Ground-Water Discharge and Base-Flow Nitrate Loads of Nontidal Streams, and Their Relation to a Hydrogeomorphic Classification O

Total Page:16

File Type:pdf, Size:1020Kb

Ground-Water Discharge and Base-Flow Nitrate Loads of Nontidal Streams, and Their Relation to a Hydrogeomorphic Classification O Ground-Water Discharge and Base-Flow Nitrate Loads of Nontidal Streams, and Their Relation toa HydrogeomorphicClassificatio no f the Chesapeake Bay Watershed, Middle Atlantic Coast Water-Resources Investigations Report 98-4059 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior U.S. Geological Survey Ground-Water Dischargean d Base-FlowNitrate Loads of Nontidal Streams,an d Their Relation toa Hydrogeomorphic Classification of the ChesapeakeBa y Watershed, Middle AtlanticCoast byLeo n JosephBachman , Bruce Lindsey, JohnBrakebill ,an d David S. Powars Water-Resources InvestigationsRepor t 98-4059 Baltimore, Maryland June, 1998 U.S. Department of the Interior Bruce Babbitt, Secretary U.S. Geological Survey Thomas J. Casadevall, Acting Director The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. United States Government Printing Office: 1998 For additional information contact: District Chief U.S. Geological Survey, WRD 8987 Yellow Brick Road Baltimore, MD 21237 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 CONTENTS Abstract................................................................................................................................................................1 Introduction. ........................................................................................................................................................2 Description of study area.............................................................................................................................3 Previous investigations................................................................................................................................4 Acknowledgments.......................................................................................................................................4 Methods of investigation. ....................................................................................................................................4 Compilation of digital geographic data.......................................................................................................4 Compilation of streamflow data..................................................................................................................5 Compilation of water-quality data...............................................................................................................5 Data analysis. ..............................................................................................................................................7 Estimation of base flow using hydrograph separation. .........................................................................7 Statistical analysis. ................................................................................................................................9 Delineation of hydrogeomorphic regions............................................................................................................9 Ground-water discharge. ...................................................................................................................................13 Ground-water nitrate loads. ...............................................................................................................................16 Relation between ground-water discharge, base-flow nitrate yields and hydrogeomorphic regions................21 Summary and conclusions.................................................................................................................................26 References cited.................................................................................................................................................28 Appendix. ..........................................................................................................................................................31 Streamflow, base-flow, and nitrogen-yield data for basins within the Chesapeake Bay watershed, 1972-96.........................................................................................................32 FIGURES 11. Map showing the Chesapeake Bay watershed and surrounding area .......................................................2 22. Map showing locations of stations with discharge measurements and stations with load estimates. .................................................................................................................6 33. Scatterplot showing relation between base-flow dissolved nitrate loads and total-flow total-nitrogen loads........................................................................................................7 44. Probability plot showing distribution of areas of basins for which load data were available. ..............................................................................................................................8 55. Distribution of land uses within the Chesapeake Bay watershed and within each hydrogeomorphic region. ................................................................................................12 66. Boxplot showing distribution of base-flow index among hydrogeomorphic regions. ..................................................................................................................15 77. Probability plot showing the frequency distribution of the percent area of the Valley and Ridge Carbonate hydrogeomorphic region for which load data were available. ..........................................................................................18 88. Boxplot showing frequency distributions of nitrate yield and base-flow nitrate index among basins with dominant hydrogeomorphic regions. ...................................................................................................20 99. Scatterplot showing the relation between annual streamflow and base-flow index. ............................................................................................................................21 10. Scatterplots showing relation between base-flow nitrate yield and selected land-use/hydrogeomorphic region combinations...........................................................25 