano-Díaz, Departamento de Abstract Biología, Geología, Física y Química Aim: Cyanobacteria have shaped the history of life on Earth and continue to play Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad important roles as carbon and nitrogen fixers in terrestrial ecosystems.
    [Show full text]
  • Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils
    microorganisms Article Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils Nazareth Torres † , Runze Yu and S. Kaan Kurtural * Department of Viticulture and Enology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA; [email protected] (N.T.); [email protected] (R.Y.) * Correspondence: [email protected] † Current address: Advanced Fruit and Grape Growing Group, Public University of Navarra, 31006 Pamplona, Spain. Abstract: Vineyard-living microbiota affect grapevine health and adaptation to changing environ- ments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacte- rial and fungal communities. Microbial network analyses suggested that the bacterial associations Citation: Torres, N.; Yu, R.; Kurtural, were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to S.K. Inoculation with Mycorrhizal the increase in positive associations between vineyard-soil-living microbes. Altogether, the results Fungi and Irrigation Management highlight the need for more studies on the effect of management practices, especially the addition Shape the Bacterial and Fungal of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen Communities and Networks in Vineyard Soils.
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Effect of Vertical Flow Exchange on Microbial Community Dis- Tributions in Hyporheic Zones
    Article 1 by Heejung Kim and Kang-Kun Lee* Effect of vertical flow exchange on microbial community dis- tributions in hyporheic zones School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; *Corresponding author, E-mail: [email protected] (Received: November 2, 2018; Revised accepted: January 6, 2019) https://doi.org/10.18814/epiiugs/2019/019001 The effect of the vertical flow direction of hyporheic flux advance of hydrodynamic modeling has improved research of hydro- on the bacterial community is examined. Vertical velocity logical exchange processes at the hyporheic zone (Cardenas and Wil- change of the hyporheic zone was examined by installing son, 2007; Fleckenstein et al., 2010; Endreny et al., 2011). Also, this a piezometer on the site, and a total of 20,242 reads were zone has plentiful micro-organisms. The hyporheic zone constituents analyzed using a pyrosequencing assay to investigate the a dynamic hotspot (ecotone) where groundwater and surface water diversity of bacterial communities. Proteobacteria (55.1%) mix (Smith et al., 2008). were dominant in the hyporheic zone, and Bacteroidetes This area constitutes a flow path along which surface water down wells into the streambed sediment and groundwater up wells in the (16.5%), Actinobacteria (7.1%) and other bacteria phylum stream, travels for some distance before eventually mixing with (Firmicutes, Cyanobacteria, Chloroflexi, Planctomycetesm groundwater returns to the stream channel (Hassan et al., 2015). Sur- and unclassified phylum OD1) were identified. Also, the face water enters the hyporheic zone when the vertical hydraulic head hyporheic zone was divided into 3 points – down welling of surface water is greater than the groundwater (down welling).
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake Constance
    fmicb-10-00247 February 11, 2019 Time: 18:14 # 1 Erschienen in: Frontiers in Microbiology ; 10 (2019). - 247 http://dx.doi.org/10.3389/fmicb.2019.00247 ORIGINAL RESEARCH published: 13 February 2019 doi: 10.3389/fmicb.2019.00247 The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake Constance Susanne Wörner1,2 and Michael Pester1,2,3* 1 Department of Biology, University of Konstanz, Konstanz, Germany, 2 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell cultures, Braunschweig, Germany, 3 Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany Active sulfate-reducing microorganisms (SRM) in freshwater sediments are under- examined, despite the well-documented cryptic sulfur cycle occurring in these low- Edited by: sulfate habitats. In Lake Constance sediment, sulfate reduction rates of up to 1,800 nmol Kenneth Wasmund, cm−3 day−1 were previously measured. To characterize its SRM community, we used University of Vienna, Austria a tripartite amplicon sequencing approach based on 16S rRNA genes, 16S rRNA, Reviewed by: Paula Dalcin Martins, and dsrB transcripts (encoding the beta subunit of dissimilatory sulfite reductase). Radboud University Nijmegen, We followed the respective amplicon dynamics in four anoxic microcosm setups Netherlands supplemented either with (i) chitin and sulfate, (ii) sulfate only, (iii) chitin only, or Christina Pavloudi, Hellenic Centre for Marine Research (iv) no amendment. Chitin was used as a general substrate for the whole carbon (HCMR), Greece degradation chain. Sulfate turnover in sulfate-supplemented microcosms ranged from Jesse G. Dillon, −1 −1 California State University, Long 38 to 955 nmol day (g sediment f. wt.) and was paralleled by a decrease of Beach, United States 90–100% in methanogenesis as compared to the respective methanogenic controls.
    [Show full text]