Mycobacterium Ulcerans Infection in French Guyana from 1969 to 2007 (Presenter: C

Total Page:16

File Type:pdf, Size:1020Kb

Mycobacterium Ulcerans Infection in French Guyana from 1969 to 2007 (Presenter: C WHO ANNUAL MEETING ON BURULI ULCER 31 March – 2 April 2008 ABSTRACTS © World Health Organization 2008 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. The named authors alone are responsible for the views expressed in this publication. Printed by the WHO Document Production Services, Geneva, Switzerland 2 Table of content COMMON SESSIONS ............................................................................................................................ 7 My life and Buruli ulcer: A true life story (Presenter: E. Agumah) ..................................................... 9 Mycobacterium ulcerans infection in French Guyana from 1969 to 2007 (Presenter: C. Couppié)......................................................................................................................... 14 Risk factor analysis of Buruli ulcer cases in French Guiana: A case-control study (Presenter: E. Elguero).......................................................................................................................... 15 From golf courses to possum traps - a 10 year review of the epidemiology of Buruli ulcer in Victoria, Australia (Presenter: P. Johnson) .................................................................................... 16 Study of risk factors for Buruli ulcer and awareness-raising campaigns: the experience of Cameroon (Presenter: S. Eyangoh)................................................................................................. 18 Challenges of determining the epidemiological profile of Mycobacterium ulcerans disease (Buruli ulcer) in DRC: the Kasongo experience (Presenter: P. Suykerbuyk)................................... 19 Osteomyelitis in Mycobacterium ulcerans disease: A review of of 106 patients treated in Zagnanado (Benin) - (Presenter: F. Portaels)................................................................................. 20 Contribution to BU control efforts of the NGO Water for All Children (Presenter: S. Yayi Allechi).................................................................................................................... 22 ALM’s involvement with Buruli ulcer: a ten-year review (Presenter: P. Saunderson)................... 23 Involvement of the Luxembourg Raoul Follereau Foundation in Buruli ulcer control: progress since 1998 and outlook (Presenter: E. China) .................................................................. 24 Implementation of treatment with rifampicin and streptomycin in Bas-Congo: The experience of the Kimpese Evangelical Medical Institute hospital (Presenter: M. D. Phanzu)..................................................................................................................... 26 RCT for early Mycobacterium ulcerans disease comparing 8 weeks treatment with streptomycin and rifampicin, and 4 weeks treatment with streptomycin and rifampicin followed by 4 weeks treatment with clarithromycin and rifampicin – Interim Analysis (Presenter: W. Nienhuis) ....................................................................................................................... 27 Treatment of Buruli ulcer patients in Ghana with the combination rifampicin-streptomycin for 7 days per week for 8 weeks (Presenter: R. Phillips). ................................................................. 29 Oral drug regimens achieve bacteriological cure and prevention of relapse in a mouse model of Mycobacterium ulcerans disease (Presenter: D. Almeida) .............................................. 31 Bactericidal and sterilizing activities of several orally-administered combined regimens against Mycobacterium ulcerans infection of mice (Presenter: B. Ji)............................................ 33 Hyperbaric oxygen therapy as a complementary treatment in Buruli ulcer (Presenter: F. Poggio) ........................................................................................................................... 34 Thermotherapy of Buruli ulcer revisited: Result of a pilot trial using phase change material as a heat application system (Presenter: T. Junghanss).................................................... 34 3 Utility of improving sensitivity of clinical criteria in diagnosis of Buruli ulcer (Presenter: J. Aké)................................................................................................................................. 36 Presentation of a clinical score for diagnosis aid of buruli for ulcer form (Presenter: I. Barrie) .............................................................................................................................. 37 BURULICO: Two years of experience with different diagnostic tools for Buruli Ulcer Disease (BUD) in Ghana (Presenter: K.-H. Herbinger)...................................................................................... 