The Nasal Cavity

Total Page:16

File Type:pdf, Size:1020Kb

The Nasal Cavity The Nasal Cavity Sumamry Ever wondered how you can identify smells? This lesson will describe the nasal cavity, the physiology of smell and why these are relevant. Introduction The function of the nose and nasal cavity is to clean and warm the air that enters the respiratory tract. It is lined by respiratory mucosa, ie. Pseudostratified ciliated epithelium with goblet cells. The goblet cells secrete mucus to trap particles/pathogens, as well as warming it via the rich blood supply. The cilia aid this by encouraging movement of the mucus. The conchae in the nasal cavity are present to increase the surface area in which these processes take place. A small part of the nasal cavity is covered by the olfactory mucosa. The nasal cavity meets the nasopharynx at the posterior nasal apertures (1) between the medial pterygoid plates. Its height extends from the cribriform plate of the ethmoid bone to the palate. It is divided by the nasal septum andReviseDental.com extends below the orbit. The Nose The ‘external nose’ is made up of the nasal bones, upper & lower cartilages along with the septum cartilage. The bridge of the nose is made up of the nasal bones and the frontal processes of the maxilla. The main part of the nose that we see is cartilage. The nostrils bulge due to fatty fibrous tissue deposits. This then opens inside the nostrils and makes the nasal vestibule. This contains hairs that filter the air we breathe in. The Nasal Cavity ReviseDental.com The Roof This is made of the nasal bones, cribriform plate and the body of the sphenoid. The Floor This is the bony palate (palatine processes of the maxilla and the horizontal plates of the palatine bones). Anteriorly, the palatine processes have the incisive canal which the nasopalatine nerves pass through (+ terminal branch of greater palatine artery). Clinically, these foramina sit in the incisive fossa of the palate. The nasopalatine nerve supplies the mucosa of the anterior part of the hard palate. Lateral Wall The maxilla and labyrinth of the ethmoid make up most of the lateral wall. On these walls are the conchae, folds of bone that stick out into the nasal cavity. The maxilla makes up the part below the middle concha, and the ethmoid includes the middle concha and anything above it. Conchae and Surrounding Anatomy The nasal cavity is divided into 3 parts by the conchae. The superior meatus, the middle meatus and inferior meatus.ReviseDental.com These sit between their respective conchae. Above the superior concha, is the sphenoethmoidal recess. The nasal cavity opens into the maxillary sinus via the maxillary hiatus. In the skull, this is covered by the articulating bones and conchae. The ethmoidal air cells open into the nasal cavity into the superior and middle meatus. The nasolacrimal groove lies behind the frontal process. The lacrimal bone sits in the lateral wall of the nasal cavity, between the maxilla and ethmoidal labyrinth. On its other side, it contributes to the medial wall of the orbit. The nasolacrimal canal starts at the lacrimal groove in the orbit and opens just below the inferiorReviseDental.com concha in the nasal cavity. Its function is to drain tears. The maxillary sinus opens into the posterior part of the hiatus semilunaris (curved gap between a swelling below the middle concha). The frontal sinus opens into the anterior part of this hiatus via the frontonasal canal. The Septum This is a thin bone extending from the floor to the roof of the nasal cavity. This comes from the perpendicular plate of the ethmoid and the vomer. It is innervated by the medial nasal branches of the maxillary nerve. It receives blood from the sphenopalatine branch of the maxillary artery. Both of these enter the nasal cavity via the sphenopalatine foramen. Posteriorly, venous blood from the septum drains into the pterygoid plexus, whilst lymph drains into the retropharyngeal nodes. Anteriorly, it is drained by the facial vein, whilst lymph drains to submandibular nodes. Mucosa The nasal cavity is lined by the respiratory mucosa. However, the roof and down to just below the superior conchae, are lined by olfactory epithelium. Olfactory epithelium contains olfactory receptor cells. These are like primary sensory neurons. These have unmyelinated axons which pass through the cribriform plate and synapse in the olfactory bulb, leading to olfactory nerves. The olfactory epithelium also contains serous glands. Nerve SupplyReviseDental.com The following diagrams demonstrate the nerves that surround and pass through the nasal cavity. ReviseDental.com You can split the lateral wall of the nasal into 4. Each part is innervated and supplied by different nerves/vessels. You can find the details in the diagram below: Nerve supply and arterial supply of the quadrants of the lateral nasal wall The mucous glands in the nasal cavity receive parasympathetic secretomotor innervation from branches of the facial nerve, which have synapsed in the