iii TABLES 1. Delineation of hydrogeomorphic regions by combination of rock type and physiographic province.................................................................................................10 2. Summary statistics of mean annual streamflow, annual base flow, and the base-flow index for the stations with discharge measurements. .............................................14 3. Median value of mean annual discharge and median value of annual base flow from selected streams in hydrogeomorphic regions in the Chesapeake Bay watershed, 1972-96. ..........................................................................15 4. Correlation between the percentage of basin area within a given hydrogeomorphic region and base-flow index. ...................................................................................16 5. Summary statistics of station median, base-flow nitrate yield, total-flow nitrate yield, total nitrogen yields and percentage of base-flow nitrate to total-flow nitrate and nitrogen yields...................................................................17 6. Correlation between percentage of basin area within a given hydrogeomorphic region and nitrate yields. ........................................................................................19 7. Correlation between percentage of a basin in a given land-use/hydrogeomorphic region combination and nitrate yield. ......................................................23 CONVERSION FACTORS, ABBREVIATIONS, AND VERTICAL DATUM _____________________________________________________________________________________________________________________________________ Multiply By To obtain _____________________________________________________________________________________________________________________________________ inch (in.) 2.54 centimeter inch per year (in/yr) 0.02540 meter per year foot (ft) 0.3048 meter foot squared per day (ft 2/d) 0.09290 meter squared per day square mile (mi) 2.590 square kilometer gallons 3.785 liters gallons 0.00379 cubic meter ton, short 907.2 kilogram _____________________________________________________________________________________________________________________________________ Sea Level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929. iv �������������������������������������������������� �������������������������������������������� ������������������������������������� ����������������������������������������������� ������������������������������������������������������������������������ �������� computed for 57 stations, whereas the Existing data on base-flow and ground­ percentage of base-flow nitrate load to total- water nitrate loads were compiled and flow total-nitrogen load could be computed analyzed to assess the significance of ground­ for 36 stations. These loads were divided by water discharge as a source of the nitrate load the basin area to obtain yields, which were to nontidal streams of the Chesapeake
Recommended publications
  • NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5
    NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5 DATABASE DESIGN DOCUMENTATION AND DATA DICTIONARY 1 June 2013 Prepared for: United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, Maryland 21403 Prepared By: Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 Prepared for United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, MD 21403 By Jacqueline Johnson Interstate Commission on the Potomac River Basin To receive additional copies of the report please call or write: The Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 301-984-1908 Funds to support the document The Non-Tidal Benthic Monitoring Database: Version 3.0; Database Design Documentation And Data Dictionary was supported by the US Environmental Protection Agency Grant CB- CBxxxxxxxxxx-x Disclaimer The opinion expressed are those of the authors and should not be construed as representing the U.S. Government, the US Environmental Protection Agency, the several states or the signatories or Commissioners to the Interstate Commission on the Potomac River Basin: Maryland, Pennsylvania, Virginia, West Virginia or the District of Columbia. ii The Non-Tidal Benthic Monitoring Database: Version 3.5 TABLE OF CONTENTS BACKGROUND ................................................................................................................................................. 3 INTRODUCTION ..............................................................................................................................................
    [Show full text]
  • Marilandica, Summer/Fall 2002
    MARILANDICA Journal of the Maryland Native Plant Society Vol. 10, No. 2 Summer/Fall 2002 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Marilandica Journal of the Maryland Native Plant Society The Maryland Native Volume 10, Number 2 Summer/Fall 2002 Plant Society ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (MNPS) is a nonprofit organization that uses education, research, and Table of Contents community service to increase the awareness and appreciation of Native Woody Flora of Montgomery County native plants and their habitats, By John Mills Parrish leading to their conservation and Page 3 restoration. Membership is open to ~ all who are interested in Maryland’s MNPS Field Botany Updates native plants and their habitats, preserving Maryland’s natural By Rod Simmons, Cris Fleming, John Parrish, and Jake Hughes heritage, increasing their knowledge Page 8 of native plants, and helping to ~ further the Society’s mission. In Search of Another Orchid Species By Joseph F. Metzger, Jr. MNPS sponsors monthly meetings, Page 11 workshops, field trips, and an ~ annual fall conference. Just Boil the Seeds By James MacDonald Page 13 Maryland Native Plant Society ~ P.O. Box 4877 MNPS Contacts Silver Spring, MD 20914 www.mdflora.org Page 15 ~ Some Varieties of Andropogon virginicus and MNPS Executive Officers: Andropogon scoparius By M.L. Fernald, Rhodora, Vol. 37, 1935 Karyn Molines-President Page 16 Louis Aronica-Vice President Marc Imlay-Vice President Roderick Simmons-Vice President Jane Osburn-Secretary Jean Cantwell-Treasurer MNPS Board Of Directors: Carole Bergmann Blaine Eckberg Cris Fleming Jake Hughes Carol Jelich Dwight Johnson James MacDonald Joe Metzger, Jr. Lespedeza repens John Parrish Mary Pat Rowan Submissions for Marilandica are welcomed. Word documents are preferred but Louisa Thompson not necessary.