38 Two years of histopathological activity in Benin with particular reference to the Buruli ulcer (Presenter: C. Clemente)....................................................................................................................... 41 Further studies on the confirmation of Buruli ulcer in clinical specimens sampled using fine needle aspiration (Presenter: M. Eddyani) .................................................................................. 42 Ultrasonography in Buruli ulcer: imaging and medical relevance (Presenter: E. Zavattaro)........ 44 CONTROL SESSIONS ......................................................................................................................... 45 National Buruli Ulcer Control Programme (Presenter: K. Attisso) ................................................. 47 The Buruli ulcer situation in Gabon in 2007 and the control strategy (Presenter: L. Bayonne Manou) ........................................................................................................... 50 Results of an ten-year control and research effort (1998-2008) to improve case management of Mycobaterium ulcerans infection (Buruli ulcer) in the Democratic Republic of the Congo (Presenter: A. Kibadi) ............................................................................................................................ 53 National Buruli ulcer control programme in Cameroon (Presenter: C. Nsom Mba)....................... 58 Trends in prevalence of laboratory confirmed Buruli ulcer cases in Adjumani district from 2004-2007 (Presenter: H. Wabinga) ............................................................................................ 61 Buruli ulcer control programme, Ghana 5 years on – Achievements, challenges and way forward (Presenter: E. Ampadu) .......................................................................................................... 62 Programme against Buruli ulcer in Akonolinga, Cameroon: Presentation of the results of 2007 (Presenter: V. Urbaniak) .......................................................................................................... 64 Integration of control of Buruli ulcer into the minimum package of activities: the case of the Ngoantet health centre in Cameroon (Presenter: A. Um Boock) ........................................... 65 Buruli ulcer (BU) and Skin Neglected Tropical Diseases in AFRO Member Countries (Presenter: A. Tiendrebéogo)................................................................................................................ 70 Improvements in wound and scar management and enhanced care for BU patients (Presenter: D. Bidet-Dazin) .................................................................................................................. 71 Evaluation form sores and the use of modern dressings for the treatment of Buruli – Presentation of the first results (Presenter: C. Adib) ........................................................................ 73 Key messages health workers would like patients and their families to know about preventing disability in Buruli ulcer (Presenter:
Recommended publications
  • Piscine Mycobacteriosis
    Piscine Importance The genus Mycobacterium contains more than 150 species, including the obligate Mycobacteriosis pathogens that cause tuberculosis in mammals as well as environmental saprophytes that occasionally cause opportunistic infections. At least 20 species are known to Fish Tuberculosis, cause mycobacteriosis in fish. They include Mycobacterium marinum, some of its close relatives (e.g., M. shottsii, M. pseudoshottsii), common environmental Piscine Tuberculosis, organisms such as M. fortuitum, M. chelonae, M. abscessus and M. gordonae, and Swimming Pool Granuloma, less well characterized species such as M. salmoniphilum and M. haemophilum, Fish Tank Granuloma, among others. Piscine mycobacteriosis, which has a range of outcomes from Fish Handler’s Disease, subclinical infection to death, affects a wide variety of freshwater and marine fish. It Fish Handler’s Nodules has often been reported from aquariums, research laboratories and fish farms, but outbreaks also occur in free-living fish. The same organisms sometimes affect other vertebrates including people. Human infections acquired from fish are most often Last Updated: November 2020 characterized by skin lesions of varying severity, which occasionally spread to underlying joints and tendons. Some lesions may be difficult to cure, especially in those who are immunocompromised. Etiology Mycobacteriosis is caused by members of the genus Mycobacterium, which are Gram-positive, acid fast, pleomorphic rods in the family Mycobacteriaceae and order Actinomycetales. This genus is traditionally divided into two groups: the members of the Mycobacterium tuberculosis complex (e.g., M. tuberculosis, M. bovis, M. caprae, M. pinnipedii), which cause tuberculosis in mammals, and the nontuberculous mycobacteria. The organisms in the latter group include environmental saprophytes, which sometimes cause opportunistic infections, and other species such as M.