pterygopalatine ganglion. Blood Supply The venous drainage of the nasal cavity is divided anteriorly and posteriorly. Posteriorly, the nasal cavity is drained into the pharyngeal and pterygoid plexuses. Anteriorly, the nasal cavity is drained by the facial vein. ReviseDental.com ReviseDental.com Lymph Again, this can be split into anterior and posterior parts. Anteriorly, the lateral wall drains to the submandibular nodes. Posteriorly, this drains to the retropharyngeal nodes. Physiology of Olfaction (2) Smell is a chemical sense, involving olfactory receptors. In order to be sensed, the molecule stimulants need to be dissolved. Fun Fact: The impulses involved in the sense of smell can terminate in the limbic system and hence cause emotional responses/links (2). Fun Fact 2: Humans can distinguish about 10,000 types of odours (2). Hence, the nose contains between 10 million-100ReviseDental.com million receptors for olfaction (smell). These receptors sit within the olfactory epithelium at the top of the nasal cavity (covers superior nasal concha and the inferior part of the cribriform plate). The olfactory epithelium is made up of olfactory receptor cells, supporting cells and basal cells. Olfactory receptor cells: These are first-order neurons in the olfactory pathway. At one end, there is an exposed dendrite, and at the other, an axon extending into the olfactory bulb. This axon passes through the cribriform plate. There are non-mobile cilia which sit on the surface of the dendrite. This is where olfactory transduction occurs. This is because, the membranes of these cilia contain olfactory receptors that bind to odorants. Upon binding, an action potential is created. The supporting cells are columnar epithelium from the lining of the nose. These support, nourish, insulate and detoxify the olfactory receptor cells. Basal cells are ReviseDental.comstem cells that sit between the supporting cells. Their function is to differentiate into new olfactory receptor cells and neurons every month. Underlying this epithelium is CT, which contains Bowmans glands. These produce mucus which wets the epithelium and dissolves the odorants to allow binding and transduction to occur. The supporting cells and Bowmans glands are innervated by the parasympathetic supply of the facial nerve. This is why stimulation can sometimes then stimulate the lacrimal glands and mucous glands in the nasal cavity (hence you cry/sniffle at certain pungent scents). Depolarisation of the olfactory receptor membranes occurs and this generates an action potential. 1. An odorant binds to an olfactory receptor protein in a cilia. This activates G-proteins inside the cell. 2. This G-protein then activates the enzyme adenylate cyclase to produce cAMP. 3. The cAMP opens a sodium ion channel, which allows Na+ ions to enter the cell, hence causing depolarisation of the membrane. 4. This generates an action potential down the axon of the olfactory receptor cell, which reaches the olfactory bulb. Adaptation: Olfaction has a low threshold. Therefore, only a few small molecules can be present in order to be detected and stimulate a response. We can stop noticing certain smells very quickly. This is called adaptation/decreasing sensitivity. The smell is still there, but our body has learned to ignore it. Pathway: The axons of the olfactory receptors pass through many small foramina in the cribriform plate (of the ethmoid bone) and extend and collect into the olfactory nerves (2). These olfactory nerves terminate in a mass of grey matter termed the olfactory bulbs. These sit below the frontal lobes of the cerebrum and lateral to the crista galli of the ethmoid bone (2). In these bulbs, ReviseDental.comthe axons of the olfactory receptor cells synapse with the olfactory bulb neurone cell bodies. These neurones then extend backwards and form the olfactory tract. Some of the neurones of the olfactory tract can terminate to the primary olfactory area in the cerebral cortex. Hence, the olfactory nerves are actually classified as outgrowths from the brain, rather than nerves in themselves. Fun Fact: the olfactory impulses are the only ones to reach the cerebral cortex without first synapsing in the thalamus. (2) Some pathways will lead to the frontal lobe. It is here, in the orbitofrontal area, that we can identify and distinguish different odours. Damage to this area will result in difficulty in this. Paranasal Air Sinuses Introduction There are 4 bones that contain sinuses that communicate with the nasal cavity. These bones are the maxilla, frontal, sphenoid and ethmoidal labyrinth. There is no uniform shape for these sinuses. The sinuses grow the most during adolescence and will expand throughout life. Again, they are lined by respiratory mucosa. Inflammation of this lining is common in head colds. The cilia move the mucus towards the opening in order to assist drainage. However, during sinusitis, the number of cilia deplete and hence decreases movement so recurrence of infection is more likely (chronic sinusitis).