    [Show full text]
  • Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis
    Engineering Hydrology Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis Learning Topics and Goals: Objectives 1. Explain how hydrographs relate to hyetographs Hydrograph 2. Create DRO (direct runoff) hydrographs by separating baseflow Description 3. Relate runoff volume to watershed area and create UH (next time) Unit Hydrographs Separating Baseflow DRO Hydrographs Ocean Class 14: Hydrograph Analysis Learning Gross rainfall = depression storage + Objectives evaporation + infiltration Hydrograph + surface runoff Description Unit Hydrographs Separating Baseflow Rainfall excess = (gross rainfall – abstractions) DRO = Direct Runoff = DRO Hydrographs = net rainfall with the primary abstraction being infiltration (i.e., assuming depression storage is small and evaporation can be neglected) Class 14: Hydrograph Hydrograph Defined Analysis Learning • a hydrograph is a plot of the Objectives variation of discharge with Hydrograph Description respect to time (it can also be Unit the variation of stage or other Hydrographs water property with respect to Separating time) Baseflow DRO • determining the amount of Hydrographs infiltration versus the amount of runoff is critical for hydrograph interpretation Class 14: Hydrograph Meteorological Factors Analysis Learning • Rainfall intensity and pattern Objectives • Areal distribution of rainfall Hydrograph • Size and duration of the storm event Description Unit Physiographic Factors Hydrographs Separating • Size and shape of the drainage area Baseflow • Slope of the land surface and channel
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • 2010-2015-Data-Summary-Report
    1 The Audubon Naturalist Society is pleased to offer this report of water quality data collected by its volunteer monitors. Since the early 1990s, the Audubon Naturalist Society (ANS) has sponsored a volunteer water quality monitoring program in Montgomery County, Maryland, and Washington, DC, to increase the public’s knowledge and understanding of conditions in healthy and degraded streams and to create a bridge of cooperation and collaboration between citizens and natural resource agencies concerned about water quality protection and restoration. Every year, approximately 180-200 monitors visit permanent stream sites to collect and identify benthic macroinvertebrates and to conduct habitat assessments. To ensure the accuracy of the data, the Audubon Naturalist Society follows a quality assurance/quality control plan. Before sampling, monitors are offered extensive training in macroinvertebrate identification and habitat assessment protocols. The leader of each team must take and pass an annual certification test in benthic macroinvertebrate identification to the taxonomic level of family. Between 2010 and 2015, ANS teams monitored 28 stream sites in ten Montgomery County watersheds: Paint Branch, Northwest Branch, Sligo Creek, Upper Rock Creek, Watts Branch, Muddy Branch, Great Seneca Creek, Little Seneca Creek, Little Bennett Creek, and Hawlings River. Most of the sites are located in Montgomery County Parks; three are on private property; and one is in Seneca Creek State Park. In each accompanying individual site report, a description of the site is given; the macroinvertebrates found during each visit are listed; and a stream health score is assigned. These stream health scores are compared to scores from previous years in charts showing both long-term trends and two-year moving averages.
    [Show full text]
  • Real-Time Stream Flow Gages in Montana
    REAL-TIME STREAM FLOW GAGES IN MONTANA Montana is home to over 264 real-time stream lows and improve water management practices. It gages located throughout the state. These gages can drive the understanding for other sciences and and their networks assist in delivering water data to helps inform citizens on how we can prepare for scientists and the public. While Montana’s demand changes in our water supply. It is imperative to for water continues to grow, water availability maintain as many gages as possible to preserve varies from year-to-year and can change these historical records for current and future dramatically in any given year. Managing supply and generations. demand challenges is an ongoing feature of life. REAL-TIME GAGES Accurate, near real-time, publicly accessible information on stream flows assists both day to day A real-time stream gage is used to report stream decision making and long-term planning, as well as flow (discharge) in cubic feet per second. These emergency planning and notification. This gages measure the stage (height) of the river in feet, information is generated in Montana by multiple and water temperature along with other networks of real-time stream gages operated by the environmental data. U.S. Geological Survey (USGS), the Department of Natural Resources and Conservation (DNRC), and some tribes. Within each network, the operation and maintenance of gages are financially supported by different sources including federal, state, tribal, local, and private funds. Some of the gages are funded by multiple agencies and organizations. The recorded data are essential to make informed water management decisions across the state.