    [Show full text]
  • Understanding Immune Response in Mycobacterium Ulcerans Infection
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2005 Understanding Immune Response in Mycobacterium ulcerans Infection Sarojini Adusumilli University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Microbiology Commons Recommended Citation Adusumilli, Sarojini, "Understanding Immune Response in Mycobacterium ulcerans Infection. " PhD diss., University of Tennessee, 2005. https://trace.tennessee.edu/utk_graddiss/656 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Sarojini Adusumilli entitled "Understanding Immune Response in Mycobacterium ulcerans Infection." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Pamela Small, Major Professor We have read this dissertation and recommend its acceptance: Robert N. Moore, Stephen P. Oliver, David A. Bemis Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Sarojini Adusumilli entitled "Understanding Immune Response in Mycobacterium ulcerans Infection." I have examined the final paper copy ofthis dissertation for form and content and recommend that it be accepted in partial fulfillment ofthe requirements for the degree ofDoctor of Philosophy, with a major in Microbiology.
    [Show full text]
  • Naturally Occurring a Loss of a Giant Plasmid from Mycobacterium Ulcerans Subsp
    www.nature.com/scientificreports OPEN Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes Received: 5 October 2017 Accepted: 30 April 2018 it non-pathogenic Published: xx xx xxxx Kazue Nakanaga1, Yoshitoshi Ogura3, Atsushi Toyoda 4, Mitsunori Yoshida1, Hanako Fukano1, Nagatoshi Fujiwara5, Yuji Miyamoto1, Noboru Nakata1,2, Yuko Kazumi2,6, Shinji Maeda6,9, Tadasuke Ooka7, Masamichi Goto8, Kazunari Tanigawa1,10, Satoshi Mitarai6, Koichi Suzuki1,11, Norihisa Ishii1, Manabu Ato1, Tetsuya Hayashi3 & Yoshihiko Hoshino 1 Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a WHO-defned neglected tropical disease. All Japanese BU causative isolates have shown distinct diferences from the prototype and are categorized as M. ulcerans subspecies shinshuense. During repeated sub-culture, we found that some M. shinshuense colonies were non-pigmented whereas others were pigmented. Whole genome sequence analysis revealed that non-pigmented colonies did not harbor a giant plasmid, which encodes elements needed for mycolactone toxin biosynthesis. Moreover, mycolactone was not detected in sterile fltrates of non-pigmented colonies. Mice inoculated with suspensions of pigmented colonies died within 5 weeks whereas those infected with suspensions of non-pigmented colonies had signifcantly prolonged survival (>8 weeks). This study suggests that mycolactone is a critical M. shinshuense virulence factor and that the lack of a mycolactone-producing giant plasmid makes the strain non-pathogenic. We made an avirulent mycolactone-deletion mutant strain directly from the virulent original. Buruli ulcer (BU) is one of twenty neglected tropical diseases (NTD) as defned by the World Health Organization (WHO)1. Afer leprosy and tuberculosis, BU is now the third most common mycobacterial disease worldwide1.
    [Show full text]
  • Buruli Ulcer) Treatment of Mycobacterium Ulcerans Disease (Buruli Ulcer)
    TREATMENT OF TREATMENT TREATMENT OF MYCOBACTERIUM ULCERANS DISEASE (BURULI ULCER) MYCOBACTERIUM ULCERANS MYCOBACTERIUM GUIDANCE FOR HEALTH WORKERS DISEASE (BURULI ULCER) DISEASE (BURULI This manual is intended to guide healthcare workers in the clinical diagnosis and management of Buruli ulcer, one of the seventeen neglected tropical diseases. The disease is caused by Mycobacterium ulcerans, which belongs to the same family of organisms that cause tuberculosis and leprosy. Since 2004, antibiotic treatment has greatly improved the management of Buruli ulcer and is presently the fi rst-line therapy for all forms of the disease. Guidance for complementary treatments such as surgery, wound care, and prevention of disability are also included. Numerous coloured photographs and tables are used to enhance the manual’s value as a training and reference tool. Implementation of this guidance will require considerable clinical judgement and close monitoring of patients to ensure the best possible treatment outcome. Early detection and early antibiotic treatment are essential for obtaining the best results and minimizing the disabilities associated with Buruli ulcer. Cover_Treatment of Mycobacterium ulcerans disease_2012.indd 1 18/03/2014 09:18:30 TREATMENT OF MYCOBACTERIUM ULCERANS DISEASE (BURULI ULCER) GUIDANCE FOR HEALTH WORKERS Reprint_2014_Treatment of Mycobacterium ulcerans disease_2012.indd 1 12/03/2014 14:39:29 WHO Library Cataloguing-in-Publication Data Treatment of Mycobacterium ulcerans disease (Buruli ulcer): guidance for health workers. 1.Buruli ulcer – drug therapy. 2.Buruli ulcer – surgery. 3.Anti-bacterial agents - therapeutic use. 4.Mycobacterium ulcerans – drug effects. I.World Health Organization. ISBN 978 92 4 150340 2 (NLM classifi cation: WC 302) © World Health Organization 2012 All rights reserved.
