Brocade Product and Launch Messaging and POSITIONING Template

Total Page:16

File Type:pdf, Size:1020Kb

Brocade Product and Launch Messaging and POSITIONING Template FIBRE CHANNEL AND ETHERNET ROADMAPS Scott Kipp [email protected] August 2014 14-273v0 1 DISCLAIMER The views expressed in this presentation are the views of the presenter and not of the Ethernet Alliance. 2 Data Center Roadmaps Don’t know your past, don’t know your future… • This presentation will look at historical speeds for Fibre Channel and Ethernet and show trends that will help us predict the future • Speeds are getting harder to double: • Physics is getting in the way – attenuation is higher at high frequencies • Cost is paramount • Leveraging telecom speeds is more challenging • Amazing innovations still to come… 8/5/2014 3 6 Generations of Fibre Channel Doubling the Speed as Needed - before 2012… Generation 1st Gen 2nd Gen 3rd Gen 4th Gen 5th Gen 6th Gen Electrical / 1GFC / 2GFC / 4GFC / 8GFC / 16GFC / 32GFC / Optical GBIC/ SFP SFP SFP+ SFP+ SFP+ Module SFP Electrical 1 lane at 1 lane at 1 lane at 1 lane at 1 lane at 1 lane at Speeds(Gbps) 1.0625 2.125 4.25 8.5 14.025 28.05 Encoding 8b/10b 8b/10b 8b/10b 8b/10b 64b/66b 64b/66b Availability 1997 2001 2006 2008 2011 2016 GBIC SFP / SFP+ Presentation Title Month ##, 200# Future Generations of Fibre Channel Serial and Parallel Generation 6th Gen 7th Gen 8th Gen Electrical / Optical 32GFC and 64GFC and 128GFC and Module 128GFC /SFP+ 256GFC /SFP+ 512GFC /SFP+ and QSFP28 and QSFP56 and QSFP112 Electrical Speeds (Gbps) 1 lane of 28.05 1 lanes of 56.1 1 lane of 112.2 4 lanes at 28.05 4 lanes at 56.1 4 lanes at 112.2 Serial Fibre Channel SFP+ Parallel Fibre Channel QSFP28 QSFP56 QSFP112 128GFC Overview Month ##, 200# Fibre Channel Speeds 1995-2020 512GFC 4X112.2? 256GFC 4X56.1 128GFC 128GFC 4X28.05 ?G 100G 64GFC 56.1G 32GFC 28.05G 16GFC 14.025G 2X/4 Years 8GFC = 17%/year 10G 8.5G 1.65X/3 Years 4GFC = 18%/year Line Rate (b/s) Line Rate 4.25G 2X/3 Years = 26%/year 2GFC 2.125G 1GFC 2X/3 Years 1.0625G = 26%/year 1G 1995 2000 2005 2010 2015 2020 Standard Completed 8/5/2014 6 Ethernet Speedmap • The Ethernet Alliance Roadmap Subcommittee approved this roadmap • http://www.ethernetalliance.org/subcommittees/roadmap- subcommittee/ Name Speed Date Standard Ratified 31 Years since 10Mb/s Ethernet 10 Mb/s 1983 first Ethernet 100Mb/s Ethernet 100Mb/s 1995 Standard! Gigabit Ethernet 1 Gb/s 1998 10 Gigabit Ethernet 10 Gb/s 2002 40 Gigabit Ethernet 40 Gb/s 2010 100 Gigabit Ethernet 100 Gb/s 2010 400 Gigabit Ethernet 400 Gb/s 2017(Estimate) Generations of 10GbE Fractured Market Until SFP+ Took Over Generation 1st Gen 2nd Gen 3rd Gen 4th Gen 5th Gen Optical Module 300 Pin XENPAK/XP XFP SFP+ QSFP+ MSA AK/X2 (Retimed) (Unretimed) Electrical 16 lanes 4 lane at 1 lane at 1 lane at 4 lanes at Speeds (Gbps) at 0.644 3.125 10.3125 10.3125 10.3125 Encoding 8b/10b 8b/10b 64b/66b 64b/66b 64b/66b Availability 2001 2002 2005 2009 2011 XFP SFP+ QSFP28 300 Pin MSA XENPAK XPAK/X2 Presentation Title Month ##, 200# Ethernet Speeds - Linear Key: 400GbE Ethernet 400G Speeds 300G 200G Speed (b/s) Speed 100GbE 100G 50GbE? 100 Mb/s 10GbE 40GbE Ethernet GbE 25GbE 0 1990 2000 2010 2020 Standard Completed Generations of 40GbE QSFP+ Selling well now and shift to SFP+ coming Generation 1st Gen 2nd Gen 3rd Gen Optical Module QSFP+ SFP+ QSFP40? (Retimed) Electrical Speeds 4 lanes at 1 lane at 40G? 4 lanes of 40G (Gbps) 10.3.125 Encoding 8b/10b 64b/66b 64b/66b Availability 2011 2017? 2017? QSFP28 SFP+ QSFP40 Presentation Title Month ##, 200# Generations of 100GbE Early Stages of 100GbE Still Generation 1st Gen 1.5 Gen 2nd Gen 3rd Gen Optical Module CFP CFP2/CPAK QSFP28 CFP4 XFP/ SFP+ Electrical CAUI–10 CAUI-10 and CAUI-4 CAUI-4 CAUI-1 Interface (Gb/s) 10 lanes of CAUI-4 4 lane at 4 lane at 1 lane at retimed 10.3G 4 lane at 25.8 25.8 100 25.8G Standard 2010 2013 2013 2014 2024? Availability XFP CPAK CFP2 QSFP28 CFP4 SFP+ CFP Presentation Title Month ##, 200# Generations of 400GbE Formative Stages of 400GbE Generation 1st Gen 2nd Gen 3rd Gen Optical Module CDFP CFP2 QSFP28/CFP4 Electrical Interface CDAUI–16 CDAUI-8 CDAUI-4 (Gb/s) 16 lanes of 8 lane at 51G 4 lane at 100G 25.78G Standard 2017 2017 2020+ Availability CFP2 QSFP28 CFP4 CDFP Presentation Title Month ##, 200# Terabit Ethernet Timing When will Terabit Speeds be standardized? 