    [Show full text]
  • Chapter 5 Streamflow Data
    Part 630 Hydrology National Engineering Handbook Chapter 5 Streamflow Data (210–VI–NEH, Amend. 76, November 2015) Chapter 5 Streamflow Data Part 630 National Engineering Handbook Issued November 2015 The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, em- ployees, and applicants for employment on the bases of race, color, national origin, age, disabil- ity, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Pro- gram Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/com- plaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adju- dication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at [email protected] Individuals who are deaf, hard of hearing or have speech disabilities and you wish to file either an EEO or program complaint please contact USDA through the Federal Relay Service at (800) 877- 8339 or (800) 845-6136 (in Spanish).
    [Show full text]
  • Hawlings River Watershed Restoration Action Plan
    Hawlings River Watershed Restoration Action Plan December 2003 MONTGOMERY COUNTY DEPARTMENT OF ENVIRONMENTAL PROTECTION Montgomery County’s Water Quality Goals Montgomery County has a rich and diverse natural heritage, which includes over 1,500 miles of streams that provide habitat vital to aquatic life. To preserve this natural heritage, the County has adopted the following water quality goals (Montgomery County Code, Chapter 19, ArticleIV): • Protect, maintain, and restore high quality chemical, physical, biological, and stream habitat conditions in County streams that support aquatic life and uses such as recreation and water supply; • Restore County streams damaged by inadequate stormwater management practices of the past by re-establishing the flow regime, chemical and physical conditions, and biological diversity of natural stream systems as closely as possible through improved stormwater management practices; • Work with other jurisdictions to restore and maintain the integrity of the Anacostia River, the Potomac River, the Patuxent River, and the Chesapeake Bay; and • Promote and support educational and volunteer initiatives that enhance public awareness and increase direct participation in stream stewardship and the reduction of water pollution. What is the Countywide Stream Protection Strategy? The Montgomery County Department of Environmental Protection (DEP) first published the Countywide Stream Table 1. Montgomery County Stream Protection Strategy (CSPS) in 1998. The CSPS provides Resource Conditions County stream resource conditions on a subwatershed* (1994-2000) basis and recommends programs or policies to preserve, Percent Monitored protect, and restore County streams and watersheds. Condition Monitored Stream Miles Stream resource condition results for the year 2003 update Stream Miles are shown in Table 1.