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • A Forensic Case Report
    Skeletonized body identified by analysis of frontal sinus morphology and characteristics of osteosynthesis material: a forensic case report Rhonan Ferreira-Silva1, Andréa Pinheiro de- Abreu Meirelles2, Isabela Machado3, Lívia Graziele Rodrigues4, Roberta Gomes-Resende5, Alicia Picapedra6, Carlos Sassi7 DOI: 10.22592/ode2018n31a10 Abstract Forensic dentistry is essential for the identification of highly decomposed and charred bodies, as well as skeletal remains. This study reports a case of human identification by analyzing the morphology of the frontal sinuses and osteosynthesis material. In the anthropological assess- ment of skeletal remains a surgical plate used for osteosynthesis was detected in the periorbital regions. Relatives of the potential victim provided ante-mortem (AM) radiographs which re- vealed the presence of an osteosynthesis plate. Post-mortem (PM) imaging exams were per- formed to reproduce the AM data. Similarities were observed between the AM and PM radio- graphs, especially regarding the morphology of the frontal sinuses and the position and outline of the surgical plate used for osteosynthesis. The comparison of AM and PM images made it possible to identify the victim and to aid the criminal investigation. It also highlighted the role of radiographs and anatomical characteristics in the process of human identification. Keywords: forensic dentistry, forensic anthropology, frontal sinus, radiography. 1 Professor of Forensic Dentistry, School of Dentistry, Universidad Federal de Goiás. Criminal Expert at the Scientific Police of Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-3680-7020 2 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-1290-3755 3 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil).
    [Show full text]
  • An Endoscopic Study on the Prevalence of the Accessory Maxillary Ostium in Chronic Sinusitis Patients
    International Journal of Otorhinolaryngology and Head and Neck Surgery Varadharajan R et al. Int J Otorhinolaryngol Head Neck Surg. 2020 Jan;6(1):40-44 http://www.ijorl.com pISSN 2454-5929 | eISSN 2454-5937 DOI: http://dx.doi.org/10.18203/issn.2454-5929.ijohns20195211 Original Research Article An endoscopic study on the prevalence of the accessory maxillary ostium in chronic sinusitis patients Ramesh Varadharajan*, Swara Sahithya, Ranjitha Venkatesan, Agaman Gunasekaran, Sneha Suresh Department of Otorhinolaryngology and Head and Neck Surgery , Aarupadai Veedu Medical College and Hospital, Kirumampakkam, Puducherry, India Received: 21 October 2019 Revised: 07 November 2019 Accepted: 08 November 2019 *Correspondence: Dr. Ramesh Varadharajan, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Chronic maxillary sinusitis is one of the common ENT problems. Accessory maxillary ostium (AMO) has been postulated in many publications to play a role in the development of chronic maxillary sinusitis. AMO is found in the medial wall of maxillary sinus and located in the lateral wall of the nose. It’s been frequently identified in the routine nasal endoscopy. The variations in the location of AMO have been evaluated by nasal endoscopy in live subjects or through cadaver dissections by many authors. This live study is conducted to identify the prevalence of AMO during nasal endoscopic evaluation of chronic sinusitis patients.