    [Show full text]
  • Public Health Reviews Mycobacterium Ulcerans Disease Tjip S
    Public Health Reviews Mycobacterium ulcerans disease Tjip S. van der Werf,1 Ymkje Stienstra,1 R. Christian Johnson,2 Richard Phillips,3 Ohene Adjei,4 Bernhard Fleischer,5 Mark H. Wansbrough-Jones,6 Paul D.R. Johnson,7 Françoise Portaels,8 Winette T.A. van der Graaf,1 & Kingsley Asiedu9 Abstract Mycobacterium ulcerans disease (Buruli ulcer) is an important health problem in several west African countries. It is prevalent in scattered foci around the world, predominantly in riverine areas with a humid, hot climate. We review the epidemiology, bacteriology, transmission, immunology, pathology, diagnosis and treatment of infections. M. ulcerans is an ubiquitous micro-organism and is harboured by fish, snails, and water insects. The mode of transmission is unknown. Lesions are most common on exposed parts of the body, particularly on the limbs. Spontaneous healing may occur. Many patients in endemic areas present late with advanced, severe lesions. BCG vaccination yields a limited, relatively short-lived, immune protection. Recommended treatment consists of surgical debridement, followed by skin grafting if necessary. Many patients have functional limitations after healing. Better understanding of disease transmission and pathogenesis is needed for improved control and prevention of Buruli ulcer. Keywords Mycobacterium ulcerans/pathogenicity; Mycobacterium infections, Atypical/etiology/epidemiology/therapy; Review literature; Meta-analysis; Africa, Western (source: MeSH, NLM). Mots clés Mycobactérium ulcerans/pathogénicité; Mycobactérium atypique, Infection/étiologie/épidémiologie/thérapeutique; Revue de la littérature; Méta-analyse; Afrique de l’Ouest (source: MeSH, INSERM). Palabras clave Mycobacterium ulcerans/patogenicidad; Micobacteriosis atípica/etiología/epidemiología/terapia; Literatura de revisión; Metaanálisis; África Ocidental (fuente: DeCS, BIREME). Bulletin of the World Health Organization 2005;83:785-791.
    [Show full text]
  • Mycobacterium Pseudoshottsii Sp Nov., a Slowly Growing Chromogenic Species Isolated from Chesapeake Bay Striped Bass (Morone Saxatilis)
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 5-2005 Mycobacterium pseudoshottsii sp nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis) MW Rhodes Virginia Institute of Marine Science H Kator Virginia Institute of Marine Science et al I Kaattari Virginia Institute of Marine Science Kimberly S. Reece Virginia Institute of Marine Science See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Rhodes, MW; Kator, H; al, et; Kaattari, I; Reece, Kimberly S.; Vogelbein, Wolfgang K.; and Ottinger, CA, "Mycobacterium pseudoshottsii sp nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis)" (2005). VIMS Articles. 1608. https://scholarworks.wm.edu/vimsarticles/1608 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors MW Rhodes, H Kator, et al, I Kaattari, Kimberly S. Reece, Wolfgang K. Vogelbein, and CA Ottinger This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1608 International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1139–1147 DOI 10.1099/ijs.0.63343-0 Mycobacterium pseudoshottsii sp. nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis) Martha W. Rhodes,1 Howard Kator,1 Alan McNabb,2 Caroline Deshayes,3 Jean-Marc Reyrat,3 Barbara A.
