Spirou Input Catalogue: Global Properties of 440 M Dwarfs Observed with Espadons at CFHT
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
100 Closest Stars Designation R.A
100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79, -
Star Systems in the Solar Neighborhood up to 10 Parsecs Distance
Vol. 16 No. 3 June 15, 2020 Journal of Double Star Observations Page 229 Star Systems in the Solar Neighborhood up to 10 Parsecs Distance Wilfried R.A. Knapp Vienna, Austria [email protected] Abstract: The stars and star systems in the solar neighborhood are for obvious reasons the most likely best investigated stellar objects besides the Sun. Very fast proper motion catches the attention of astronomers and the small distances to the Sun allow for precise measurements so the wealth of data for most of these objects is impressive. This report lists 94 star systems (doubles or multiples most likely bound by gravitation) in up to 10 parsecs distance from the Sun as well over 60 questionable objects which are for different reasons considered rather not star systems (at least not within 10 parsecs) but might be if with a small likelihood. A few of the listed star systems are newly detected and for several systems first or updated preliminary orbits are suggested. A good part of the listed nearby star systems are included in the GAIA DR2 catalog with par- allax and proper motion data for at least some of the components – this offers the opportunity to counter-check the so far reported data with the most precise star catalog data currently available. A side result of this counter-check is the confirmation of the expectation that the GAIA DR2 single star model is not well suited to deliver fully reliable parallax and proper motion data for binary or multiple star systems. 1. Introduction high proper motion speed might cause visually noticea- The answer to the question at which distance the ble position changes from year to year. -
HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory. -
RECONS Discoveries Within 10 Parsecs
The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case. -
The Solar Neighborhood XLIV: RECONS Discoveries Within 10 Parsecs
The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case. -
20 NEW MEMBERS of the RECONS 10 PARSEC SAMPLE Todd J
THE SOLAR NEIGHBORHOOD. XVII. PARALLAX RESULTS FROM THE CTIOPI 0.9 m PROGRAM: 20 NEW MEMBERS OF THE RECONS 10 PARSEC SAMPLE Todd J. Henry,1 Wei-Chun Jao,1 John P. Subasavage,1 and Thomas D. Beaulieu1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106; [email protected], [email protected], [email protected], [email protected] Philip A. Ianna1 Department of Physics and Astronomy, University of Virginia, Charlottesville, VA 22903; [email protected] and Edgardo Costa1 and Rene´ A. Me´ndez1 Departamento de Astronom«õa, Universidad de Chile, Santiago, Chile; [email protected], [email protected] ABSTRACT Astrometric measurements for 25 red dwarf systems are presented, including the first definitive trigonometric par- allaxes for 20 systems within 10 pc of the Sun, the horizon of the RECONS sample. The three nearest systems that had no previous trigonometric parallaxes (other than perhaps rough preliminary efforts) are SO 0253+1652 (3:84 Æ 0:04 pc, the 23rd nearest system), SCR 1845À6357 AB (3:85 Æ 0:02 pc, 24th nearest), and LHS 1723 (5:32 Æ 0:04 pc, 56th nearest). In total, seven of the systems reported here rank among the nearest 100 stellar systems. Sup- porting photometric and spectroscopic observations have been made to provide full characterization of the systems, including complete VRIJHKs photometry and spectral types. A study of the variability of 27 targets reveals six ob- vious variable stars, including GJ 1207, for which we observed a flare event in the V band that caused it to brighten by 1.7 mag. -
Detectability of Atmospheric Features of Earth-Like Planets in the Habitable
Astronomy & Astrophysics manuscript no. Wunderlich_etal_2019_arxiv c ESO 2019 May 8, 2019 Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs Fabian Wunderlich1, Mareike Godolt1, John Lee Grenfell2, Steffen Städt3, Alexis M. S. Smith2, Stefanie Gebauer2, Franz Schreier3, Pascal Hedelt3, and Heike Rauer1; 2; 4 1 Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany e-mail: [email protected] 2 Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstraße 2, 12489 Berlin, Germany 3 Institut für Methodik der Fernerkundung, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany 4 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany ABSTRACT Context. The characterisation of the atmosphere of exoplanets is one of the main goals of exoplanet science in the coming decades. Aims. We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). Methods. We used a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hy- pothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. Results. High abundances of methane (CH4) and water (H2O) in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets. -
Further Defining Spectral Type" Y" and Exploring the Low-Mass End of The
Submitted to The Astrophysical Journal Further Defining Spectral Type “Y” and Exploring the Low-mass End of the Field Brown Dwarf Mass Function J. Davy Kirkpatricka, Christopher R. Gelinoa, Michael C. Cushingb, Gregory N. Macec Roger L. Griffitha, Michael F. Skrutskied, Kenneth A. Marsha, Edward L. Wrightc, Peter R. Eisenhardte, Ian S. McLeanc, Amanda K. Mainzere, Adam J. Burgasserf , C. G. Tinneyg, Stephen Parkerg, Graeme Salterg ABSTRACT We present the discovery of another seven Y dwarfs from the Wide-field In- frared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J − H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measure- ments to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 µm) and W2 (4.6 µm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constinuency within 8 parsecs of the Sun, and we show that the cur- rent census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are iden- tified within this volume, but unless there is a vast reservoir of cold brown dwarfs arXiv:1205.2122v1 [astro-ph.SR] 9 May 2012 aInfrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125; [email protected] bDepartment of Physics and Astronomy, MS 111, University of Toledo, 2801 W. -
