Design Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gibraltar Highway Code
P ! CONTENTS Introduction Rules for pedestrians 3 Rules for users of powered wheelchairs and mobility scooters 10 Rules about animals 12 Rules for cyclists 13 Rules for motorcyclists 17 Rules for drivers and motorcyclists 19 General rules, techniques and advice for all drivers and riders 25 Road users requiring extra care 60 Driving in adverse weather conditions 66 Waiting and parking 70 Motorways 74 Breakdowns and incidents 79 Road works, level crossings and tramways 85 Light signals controlling traffic 92 Signals by authorised persons 93 Signals to other road users 94 Traffic signs 96 Road markings 105 Vehicle markings 109 Annexes 1. You and your bicycle 112 2. Vehicle maintenance and safety 113 3. Vehicle security 116 4. First aid on the road 116 5. Safety code for new drivers 119 1 Introduction This Highway Code applies to Gibraltar. However it also focuses on Traffic Signs and Road Situations outside Gibraltar, that as a driver you will come across most often. The most vulnerable road users are pedestrians, particularly children, older or disabled people, cyclists, motorcyclists and horse riders. It is important that all road users are aware of The Code and are considerate towards each other. This applies to pedestrians as much as to drivers and riders. Many of the rules in the Code are legal requirements, and if you disobey these rules you are committing a criminal offence. You may be fined, or be disqualified from driving. In the most serious cases you may be sent to prison. Such rules are identified by the use of the words ‘MUST/ MUST NOT’. -
A Study and Analysis of Existing Road Junction
Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 SNCIPCE - 2016 Conference Proceedings A Study and Analysis of Existing Road Junction Bavithran. R, Sasikumar. N Ms. G. Yamuna,.. Asst Professor Department of Civil Engg Department of Civil Engg V.R.S College of Engg & Tech, Araur, VPM Dst V.R.S College of Engg & Tech, Araur, VPM Dst Abstract - Road junction is the point at which more than are also three major groups of sedimentary rocks, layers of two roads are connecting at the point. The junction is particles that settled in different geological periods. analyzed by Volume Count Survey. The volume count survey Viluppuram's GPS location is 11° 56' N 79° 29' E. is one of the methods of finding out the Traffic volume. The Villupuram is the one of the most popular city in junction which is situated in Villupuram is taken as study tamilnadu. In this project, an existing road junction is area. In this junction, the volume count survey is taken for 15 days for determine the Passenger Car Unit and the Level Of studied and analyzed by using volume count survey.. Some Service for the junction is computed. To improve the information are to be carried before the project has started. junction, some suggestions are suggested. The greener time of the Traffic flow from Chennai, Trichy, thirukovillur, Pondicherry are 20 sec, 25 Keywords:- Volume count survey, Peak hour, Passenger sec, 15 sec, and 20 sec respectively. CCTV is provided car unit, Level of service from junction to junction near veeravaliamman temple. -
Roundabouts Applying the 'System'
Roundabouts Applying the 'System' to Roundabouts Let us suppose that you are on a dual carriageway approaching a roundabout (400m away). You are currently in the left lane and you intend to turn right at the roundabout. Information: - Take - You see the roundabout and its triangular warning signs in the distance. There are no vehicles between you and the roundabout but you see vehicles on the roundabout. Mirror check. There are two vehicles behind, both in the left lane. - Use - You know that you have to change to the right lane and that you will need to signal to change lane and then to signal continuously on the approach and through the roundabout (the standard Highway Code procedure for turning right at a roundabout)- Give - After checking your mirrors you signal right to the vehicles behind. Position: The right signal remains on for a few seconds and then gradually you move to the right hand lane (Information-Use/Give). When the manoeuver is complete you cancel the signal. After a few more seconds the right signal is re-applied to confirm to the drivers behind that you intend to turn right at the roundabout. Information: The speed and position of the vehicles behind are monitored as you approach the roundabout. An assessment is made of the movement of vehicles on the roundabout and those approaching it from the right and left. You look over the roundabout to see, if possible, vehicles approaching it from the opposite direction (Information-Take). Speed: As you approach the roundabout you begin to brake and lose speed smoothly and progressively (Information-Give). -
Literature Review- Resource Guide for Separating Bicyclists from Traffic