    [Show full text]
  • Benign Tumors of the Frontal Sinuses with and Fibro-Osseous Tumors of the Frontal Sinus: Their Propensity to Recur and Cause Local Open Approaches
    Chapter 18 Benign Tumors 18 of the Frontal Sinuses Brent A. Senior, Marc G. Dubin Management of Benign Lesions of the Frontal Sinus . 157 Core Messages Preoperative Evaluation . 157 í Surgical Treatment of Bony Benign tumors of the frontal sinuses with and Fibro-osseous Tumors of the Frontal Sinus: their propensity to recur and cause local Open Approaches . 157 injury present unique challenges to the Surgical Treatment of Bony otolaryngologist and Fibro-osseous Tumors of the Frontal Sinus: Endoscopic Approaches . 158 í Fibro-osseous lesions may be managed ex- Cases: Fibro-osseus Lesions of the Frontal Sinus . 159 pectantly, or may be removed in the setting Case 1: Endoscopic Resection of Tumor of symptomatic pathology such as cosmet- in the Frontal Recess . 159 ic or functional deformity Case 2: Open Resection of Tumor of the Frontal Sinus . 160 í Inverted papillomas with their high rate of Surgical Management of Inverted Papilloma: associated malignancy should be complete- Open and Endoscopic . 161 ly removed Cases: Inverted Papilloma of the Frontal Sinus . 161 Case 1: Recurrent Inverted Papilloma of the Frontal Sinus . 161 í Tumors that in the past required open ap- proaches may now be managed successful- Postoperative Considerations . 162 ly with endoscopic approaches alone or Conclusions . 163 with combined approaches, lowering over- References . 163 all morbidity while not sacrificing outcome í Cases must be individually assessed in or- der to determine the appropriate manage- ment approach Introduction Management of disease of the frontal recess and frontal sinus is one of the greatest challenges in rhi- nology. Despite advances in the understanding of the Contents anatomy and physiology of this area along with in- creased comfort with endoscopic techniques, man- Introduction .
    [Show full text]
  • Normal and Abnormal Findings in Rhinoscopy
    3/18/2016 Normal and Abnormal Findings in Rhinoscopy Brian C. Spector, MD Ear, Nose Throat and Plastic Surgery Associates Assistant Professor FSU College of Medicine Assistant Professor UCF College of Medicine Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL No Disclosures Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Learning Objectives • Maximize diagnostic yield by understanding best technique for Rhinoscopy • Identify normal anatomy and variants of normal anatomy visualized in Rhinoscopy • Identify abnormal findings visualized in Rhinoscopy Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 1 3/18/2016 Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Nasal Septum Lateral Nasal Wall Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 2 3/18/2016 Nasopharynx Mucosa Intact Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL Ehab Zayyan MD, PhD Anterior Rhinoscopy Non Dominant Hand. Index Finger on Nasal Tip. Keep open until fully removed to avoid pulling hairs. Headlight Illumination Nasal Septum: deviation, perforation, stigmata of recent or active bleeding Inferior Turbinates: color of mucosa, congestion, secretions Internal Nasal Valve ‐ Septum, floor, caudal border of upper lateral cartilage, anterior head of inferior turbinate. Narrowest part of nasal airway Middle Turbinates Mucosa Sixth Annual ENT for the PA-C | March 30 – April 3, 2016| Orlando, FL 3 3/18/2016 Nasal Endoscopy Flexible Nasal Endoscopy: Technique
    [Show full text]
  • Nasoconchal Paranasal Sinus in White Rhino
    IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Author(s): Mathew P. Gerard, B.V.Sc., Ph.D., Dipl. A.C.V.S., Zoe G. Glyphis, B.Sc., B.V.Sc., Christine Crawford, B.S., Anthony T. Blikslager, D.V.M., Ph.D., Dipl. A.C.V.S., and Johan Marais, B.V.Sc., M.Sc. Source: Journal of Zoo and Wildlife Medicine, 49(2):444-449. Published By: American Association of Zoo Veterinarians https://doi.org/10.1638/2017-0185.1 URL: http://www.bioone.org/doi/full/10.1638/2017-0185.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Zoo and Wildlife Medicine 49(2): 444–449, 2018 Copyright 2018 by American Association of Zoo Veterinarians IDENTIFICATION OF A NASOCONCHAL PARANASAL SINUS IN THE WHITE RHINOCEROS (CERATOTHERIUM SIMUM) Mathew P.