Astronomy Astrophysics
A&A 449, 1233–1242 (2006) Astronomy DOI: 10.1051/0004-6361:20054284 & c ESO 2006 Astrophysics Simulating observable comets III. Real stellar perturbers of the Oort cloud and their output P. A. Dybczynski´ Astronomical Observatory of the A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] Received 30 September 2005 / Accepted 15 November 2005 ABSTRACT Context. This is the third of a series of papers on simulating the mechanisms acting currently on the Oort cloud and producing the observed long-period comets. Aims. In this paper we investigate the influence of current stellar perturbers on the Oort cloud of comets under the simultaneous galactic disk tide. We also analyse the past motion of the observed long-period comets under the same dynamical model to verify the widely used definition of dynamically new comets. Methods. The action of nearby stars and the galactic disk tide on the Oort cloud was simulated. The original orbital elements of all 386 long- period comets of quality classes 1 and 2 were calculated, and their motion was followed numerically for one orbital revolution into the past, down to the previous perihelion. We also simulated the output of the close future pass of GJ 710 through the Oort cloud. Results. The simulated flux of the observable comets resulting from the current stellar and galactic perturbations, as well as the distribution of perihelion direction, was obtained. The same data are presented for the future passage of GJ 710. A detailed description is given of the past evolution of aphelion and perihelion distances of the observed long-period comets. -
The Solar Neighborhood. Xxviii. the Multiplicity Fraction of Nearby Stars from 5 to 70 Au and the Brown Dwarf Desert Around M Dwarfs
The Astronomical Journal, 144:64 (19pp), 2012 August doi:10.1088/0004-6256/144/2/64 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS Sergio B. Dieterich1, Todd J. Henry1, David A. Golimowski2,JohnE.Krist3, and Angelle M. Tanner4 1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Jet Propulsion Laboratory, Pasadena, CA 91109, USA 4 Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39762, USA Received 2012 February 13; accepted 2012 May 29; published 2012 July 16 ABSTRACT We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within ∼10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel−1, NICMOS can easily resolve binaries with subarcsecond separations in the 19.5×19.5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems. -
DIGITHÈQUE Université Libre De Bruxelles
UNIVERSITÉ LIBRE DE BRUXELLES DIGITHÈQUE Université libre de Bruxelles ___________________________ Citation APA : Institut international de physique Solvay (1958). La structure et l'évolution de l'univers: onzième Conseil de physique tenu à l'Université de Bruxelles du 9 au 13 juin 1958. Bruxelles: R. Stoops. Disponible à / Available at permalink : https://dipot.ulb.ac.be/dspace/bitstream/2013/234812/3/DL2622637_000_f.pdf ___________________________ (English version below) Cette œuvre littéraire est soumise à la législation belge en matière de droit d’auteur. Elle a été éditée par l’Université libre de Bruxelles et les Instituts Internationaux de Physique et de Chimie Solvay, et numérisée par les Bibliothèques de l’ULB. Malgré tous leurs efforts, les Bibliothèques de l’ULB n’ont pu identifier le titulaire des droits sur l’œuvre ici reproduite. Dans l’hypothèse où le titulaire de droits sur celle-ci s’opposerait à sa mise en ligne, il est invité à prendre immédiatement contact avec la Direction des bibliothèques, à l’adresse [email protected], de façon à régulariser la situation. Les règles d’utilisation des copies numériques des œuvres sont visibles sur le site de DI-fusion http://difusion.ulb.ac.be L’ensemble des documents numérisés par les Bibliothèques de l’ULB sont accessibles à partir du site de la Digithèque http://digitheque.ulb.ac.be _________________________________________________________________________________ This work is protected by the Belgian legislation relating to authors’ rights. It has been edited by the Université libre de Bruxelles and the Solvay International Institutes of Physics and Chemistry, and has been digitized by the Libraries of ULB. -
Theoretical Astroparticle Physics
Theoretical Astroparticle Physics Contents 1. Topics 1339 2. Participants 1341 2.1. ICRANetparticipants. 1341 2.2. Pastcollaborators . 1341 2.3. Ongoingcollaborations. 1342 2.4. Students ............................... 1342 3. Brief description 1343 3.1. Electron-positronplasma. 1343 3.1.1. Thermalization of mildly relativistic plasma with pro- tonloading ......................... 1343 3.1.2. Pairplasmarelaxationtimescales. 1344 3.1.3. HydrodynamicphaseofGRBsources . 1345 3.2. Neutrinosincosmology . 1345 3.2.1. Massive neutrino and structure formation . 1347 3.2.2. CellularstructureoftheUniverse . 1347 3.2.3. LeptonasymmetryoftheUniverse . 1348 3.2.4. MassVaryingNeutrinos . 1348 3.3. IndirectDetectionofDarkMatter . 1349 3.4. AlternativeCosmologicalModels. 1350 4. Publications 1353 4.1. Publicationsbefore2005 . 1353 4.2. Publications(2005-2008) . 1356 4.3. Publications(2009) . 1362 4.4. Invitedtalksatinternationalconferences . 1365 5. APPENDICES 1369 A. Pair plasma relaxation timescales 1371 B.HydrodynamicphaseofGRBsources 1379 B.1. Introduction ............................. 1379 B.2. Kineticandhydrodynamicalphases . 1381 B.3. Physicalevolution. 1383 1335 Contents B.4. Results ................................ 1385 B.4.1. Constant baryonic distribution profile . 1385 B.4.2. c)Hybridprofile . 1387 B.5. Conclusions ............................. 1389 B.6. Numericalapproach . 1390 B.6.1. Finitedifferenceformofequations . 1392 B.6.2. Numericalissues . 1393 B.7. test .................................. 1395 B.7.1. a)Piran’sprofile . 1395 C. Cosmological