High Performance, Low Cost and Low Consumption Radio Over Fiber Systems for Diversified Communications Applications
Total Page:16
File Type:pdf, Size:1020Kb
High performance, low cost and low consumption Radio over fiber Systems for diversified communications applications. Jacopo Nanni To cite this version: Jacopo Nanni. High performance, low cost and low consumption Radio over fiber Systems for di- versified communications applications.. Optics [physics.optics]. Université Paris-Est; Università degli studi (Bologne, Italie), 2018. English. NNT : 2018PESC1162. tel-02366138 HAL Id: tel-02366138 https://tel.archives-ouvertes.fr/tel-02366138 Submitted on 15 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole´ Doctorale MSTIC Math´ematiques,Sciences et Technologies de l' Information et de la Communication Ph.D. Thesis In order to obtain the title of Doctor of Science Specialty: Electronics, optoelectronics and systems Defended by Jacopo Nanni High Performance, Low Cost and Low Consumption Radio-over-Fiber Systems for Diversified Communications Applications Supervised by Prof. Catherine Algani, Prof. Giovanni Tartarini and Prof. Jean-Luc Polleux. Prepared at ESIEE, ESYCOM Laboratory and at Optics laboratory of the Department of Electrical, Electronic and Information Engineering \Guglielmo Marconi" at University of Bologna (Italy) Defended on December 14th 2018 in Bologna (Italy) Jury Reviewers: Prof. Pierluigi DeBernardi CNR, IEIIT di Torino (Italy) Prof. Marco Romanelli Universit´ede Rennes (France) Advisors: Prof. Catherine Algani ESYCOM - Universit´eParis-Est (France) Prof. Giovanni Tartarini Universit´adi Bologna (Italy) Prof. Jean-Luc Polleux ESYCOM - Universit´eParis-Est (France) Examinators: Prof. Pierpaolo Boffi Politecnico di Milano (Italy) Prof. Gaetano Bellanca Universit´adi Ferrara (Italy) Prof. Jean-Marc Lauherte Universit´eParis-Est (France) Copyright c 2018 by Jacopo Nanni All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written consent of the author. Typeset using LATEX. Acknowledgments My acknowledgement goes to the people which have contributed both directly and indi- rectly to this work. First of all, I would like to thank Prof. Giovanni Tartarini, Prof. Catherine Algani and Prof. Jean-Luc Polleux which gave me the opportunity of pursuing the \cotutelle" Ph.D. program. Thank you for the helpful and stimulating discussions, and for teaching me everyday how to be a better researcher. Then I would like to thank Dr. Pierluigi Debernardi and Prof. Marco Romanelli for accepting to be reviewers of this manuscript helping me with important comments and sug- gestions to improve the quality of the contents. My sincere gratitude also to Prof. Jean-Marc Laheurte, Prof. Pierpaolo Boffi and Prof. Gaetano Bellanca whom accepted to be examiners of this work. A special thank goes then to my colleagues, mates and friends in Bologna and Paris, with whom I had always interesting discussions and talks. Last but not least, I would like to thank the people which contribute indirectly to this work: my family and friends, which always helped me in difficult moments supporting and encouraging me. i ACKNOWLEDGMENTS ii Abstract This dissertation aims to analyze the possibility of improving in terms of cost and consumption the future Radio-over-Fiber (RoF) systems in different telecommunication scenarios, such as current and next generation of cellular networks and in other applications such as Radio Astronomy. The RoF system studied is hence composed of a Vertical Cavity Surface Emitting Laser (VCSEL) operating at 850 nm, standard single mode fiber (SSMF) and SiGe Heterojunction Phototransistor (HPT), adopting the technique called Intensity Modulation{Direct Detection which is nowadays the cheapest and simplest architecture for RoF. This dissertation describes in detail the multimode propagation within the SSMF (designed to have single mode behavior only at 1310 nm and 1550 nm) which is present at 850 nm. Through a developed mathematical model, the two-modes propagation is described and the main phenomena involved are analyzed. In particular, the model focus on intermodal dispersion and modal noise which are considered the two main contributions of performance detrimental. The model developed is able to identify the main parameters which contribute to enhance the detrimental effects produced by intermodal dispersion and modal noise both in frequency and time domain. Starting from the model, possible techniques to improve the performances are then proposed. In particular, a pre-filtering technique is realized