    [Show full text]
  • Original Article Anatomic Study of the Lacrimal Fossa and Lacrimal Pathway
    Original Article Anatomic study of the lacrimal fossa and lacrimal pathway for bypass surgery with autogenous tissue grafting Hai Tao, Zhi‑zhong Ma1, Hai‑Yang Wu, Peng Wang, Cui Han Purpose: To study the microsurgical anatomy of the lacrimal drainage system and to provide anatomical Access this article online evidence for transnasal endoscopic lacrimal drainage system bypass surgery by autogenous tissue grafting. Website: Materials and Methods: A total of 20 Chinese adult cadaveric heads in 10% formaldehyde, comprising www.ijo.in 40 lacrimal ducts were used. The middle third section of the specimens were examined for the following DOI: features: the thickness of the lacrimal fossa at the anterior lacrimal crest, vertical middle line, and posterior 10.4103/0301-4738.121137 lacrimal crest; the cross section of the upper opening, middle part, and lower opening of the nasolacrimal PMID: canal; the horizontal, 30° oblique, and 45° oblique distances from the lacrimal caruncle to the nasal cavity; ***** the distance from the lacrimal caruncle to the upper opening of the nasolacrimal duct; and the included Quick Response Code: angle between the lacrimal caruncle–nasolacrimal duct upper opening junction and Aeby’s plane. Results: The middle third of the anterior lacrimal crest was significantly thicker than the vertical middle line and the posterior lacrimal crest (P > 0.05). The horizontal distance, 30° oblique distance, and 45° oblique distance from the lacrimal caruncle to the nasal cavity exhibited no significant differences (P > 0.05). The included angle between the lacrimal caruncle and the lateral wall middle point of the superior opening line of the nasolacrimal duct and Aeby’s plane was average (49.9° ± 1.8°).
    [Show full text]
  • Surgical Anatamic of Paranasal Sinuses
    SURGICAL ANATAMIC OF PARANASAL SINUSES DR. SEEMA MONGA ASSOCIATE PROFESSOR DEPARTMENT OF ENT-HNS HIMSR MIDDLE TURBINATE 1. Anterior attachment : vertically oriented, sup to the lateral border of cribriform plate. 2. Second attachment :Obliquely oriented- basal lamella/ ground lamella, Attached to the lamina papyracea ( medial wall of orbit anterior, posterior air cells, sphenopala‐ tine foramen 3. Posterior attachment :medial wall of maxillary sinus, horizontally oriented. , supreme turbinate 3. Occasionally 4. fourth turbinate, 5. supreme meatus, if present 6. drains posterior ethmoid drains inferior, middle, superior turbinates and, occasionally, the supreme turbinate, the fourth turbinate. e. Lateral to these turbinates are the corresponding meatuses divided per their drainage systems ANATOMICAL VARIATIONS OF THE TURBINATES 1. Concha bullosa, 24–55%, often bilateral, 2. Interlamellar cell of grunwald: pneumatization is limited to the vertical part of middle turbinate, usually not causing narrowing of the ostiomeatal unit 3. Paradoxic middle turbinate: 26%,. Occasionally, it can affect the patency of the ostiomeatal unit 4. Pneumatized basal lamella, falsely considered, posterior ethmoid air cell Missed basal lamella – attaches to lateral maxillary sinus wall Ostiomeatal unit Anterior ostiomeatal unit, maxillary, anterior ethmoid, frontal sinuses, (1) ethmoid infundibulum, (2) middle meatus, (3) hiatus semilunaris, (4) maxillaryOstium, (5) ethmoid bulla, (6) frontal recess, (7) uncinate process. , sphenoethmoidal recess Other draining osteomeatal unit, posterior in the nasal cavity, posterior ethmoid sinus, lateral to the superior turbinate, . sphenoid Sinus medial to the superior turbinate Uncinate Process Crescent‐shaped, thin individual bone inferiorly- ethmoidal process of inferior turbinate, anterior, lacrimal bone, posteriorly- hiatus Semilunaris, medial -ethmoid infundibulum, laterally, middle meatus superior attachment- variability, direct effect on frontal sinus drainage pathway.
