Architectures for Radio Over Fiber Transmission of High-Quality Video and Data Signals
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Sep 24, 2021 Architectures for radio over fiber transmission of high-quality video and data signals Lebedev, Alexander Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lebedev, A. (2013). Architectures for radio over fiber transmission of high-quality video and data signals. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Architectures for radio over fiber transmission of high-quality video and data signals Ph.D. Thesis by Alexander Lebedev Main supervisor: Søren Forchhammer Co-supervisor: I. Tafur Monroy Co-supervisor: J. J. Vegas Olmos Department of Photonics Engineering Technical University of Denmark DK-2800, Kgs. Lyngby, Denmark August 31, 2013 ii “There are these two young fish swimming along and they happen to meet an older fish swimming the other way, who nods at them and says "Morning, boys. How's the water?" And the two young fish swim on for a bit, and then eventually one of them looks over at the other and goes "What the hell is water?” David Foster Wallace iii iv Abstract In this Ph.D. project, design and performance evaluation of mm-wave radio over fiber links for diverse applications including video transmission are conducted. Major objective of this Thesis is to study performance of video and data signals transmitted in radio over fiber (RoF) setups with a constraint on complexity. For wireless personal area networks distribution, we explore the notion of joint optimization of physical layer parameters of a fiber-wireless link (optical power levels, wireless transmission distance) and the codec parameters (quantization, error-resilience tools) based on the peak signal-to-noise ratio as an objective video quality metric for compressed video transmission. Furthermore, we experimentally demonstrate uncompressed 1080i high- definition video distribution in V-band (50–75 GHz) and W-band (75–110 GHz) fiber-wireless links achieving 3 m of wireless transmission in both cases. For the W-band, experimental assessment of passive and active approaches for implementation of base stations is included, and the channel coding use is assessed. Use of millimeter-wave signals in metropolitan mobile backhaul is also considered in this Thesis. We propose a setup enabling efficient wired/wireless backhaul of picocell networks. Gigabit signal transmission is realized in combined fiber-wireless-fiber link enabling simultaneous backhaul of dense metropolitan and suburban areas. In this Thesis, we propose a technique to combat periodic chromatic dispersion-induced radio frequency (RF) power fading in a simple intensity v modulation-direct detection mm-wave RoF link through introduction of a degree of frequency tunability at the RoF transmitter. We study advanced RoF infrastructures to better suit video transmission. To enable efficient dynamic multicast/broadcast of video services, we have proposed and evaluated an approach of increasing the functionality of the optical remote node by including the wireless channel replication and allocation. Another approach for multicast of RF signals - delivering multiple simultaneously upconverted lightwaves from the central office to designated BSs is evaluated for diverse lightwave generation and data modulation techniques. Mm-wave RoF links employing various lightwave generation techniques are experimentally demonstrated for diversified fiber infractructure including standard single mode fiber, multimode fiber and dispersion shifted fiber in order to estimate the feasibility of mm-wave wireless video services’ delivery through fiber infrastructure with different nonlinear impairments and dispersion. vi Abstrakt Dette Ph.D. projekt omhandler design og performance evaluering af mm- wave ”radio over fiber” links for diverse applikationer, inklusiv video transmission. Hovedfokus er lagt på studie af performance af video og data signaler transmitteret over RoF opsætninger med begrænsninger i kompleksiteten. For distribution i ”wireless personal area networks” undersøger vi gensidig optimering af parametre i det fysiske lag af en fiber-wireless forbindelse (optiske effekt niveauer, trådløs transmissionslængde) og koder/dekoder parametre (kvantisering, fejl-beskyttelses værktøjer) baseret på ”peak signal- to-noise ratio” som et objektivt mål for kvaliteten af komprimeret video transmission. Desuden demonstrerer vi eksperimentelt ukomprimeret 1080i high-definition video distribution i V-band (50–75 GHz) og W-band (75-110 GHz) fiber-wireless forbindelser, hvor vi i begge tilfælde opnår trådløs transmission over 3 meter. For W-band inkluderes den eksperimentelle evaluering brug af passive og aktive metoder til implementering af basis stationer, ligeledes evalueres brugen af kanal-kodning. Afhandlngen omhandler også brugen af millimeter-wave signaler i ”metropolitan mobile backhaul”. Vi foreslår et set-up som giver effektiv ”wired/wireless backhaul” i picocell netværk. Trådløs gigabit transmission realiseres i kombinerede fiber-wireless-fiber forbindelser som muliggør effektiv ”backhaul” i tæt bymæssig bebyggelse. vii Vi foreslår en ny løsning for ”RF power fading” forårsaget af periodisk kromatisk dispersion i et simpelt “intensity modulation-direct detection” mm- wave RoF system ved hjælp af delvis frekvens justering i RoF senderen. Vi studerede avanceret RoF infra-struktur for bedre tilpasning til video transmission. For effektiv dynamisk multicast/broadcast af video tjenester har vi foreslået og evalueret en metode til optimering af den optiske “remote node”s evne til at håndtere replikation og allokering af de trådløse kanaler. En anden metode til multicast af RF signaler – der leverer flere opkonverterede ”lightwaves” fra ”central office” til basis station bliver evalueret for diverse ”lightwave” generering og modulations-teknikker. Mm-wave RoF forbindelser med diverse ”lightwave” genererings teknikker er realiseret eksperimentelt for “diversified” fiber infrastruktur, inklusiv single mode fibre, multimode fibre og ”dispersion shifted” fiber, men henblik på at estimere muligheden for at levere mm-wave trådløse video tjenester over fiber infrastruktur med forskellige ikke-linære fejlkilder og dispersion. viii Acknowledgments I’d like to thank my supervisors, colleagues in the groups, officemates, and all the wonderful people in Fotonik and DTU. It was a joy and a privilege to work with you. I would also like to thank my parents and my sister for knowing that I always can do more. ix x Contents Abstract ......................................................................................................... v Abstrakt ....................................................................................................... vii Acknowledgments ........................................................................................ ix List of publications .......................................................................................xiii List of abbreviations .................................................................................... xv List of figures .............................................................................................. xvii List of tables .............................................................................................. xviii 1. Introduction ............................................................................................ 1 1.1 Motivation ........................................................................................ 1 1.2 MM-wave fiber-wireless networks .................................................... 2 1.3 Lightwave generation and baseband data modulation ..................... 4 1.4 Photomixing .................................................................................... 6 1.5 Techniques of RF modulation of the lightwave ................................ 7 1.6 RF downconversion......................................................................... 9 1.7 Optical fiber transmission impairments .......................................... 11 1.7.1 RF signal power fading ........................................................... 11 1.7.2 Bit walk-off ............................................................................. 13 1.8 Noise in mm-wave RoF links ......................................................... 14 1.9 Wireless channel ........................................................................... 15 1.9.1 Overview of the applications and standards ........................... 15 1.9.2 60 GHz wireless channel modeling ........................................ 16 1.10 Source and channel coding in mm-wave fiber-wireless setups ...................................................................................................... 21 1.10.1 Uncompressed