    [Show full text]
  • Mycobacterium Haemophilum: a Challenging Treatment Dilemma in an Immunocompromised Patient
    CASE LETTER Mycobacterium haemophilum: A Challenging Treatment Dilemma in an Immunocompromised Patient Nicholas A. Ross, MD; Katie L. Osley, MD; Joya Sahu, MD; Margaret Kasner, MD; Bryan Hess, MD haemophilum infections largely are cutaneous and PRACTICE POINTS generally are seen in AIDS patients and bone marrow • Mycobacterium haemophilum is a slow-growing transplant recipientscopy who are iatrogenically immuno- acid-fast bacillus that requires iron-supplemented suppressed.4,5 No species-specific treatment guidelines media and incubation temperatures of 30°C to exist2; however, triple-drug therapy combining a mac- 32°C for culture. Because these requirements for rolide, rifamycin, and a quinolone for a minimum of growth are not standard for acid-fast bacteria cul- 12 notmonths often is recommended. tures, M haemophilum infection may be underrecog- A 64-year-old man with a history of coronary artery nized and underreported. disease, hypertension, hyperlipidemia, and acute myelog- • There are no species-specific treatment guidelines, enous leukemia (AML) underwent allogenic stem cell but extended course of treatment with multiple activeDo transplantation. His posttransplant course was compli- antibacterials typically is recommended. cated by multiple deep vein thromboses, hypogamma- globulinemia, and graft-vs-host disease (GVHD) of the skin and gastrointestinal tract that manifested as chronic diarrhea, which was managed with chronic prednisone. To the Editor: Thirteen months after the transplant, the patient pre- The increase in nontuberculous mycobacteria (NTM) sented to his outpatient oncologist (M.K.) for evaluation infections over the last 3 decades likely is multifaceted, of painless, nonpruritic, erythematous papules and nod- including increased clinical awareness, improved labora- ules that had emerged on the right side of the chest, right tory diagnostics, growing numbersCUTIS of immunocompro - arm, and left leg of approximately 2 weeks’ duration.
    [Show full text]
  • Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases
    American Thoracic Society Documents An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases David E. Griffith, Timothy Aksamit, Barbara A. Brown-Elliott, Antonino Catanzaro, Charles Daley, Fred Gordin, Steven M. Holland, Robert Horsburgh, Gwen Huitt, Michael F. Iademarco, Michael Iseman, Kenneth Olivier, Stephen Ruoss, C. Fordham von Reyn, Richard J. Wallace, Jr., and Kevin Winthrop, on behalf of the ATS Mycobacterial Diseases Subcommittee This Official Statement of the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA) was adopted by the ATS Board Of Directors, September 2006, and by the IDSA Board of Directors, January 2007 CONTENTS Health Care– and Hygiene-associated Disease and Disease Prevention Summary NTM Species: Clinical Aspects and Treatment Guidelines Diagnostic Criteria of Nontuberculous Mycobacterial M. avium Complex (MAC) Lung Disease Key Laboratory Features of NTM M. kansasii Health Care- and Hygiene-associated M. abscessus Disease Prevention M. chelonae Prophylaxis and Treatment of NTM Disease M. fortuitum Introduction M. genavense Methods M. gordonae Taxonomy M. haemophilum Epidemiology M. immunogenum Pathogenesis M. malmoense Host Defense and Immune Defects M. marinum Pulmonary Disease M. mucogenicum Body Morphotype M. nonchromogenicum Tumor Necrosis Factor Inhibition M. scrofulaceum Laboratory Procedures M. simiae Collection, Digestion, Decontamination, and Staining M. smegmatis of Specimens M. szulgai Respiratory Specimens M. terrae
    [Show full text]
  • A New Model of Chronic Mycobacterium Abscessus Lung Infection in Immunocompetent Mice
    International Journal of Molecular Sciences Article A New Model of Chronic Mycobacterium abscessus Lung Infection in Immunocompetent Mice Camilla Riva 1, Enrico Tortoli 1 , Federica Cugnata 2 , Francesca Sanvito 3 , Antonio Esposito 4,5 , Marco Rossi 1 , Anna Colarieti 4, Tamara Canu 4, Cristina Cigana 6 , Alessandra Bragonzi 6, Nicola Ivan Loré 1, Paolo Miotto 1 and Daniela Maria Cirillo 1,* 1 Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (C.R.); [email protected] (E.T.); [email protected] (M.R.); [email protected] (N.I.L.); [email protected] (P.M.) 2 Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 3 Pathology Unit, Department of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] 4 Preclinical Imaging Facility, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (A.E.); [email protected] (A.C.); [email protected] (T.C.) 5 School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy 6 Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (C.C.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +39-02-2443-7947 Received: 30 July 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: Pulmonary infections caused by Mycobacterium abscessus (MA) have increased over recent decades, affecting individuals with underlying pathologies such as chronic obstructive pulmonary disease, bronchiectasis and, especially, cystic fibrosis.