    [Show full text]
  • A New Radiological Classification for the Risk Assessment of Anterior Skull
    www.nature.com/scientificreports OPEN A new radiological classifcation for the risk assessment of anterior skull base injury in endoscopic sinus surgery Baharudin Abdullah 1*, Shiun Chuen Chew1, Mohd Ezane Aziz2, Norasnieda Md Shukri1, Salina Husain3, Sng Weirong Joshua4, De Yun Wang4 & Kornkiat Snidvongs5 Keros and Gera classifcations are widely used to assess the risk of skull base injury during endoscopic sinus surgery. Although, both classifcations are useful preoperatively to stratify risk of patients going for surgery, it is not practical to measure the respective lengths during surgery. In this study, we aimed to propose a new radiological classifcation (Thailand-Malaysia-Singapore (TMS)) to assess the anatomical risk of anterior skull base injury using the orbital foor (OF) as a reference. A total of 150 computed tomography images of paranasal sinuses (300 sides) were reviewed. The TMS classifcation was categorized into 3 types by measuring OF to cribriform plate and OF to ethmoid roof. Most patients were classifed as TMS type 1, Keros type 2 and Gera class II, followed by patients classifed as TMS type 3, Keros type 1 and Gera class 1. TMS has signifcant correlation with Keros classifcation (p < 0.05). There was no signifcant correlation between Keros and Gera classifcations (p = 0.33) and between TMS and Gera classifcations (p = 0.80). The TMS classifcation has potential to be used for risk assessment of skull base injury among patients undergoing ESS. It serves as an additional assessment besides the Keros and Gera classifcations. Endoscopic sinus surgery (ESS) has an overall complication rate of 0.5% with the specifc complications of cere- brospinal fuid leak, orbital injury, haemorrhage requiring surgery, blood transfusion and toxic shock syndrome at 0.09%, 0.09%, 0.10%, 0.18%, and 0.02%, respectively1.
    [Show full text]
  • Download PDF (Inglês)
    Braz J Otorhinolaryngol. 2015;81(1 Supl. 1):S1-S49 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org CONSENSUS Rhinosinusitis: evidence and experience October 18 and 19, 2013 - São Paulo Coordination Although VAS has only been validated for CRS in adults, Wilma T. Anselmo-Lima e Eulalia Sakano the European Position Paper on Rhinosinusitis and Nasal Polyps (EPOS) 20121 also recommends its use in ARS. There are sev- Participants eral specific questionnaires for rhinosinusitis, but in practice, 2-4 André Alencar, Atílio Fernandes, Edwin Tamashiro, most have limited application, particularly in acute cases. Elizabeth Araújo, Érica Ortiz, Fabiana Cardoso Pereira Valera, Fábio Pinna, Fabrizio Romano, Francini Padua, João Mello Jr., Acute rhinosinusitis João Teles Jr., José E. L. Dolci, Leonardo Balsalobre, Macoto Kosugi, Marcelo H. Sampaio, Márcio Nakanishi, Definition Marco César, Nilvano Andrade, Olavo Mion, Otávio Piltcher, Reginaldo Fujita, Renato Roithmann, Richard Voegels, ARS is an inflammatory process of the nasal mucosa of sud- Roberto E. Guimarães, Roberto Meireles, Shirley Pignatari, Victor Nakajima den onset, lasting up to 12 weeks. It may occur one or more times in a given period of time, but always with complete For the purpose of citation remission of signs and symptoms between episodes. Wilma Terezinha Anselmo Lima, Eulalia Sakano, Edwin Tamashiro, Elizabeth Araújo, Érica Ortiz, Fábio Pinna, Fabrizio Romano, Francini Padua, João Mello Jr., João Teles Jr., José E. L. Dolci, Classification Leonardo Balsalobre, Macoto Kosugi, Marcelo H. Sampaio, Márcio Nakanishi, Marco César, Nilvano Andrade, Olavo Mion, There are several classifications for RS. One of the most Otávio Piltcher, Reginaldo Fujita, Renato Roithmann, often used is the etiological classification, which is based Richard Voegels, Roberto E.
    [Show full text]