    [Show full text]
  • Patuxent River Watershed Functional Plan
    TI11E Functional \laster Plan for the Patuxent Ril'er Watershed in \lontgome1y Count) AUTHOR The \lai-·land-\ational Capital Park and Planning Commi:sion Functional \laster Plan for tl1e Patuxent Ril'er \\'atershed in \lontgomei- Count)· DATE \01·ember 1993 PUNNING AGENCY The \Ian land-\ational Capital Park and Planning Cammi ion s~s~ Georgia Al'enue Sill'er Spring. \\D 20910-3~60 SOURCE OF COPIES The \lai-land-\ational Capital Park and Planning Commission s~s~Georgia Al'enue Siller Spring.\!D 20910-3"6o ABSTRACT This document contains the text. 11ith supporting graphics. for the Functional \laster Plan for tl1e Patuxent Rim\\ atershed in \lontgomm Count\. This plan amends the General Plan for the ,\lan·land-\X'ashington Regional District and the \laster Plan for Highwa1, for the \lard and-\\ ashington Regional District. and the following area master plans: Damascus. Olnel'. Sandi Spring-Ashton Special Stud, Area. Eastern \lontgomei-· Count\·. as well as the Functional \laster Plan for Presefl'ation of Agriculture and Rural Open Space. and the Patuxent Ril'er \\ atershed Park .\laster Plan. COPYRIGHT The Maryland-National Capital Park and Planning Commission 1993 PUBLISHED BY The Montgomery County Planning Department of The Maryland-National Capital Park and Planning Commission 8787 Georgia Avenue Silver Spring, Maryland 20910.3760 APPROVED BY The Montgomery County Council October 1993 ADOPTED BY The Maryland-National Capital Park and Planning Commission November 1993 THE MARYLAND-NATIONAL CAPITAL PARK AND PLANNING COMMISSION is a bi-county agency created by the General Assembly of Maryland in 1927. The Commission's geographic authority extends to the great majority of Montgomery and Prince George's Counties; the Maryland-Washington Regional District (M-NCPPC planningjurisdiction) comprises 1,001 square miles, while the Metropolitan District (parks) comprises 919 square miles, in the two counties.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Capper-Cramton Resource Guide 2019
    Resource Guide Review of Projects on Lands Acquired Under the Capper-Cramton Act TAME Coalition TAME F A Martin Northwest Branch Trail Indian Creek Stream Valley Park Overview The Capper-Cramton Act (CCA) of 1930 (46 Stat. 482) was enacted for the acquisition, establishment, and development of the George Washington Memorial Parkway and stream valley parks in Maryland and Virginia to create a comprehensive park, parkway, and playground system in the National Capital.1 In addition to authorizing funding for acquisition, the act granted the National Capital Park and Planning Commission, now the National Capital Planning Commission (NCPC), review authority to approve any Capper-Cramton park development or management plan in order to ensure the protection and preservation of the region’s valuable watersheds and parklands. Subsequent amendments to the Capper-Cramton Act2 allocated funds for the acquisition and extension of this park and parkway system in Maryland and Virginia. Title to lands acquired with such funds or lands donated to the United States as Capper Cramton land is vested in the state in which it is located. The Maryland-National Capital Park and Planning Commission (M-NCPPC) utilized Capper-Cramton funds to protect stream valleys in parts of Montgomery and Prince George’s Counties. Similarly, the District of Columbia used federal funds to develop recreation centers, playgrounds, and park systems. There is no evidence that Virginia utilized Capper-Cramton funds to acquire stream valley parks under the CCA. Today, over 10,000 acres of Capper-Cramton land have been established and preserved as a result of the act. This resource guide is for general information purposes, and is not a regulatory document.
    [Show full text]
  • Report of Investigations 71 (Pdf, 4.8
    Department of Natural Resources Resource Assessment Service MARYLAND GEOLOGICAL SURVEY Emery T. Cleaves, Director REPORT OF INVESTIGATIONS NO. 71 A STRATEGY FOR A STREAM-GAGING NETWORK IN MARYLAND by Emery T. Cleaves, State Geologist and Director, Maryland Geological Survey and Edward J. Doheny, Hydrologist, U.S. Geological Survey Prepared for the Maryland Water Monitoring Council in cooperation with the Stream-Gage Committee 2000 Parris N. Glendening Governor Kathleen Kennedy Townsend Lieutenant Governor Sarah Taylor-Rogers Secretary Stanley K. Arthur Deputy Secretary MARYLAND DEPARTMENT OF NATURAL RESOURCES 580 Taylor Avenue Annapolis, Maryland 21401 General DNR Public Information Number: 1-877-620-8DNR http://www.dnr.state.md.us MARYLAND GEOLOGICAL SURVEY 2300 St. Paul Street Baltimore, Maryland 21218 (410) 554-5500 http://mgs.dnr.md.gov The facilities and services of the Maryland Department of Natural Resources are available to all without regard to race, color, religion, sex, age, national origin, or physical or mental disability. COMMISSION OF THE MARYLAND GEOLOGICAL SURVEY M. GORDON WOLMAN, CHAIRMAN F. PIERCE LINAWEAVER ROBERT W. RIDKY JAMES B. STRIBLING CONTENTS Page Executive summary.........................................................................................................................................................1 Why stream gages?.........................................................................................................................................................4 Introduction............................................................................................................................................................4
    [Show full text]