    [Show full text]
  • Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches
    microorganisms Review Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches André C. Pereira 1,2 , Beatriz Ramos 1,2 , Ana C. Reis 1,2 and Mónica V. Cunha 1,2,* 1 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] (A.C.P.); [email protected] (B.R.); [email protected] (A.C.R.) 2 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal * Correspondence: [email protected]; Tel.: +351-217-500-000 (ext. 22461) Received: 26 August 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored.
    [Show full text]
  • Mycobacterium Marinum Remains an Unrecognized Cause of Indolent Skin Infections
    CASE REPORT Mycobacterium marinum Remains an Unrecognized Cause of Indolent Skin Infections Julie Steinbrink, MD; Molara Alexis, MD; Daniella Angulo-Thompson, MD; Mayur Ramesh, MD; George Alangaden, MD; Marisa H. Miceli, MD water. Fishing, aquarium cleaning, and aquatic recre- PRACTICE POINTS ational activities are risk factors for infection.1,2 Diagnosis • Mycobacterium marinum infection should be sus- often is delayed and is made several weeks or even pected in patients with skin/soft tissue infections months after initial symptoms appear.3 Due to the pro- that fail to respond or progress despite treatment tracted clinical course, patients may not recall the initial with antibiotics active against streptococci and exposure, contributingcopy to the delay in diagnosis and ini- staphylococci. tiation of appropriate treatment. It is not uncommon for • Inquiring about environmental exposure prior to the patients with M marinum infection to be initially treated onset of the symptoms is key to elaborate a differ- with antibiotics or antifungal drugs. ential diagnosis list. We present a review of 5 patients who were diagnosed • Biopsy for pathology evaluation and acid-fast bacilli withnot M marinum infection at our institution between smear and culture are key to establish the diagnosis January 2003 and March 2013. of M marinum infection. Methods DoThis study was conducted at Henry Ford Hospital, a We identified 5 patients who had cutaneous lesions with cultures 900-bed tertiary care center in Detroit, Michigan. that yielded Mycobacterium marinum. It was discovered that all Patients who had cultures positive for M marinum 5 patients had a home aquarium, and infection was preceded by between January 2003 and March 2013 were identi- trauma to the hand.
    [Show full text]
  • Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research
    pathogens Review Preclinical Models of Nontuberculous Mycobacteria Infection for Early Drug Discovery and Vaccine Research Elisa Rampacci 1 , Valentina Stefanetti 1, Fabrizio Passamonti 1,* and Marcela Henao-Tamayo 2 1 Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; [email protected] (E.R.); [email protected] (V.S.) 2 Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-075-585-7781 Received: 30 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: Nontuberculous mycobacteria (NTM) represent an increasingly prevalent etiology of soft tissue infections in animals and humans. NTM are widely distributed in the environment and while, for the most part, they behave as saprophytic organisms, in certain situations, they can be pathogenic, so much so that the incidence of NTM infections has surpassed that of Mycobacterium tuberculosis in developed countries. As a result, a growing body of the literature has focused attention on the critical role that drug susceptibility tests and infection models play in the design of appropriate therapeutic strategies against NTM diseases. This paper is an overview of the in vitro and in vivo models of NTM infection employed in the preclinical phase for early drug discovery and vaccine development. It summarizes alternative methods, not fully explored, for the characterization of anti-mycobacterial compounds. Keywords: nontuberculous mycobacteria; drug susceptibility testing; vaccine; biofilm; flow-cytometry; hollow-fiber system; in vitro and in vivo models 1. Introduction Bacteria different from Mycobacterium tuberculosis but equally belonging to the Corynebacteriales order can produce chronic cavitary disease in humans and animals, a clinical characteristic of pulmonary tuberculosis (TB).
    [Show full text]