in order to avoid the excitation of the second order mode, allowing a quasi-single-mode propagation within the SSMF. The technique is theoretically and experimentally validated both for single radio frequency sinusoidal transmission and for bandpass signal transmission centered in radio frequency band. In particular it is demonstrated experimentally the possibility of increasing the modulation bandwidth of the RoF system, reducing at the same time the fluctuations of power and gain. Furthermore, the technique is validated in a real LTE transmission system, making the RoF technology proposed able to transmit 256-QAM LTE signal of 20 MHz bandwidth, confirming the possibility of using this technology to decrease the overall cost and consumption of the network. Further work has been done on the mathematical model. In particular the two modes propagation is exploited in order to characterize the chirp parameter of the VCSEL employed. Finally, the problem of coupling between fiber and opto-electronic devices is also discussed and investigated, in order to improve the efficiency while keeping low the cost. The possibility of utilizing a collective and passive polymer-based structure for coupling the optical fiber with small area photodetectors and VCSEL is presented, showing important improvements on coupling efficiency and tolerance to misalignment. Keywords: Optical communications, Radio-over-Fiber, VCSEL, HPT, G.652 Fiber. iii ABSTRACT iv Resum´e Cette th`esevise `aanalyser en d´etailsla possibilit´ed'am´eliorerles futurs syst`emesRadio-sur-Fibre (RoF) dans diff´erents sc´enariosde t´el´ecommunication, tels que les r´eseauxcellulaires actuels et de la prochaine g´en´eration,ainsi que dans d' autres applications telles que la radioastronomie. Le syst`eme RoF ´etudi´eest donc compos´ed' un laser `acavit´everticale (VCSEL) fonctionnant `a850 nm, d'une fibre standard monomode (SSMF) et d'un phototransistor `ah´et´erojonction SiGe (HPT), adoptant la technique appel´eed´etectiondirecte par modulation d'intensit´equi est aujourd' hui l'architecture `a moindre co^utet la plus simple pour la RoF. Cette th`ese d´ecrit en d´etailla propagation non naturelle dans le SSMF (con¸cuepour fonctionner uniquement `a1310 nm et 1550 nm) `a850 nm. A travers un mod`elemath´ematiqued´evelopp´e, la propagation `adeux modes est d´ecriteet les principaux ph´enom`enes impliqu´essont analys´es.En particulier, le mod`elese concentre sur la dispersion intermodale et le bruit modal, consid´er´escomme les deux principales contributions de performance nuisible. Le mod`elemis au point permet d' identifier les principaux param`etresqui contribuent `arenforcer les effets n´efastesde la dispersion intermodale et du bruit modal, `ala fois en fr´equenceet dans le temps. A partir du mod`ele, des techniques possibles pour am´eliorerles performances sont alors propos´ees.En fait, une technique de pr´e-filtrageest r´ealis´eeafin d'´eviterl'excitation du mode du second ordre, permettant une propagation quasi-monomode au sein du SSMF. La technique est valid´eeth´eoriquement et exp´erimentalement soit pour une transmission sinuso¨ıdale`aradiofr´equenceunique, soit pour une transmission de signal passe-bande centr´eesur une bande de radiofr´equence.Il est d´emontr´eexp´erimentalement la possibilit´e d'augmenter la bande passante de modulation du syst`emeRoF, tout en r´eduisant les fluctuations de puissance et de gain. De plus, la technique est valid´eedans un v´eritablesyst`emede transmission LTE, ce qui permet `ala technologie RoF de transmettre un signal LTE 256-QAM de 20 MHz, confirmant la possibilit´ed'utiliser cette technologie pour r´eduirele co^utglobal et la consommation du r´eseau.Des travaux suppl´ementaires ont ´et´er´ealis´essur le mod`elemath´ematique.En fait, la propagation des deux modes est exploit´eeen sens inverse pour caract´eriserle chirp du VCSEL utilis´e. Enfin, le probl`eme du couplage entre les fibres et les dispositifs opto´electroniquesest discut´eet ´etudi´eafin de am´eliorer les performances tout en gardant un faible co^ut. La possibilit´ed'utiliser une structure collective et passive pour coupler la fibre optique avec des photod´etecteurs`apetite surface et VCSEL est pr´esent´ee, montrant des am´eliorationsimportantes sur l’efficacit´edu couplage et la tol´eranceau d´esalignement. Mot cl´e: communication optique, Radio-sur-Fibre, VCSEL, HPT, fibre G.652. v RESUME´ vi Contents Acknowledgmentsi Abstract iii Resum´e v Contents vi List of acronyms ix Introduction 1 1 Description of the RoF technology and components utilized5 1.1 RoF