Literature Review Resource Guide for Separating Bicyclists from Traffic July 2018 0 U.S. Department of Transportation Federal Highway Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Technical Report Documentation Page 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. FHWA-SA-18-030 4. TITLE AND SUBTITLE 5. REPORT DATE Literature Review: Resource Guide for Separating Bicyclists from Traffic 2018 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION Bill Schultheiss, Rebecca Sanders, Belinda Judelman, and Jesse Boudart (TDG); REPORT NO. Lauren Blackburn (VHB); Kristen Brookshire, Krista Nordback, and Libby Thomas (HSRC); Dick Van Veen and Mary Embry (MobyCON). 9. PERFORMING ORGANIZATION NAME & ADDRESS 10. WORK UNIT NO. Toole Design Group, LLC VHB 11. CONTRACT OR GRANT NO. 8484 Georgia Avenue, Suite 800 8300 Boone Boulevard, Suite 300 DTFH61-16-D-00005 Silver Spring, MD 20910 Vienna, VA 22182 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD Federal Highway Administration Office of Safety 1200 New Jersey Ave., SE Washington, DC 20590 14. SPONSORING AGENCY CODE FHWA 15. SUPPLEMENTARY NOTES The Task Order Contracting Officer's Representative (TOCOR) for this task was Tamara Redmon. -
Siena Footbridge
Structural Stainless Steel Case Study 05 Siena Footbridge Completed in 2006, this stainless steel cable stayed footbridge spans 60 m over a busy motorway in the suburb of Ruffolo, Siena, in central Italy. The bridge girders and pylons are fabricated from a ‘lean’ duplex grade of stainless steel and it is one of the first times this grade has been used for a footbridge. The bridge has a striking appearance, is functionally efficient and cost-effective with a low life cycle cost. Material Selection The City of Siena required an attractive pedestrian crossing to be constructed over the motorway in the suburb of Ruffolo. The structure needed to have a 120 year design life without expensive and disruptive maintenance requirements. The architect selected the ‘lean’ stainless steel duplex grade 1.4162 (S32101) for the girders and pylons of the bridge. Lean duplexes have a very low nickel content (1.5 % compared to >3 % in standard duplex stainless steels), which results in significant cost benefits compared to other austenitic and duplex grades. This grade of stainless steel also experiences less price volatility because of the low nickel content. The corrosion resistance of 1.4162, which lies between that of austenitic grades 1.4301 (S30400) and 1.4404 (S31603), is adequate for Ruffolo’s benign inland environment with relatively low pollution levels. Grade 1.4162 has high strength (450 N/mm2), good ductility (at least 30 %) and good formability and weldability. The high strength enables reductions in section sizes, relative to carbon steel sections, leading to lighter structures. This grade has tremendous potential for future structural applications. -
Adopted Text
THIS PAGE INTENTIONALLY LEFT BLANK Amendment No. 2017-28 Adopted November 17, 2020 AMENDMENT TO THE COMPREHENSIVE PLAN (2017 EDITION) The following changes to the Comprehensive Plan have adopted by the Board of Supervisors. To identify changes from the previously adopted Plan, new text is shown with underline and deleted text shown with strikethrough. MODIFY: Fairfax County Comprehensive Plan, 2017 Edition, Area III, Fairfax Center Area, as amended through 7-31-2018, Fairfax Center Area-Wide Recommendations, page 8, to delete strikethrough text: “The core area near the first Metrorail station is planned for a mix of uses at a variety of intensities, some of which are tied to the funding of the Metrorail extension, or in the interim, funding of a Bus Rapid Transit System. Any development or redevelopment occurring prior to the funding of the Metrorail extension should not preclude higher-intensity transit-oriented development that is envisioned in the future. …” MODIFY: Fairfax County Comprehensive Plan, 2017 Edition, Area III, Fairfax Center Area, Amended through 7-31-2018, Land Use Plan Recommendations – Suburban Center Core Area, Land Unit A, Land Use Recommendations, page 37: “Sub-unit A1 Baseline: Mixed use up to .15 FAR Overlay: Mixed use up to .65 FAR; 1.0 FAR Sub-unit A1 consists of approximately 133 acres, including a 109.5-acre portion that and contains the Fair Oaks regional mall Regional Mall at its center (“Mall Property” or “Mall”), as shown on Figure 11. and several Several office buildings, and hotels, and other commercial uses around its the perimeter of the Mall Property occupy the approximately 24-acre remainder of the sub-unit. -
USER GUIDE for USLIMITS2
USER GUIDE for USLIMITS2 December 2017 Contents Contents ..................................................................................................................................................... 1 Background ................................................................................................................................................. 2 Objective of this Guide ............................................................................................................................... 2 Accessing the Expert System....................................................................................................................... 3 Getting Started ........................................................................................................................................... 3 Revise/Update Existing Projects ................................................................................................................. 3 Creating New Projects ................................................................................................................................. 4 New Route .................................................................................................................................................. 4 Existing Route: Selecting a Route and Area Type ........................................................................................ 4 Input Variables ......................................................................................................................................... -
Pedestrian Footbridge, (Applicant Identification: ) Environmental Assessment
PEDESTRIAN FOOTBRIDGE, (APPLICANT IDENTIFICATION: ) ENVIRONMENTAL ASSESSMENT New York State Governor’s Office of Storm Recovery May 8, 2015 PEDESTRIAN FOOTBRIDGE – ENVIRONMENTAL ASSESSMENT & ERR PROJECT SUMMARY Responsible Entity: New York State Homes & Community Renewal – Housing Trust Fund Corporation cooperating with the Governor’s Office of Storm Recovery (GOSR) Certifying Officer: Daniel Greene, Esq., Certifying Environmental Officer, GOSR Project Name: Pedestrian Footbridge, Funding Recipient: Federal Agency: U.S. Department of Housing & Urban Development (HUD) Project #: Project Sponsor: New York State Housing Trust Fund Corporation Program Name: New York State Community Development Block Grant – Disaster Recovery (Housing Assistance Programs, 1 - 4 Unit) Project Address: , Sundown, NY 12740 Project County: Ulster County, NY Estimated Project Cost: $140,000 Project Sponsor Governor’s Office of Storm Recovery Address: 99 Washington Avenue, Suite 1224 Albany, New York 12231 Primary Contact/ Person Governor’s Office of Storm Recovery To Direct Comments: 25 Beaver Street, 5th Floor New York, New York 10004 E-Mail address: [email protected] Telephone Number: (212) 480-4644 Project NEPA 24 CFR 58.36 Classification: Finding of No Significant Impact - The project will not result ENVIRONMENTAL in a significant impact on the quality of the human FINDING: environment. Finding of Significant Impact - The project may significantly affect the quality of the human environment. The undersigned hereby certifies that New York State Housing Trust Fund Corporation has conducted an environmental review of the project identified above and prepared the attached environmental review record in compliance with all applicable provisions of the National Environmental Policy Act of 1969, as amended, (42 USC sec. -
Footbridge Design for Pedestrian Induced Vibrations
FOOTBRIDGE DESIGN FOR PEDESTRIAN INDUCED VIBRATIONS SABINA PIRAS, KWAN CHIN WSP OPUS, Auckland, New Zealand INTRODUCTION With innovative engineering and inspiring design, footbridges have become functional works of art. However, the use of longer and lighter spans have made footbridges more susceptible to human-induced vibrations; causing discomfort to pedestrians and compromising the utility of the structure, even though the bridge is structurally sound and safe to cross. Design codes address this dynamic problem by providing limits for natural frequency and simplistic provisions to keep the footbridge experience pleasant. For slender, lightweight bridges, such as stress ribbon or cable-stayed bridges, this dynamic problem can be onerous and require a refined analysis to demonstrate that the comfort level can be satisfied. This paper presents a guideline to determine the dynamic bridge characteristics under pedestrian loading. In addition, factors that influence a bridge’s response to vibration and possible vibration mitigation measures are discussed herein. This paper focuses on the recommended design procedure by presenting an analytical model of a concrete footbridge subjected to a dynamic load representing the effects of a stream of pedestrians crossing the structure. In the vertical direction, the peak acceleration from the pedestrian loading is compared with published acceptance criteria. In the lateral direction, the critical number of pedestrians at which the bridge response becomes unstable is calculated. HUMAN LOCOMOTION When a pedestrian crosses a bridge, a dynamic force is produced which has components in the vertical, lateral and longitudinal directions. These dynamic forces are described as a function of time and space, periodically repeated with regular time intervals. -
Phase II Highway Corridor Strategy Descriptions Technical
ENTRAL ORK OUNTY ONNECTIONS TUDY CENTRAL YORK COUNTY CONNECTIONS STUDY PHASE II HIGHWAY CORRIDOR STRATEGY DESCRIPTIONS PHASE II TECHNICAL MEMORANDUM SEPTEMBER 2011 Prepared for: Maine Department Maine Turnpike Authority of Transportation Prepared by: In association with: Morris Communications • Kevin Hooper Associates T.Y. Lin • Planning Decisions • Facet Decision Systems Dr. Charles Colgan, University of Southern Maine • Evan Richert Normandeau Associates • Preservation Company This document is formatted for two-sided printing. Document II-4 ENTRAL ORK OUNTY ONNECTIONS TUDY CENTRAL YORK COUNTY CONNECTIONS STUDY 1 INTRODUCTION This document summarizes the potential highway corridor improvements – called strategies – that are being tested and evaluated for Phase II of the Central York County Connections Study (CYCCS). Phase II Highway Strategies are a starting point in the development and consideration of candidate improvements for the study; they are not recommendations, nor are they the only strategies that will be studied. Phase II strategies are conceptual in nature, and not yet detailed, specific proposals. Strategies considered later in the study during Phase III, as well as those ultimately recommended by the study, may differ considerably from the initial strategies currently under evaluation in Phase II. Specific aspects of these initially proposed strategies may be dropped, carried forward or combined in different ways, depending on the results of the analyses conducted during Phase II. The study is guided by a Purpose and Need Statement, which articulates that the study is to identify transportation and related land use strategies that enhance economic development opportunities and preserve and improve the regional transportation system. Additional information on the study, including the full Purpose and Need Statement, is available at the project website: www.connectingyorkcounty.org. -
Healthy Street Pilot Projects
ANN ARBOR HEALTHY STREET PILOT PROJECTS Summary of Findings January 14, 2021 Prepared by SmithGroup 1 HEALTHY STREET PILOT PROJECTS City Council passed R-20-158 “Resolution to Promote Safe Social Distancing Outdoors in Ann Arbor” on May 4, 2020. This resolution directed staff to (among other things) “develop recommendations and implementation strategies on comprehensive lane or street re-configurations (and report as soon as possible concerning these recommendations and strategies), including the possible cost of such options, the research conducted, and public input received, and other relevant data.” In response to this directive, City and Downtown Development Authority (DDA) staff gave a presentation on recommendations on June 15, 2020 along with two accompanying resolutions: “Resolution to Advance Healthy Streets in Downtown” and “Resolution to Advance Healthy Streets Outside Downtown.” These resolutions were passed by City Council on July 6, 2020. On August 27th the Ann Arbor DDA and the City of Ann Arbor began installing a series of healthy street pilot projects in the downtown area to provide space for safe physical distancing for bicycle and pedestrian travel. These projects, with the approval of City Council, reconfigured traffic lanes to accommodate temporary pedestrian and bicycle facilities, such as non-motorized travel lanes, two-way bikeways, and separated bike lanes. The pilot projects discussed in this report include the following locations: • Miller/Catherine Bikeway (from 1st Street to Division) • Division Street/Broadway Bikeway (from Packard to Maiden Lane) • S. Main Separated Bike Lanes (from William to Stadium) • State & North University Bikeway (from William Street to Thayer) • Packard Bike Lanes (from State to Hill) • East Packard Project (from Platt to Eisenhower) The pilot projects were designed and implemented in alignment with national guidance, City policies and plans, and the DDA’s adopted values for the People-Friendly Streets program. -
Matakana Link Road Public Consultation Feedback
Matakana link road Public Consultation Feedback Report – July 2017 AT.govt.nz Contents 1. Background ................................................................................................................. 5 1.1 Project Development ..................................................................................... 5 1.2 Public Consultation ....................................................................................... 6 2. Feedback Received ..................................................................................................... 8 Question 1 – Which option do you prefer? ................................................................... 9 Question 4 – How would you use the road? .................................................................. 9 Questions 2, 3, 5 & 6 – Issues and Constraints (Key themes identified) ................... 10 3. Next Steps ................................................................................................................. 22 4. Conclusion................................................................................................................. 22 5. Appendix A. Consultation feedback ........................................................................ 23 2 Executive Summary In April 2017, Auckland Transport (AT) sought public feedback on the four short-listed options for the proposed Matakana Link Road. Feedback on the short-listed options was invited from 26 April to 20 May 2017. Submitters were asked to identify their preferred route option (see map