1T 400G 400GbE 4X/7 Years 100G 100GbE = 22%/year 10X/8 Years 10GbE = 33%/year 10G 10X/4 Years Speed (b/s) Speed = 78%/year GbE 1G 10X/3 Years 100 Mb/s = 116%/year Ethernet 100M 1990 2000 2010 2020 2030 Standard Completed Electrical Interface Speeds 100G When will the next 802.3bj standardizes electrical speeds come? 4X25Gb/s in 2014 XFP MSA Will 50GbE happen? standardizes 10Gb/s in 2005 2.5X/9 Years 10G = 11%/year 10X/7 Years Gigabit Ethernet standardizes 1 = 39%/year Gb/s in 1998 1G Fast Ethernet standardizes 10X/3 Years 100 Mb/s in = 116%/year 1998 Electrical Signaling (b/s) Speed 100M 1990 2000 2010 2020 2030 Standard Completed 100G Serial – Electrical Interface Speeds The Holy Grail of Fiber Optics 100G 75G 40GbE serial could use Advanced Modulation like 40 50 Gb/s via PAM-4 (25 Gb/s PAM-4 (20 Gsamples/s) Gsamples/s) or 50G NRZ could 50G could be standardized relatively be used for 400GbE (8X50G) quickly Likely curve with 802.3bj standardizes only improved 4X25Gb/s in 2014 XFP MSA semiconductor 25G standardizes processes - 10Gb/s in 2005 Moore’s Law Electrical (b/s) Lane Speed 20 Gbaud signaling 0G 2000 2010 2020 2030 Standard Completed Faster Speeds at a Slower Rate • Fibre Channel keeps marching on at 2X jumps every 3-4 years • Ethernet speed jumps will be 2-4X, not 10X • New speeds like 2.5G and 5G are coming for campus environments 100G SFP+ • Ethernet expanding into new 1G markets such as automotive and PoE • 100G SFP+ is the Holy Grail that will require significant investment to accomplish 8/5/2014 16 THANK YOU 17 .
Recommended publications
  • Information Specification ** INF-8474I Rev 3.0 Xenpak 10
    ** Information Specification ** INF-8474i Rev 3.0 SFF Committee documentation may be purchased in hard copy or electronic form SFF specifications are available at ftp://ftp.seagate.com/sff SFF Committee INF-8474i Specification for Xenpak 10 Gigabit Ethernet Transceiver Rev 3.0 September 18 2002 Secretariat: SFF Committee Abstract: This specification describes the Xenpak 10 Gigabit Ethernet Transceiver. It was developed by the MSA (Multiple Source Agreement) group in which the following companies participated: Agilent Technologies Mitsubishi Electric Blaze Network Products Molex ExceLight NEC Extreme Networks OpNext Finisar Optillion Hitachi Cable PicoLight Ignis Optics Stratos Lightwave Infineon Technologies Tyco Electronics JDS Uniphase Vitesse Semiconductor Luminent This Information Specification was not developed or endorsed by the SFF Committee but was submitted for distribution on the basis that it is of interest to the storage industry. The copyright on the contents remains with the contributor. Contributors are not required to abide by the SFF patent policy. Readers are advised of the possibility that there may be patent issues associated with an implementation which relies upon the contents of an 'i' specification. SFF accepts no responsibility for the validity of the contents. POINTS OF CONTACT: Dan Rausch I. Dal Allan Technical Editor Chairman SFF Committee Avago Technologies 14426 Black Walnut Court 350 West Trimble Rd Saratoga San Jose CA 95131 CA 95070 408-435-6689 408-867-6630 [email protected] [email protected] Xenpak 10 Gigabit Ethernet Transceiver Page 1 ** Information Specification ** INF-8474i Rev 3.0 EXPRESSION OF SUPPORT BY MANUFACTURERS The following member companies of the SFF Committee voted in favor of this industry specification.
    [Show full text]
  • 10G EPON- Unleashing the Bandwidth Potential White Papers
    www.zte.com.cn 10G EPON- Unleashing the Bandwidth Potential White Papers Product Type Technical Description Version Date Author Approved By Remarks Sameer V1.00 00-0-4 Ashfaq Not open to the Third Party Malik © 00 ZTE Corporation. All rights reserved. ZTE CONFIDENTIAL: This document contains proprietary information of ZTE and is not to be disclosed or used without the prior written permission of ZTE. Due to update and improvement of ZTE products and technologies, information in this document is subjected to change without notice. White Papers Content TABLE OF CONTENTS 1 Abstract………………………………………………………………………………………1 2 Introduction…………………………………………………………………………………1 3 IEEE 802.3av 10Gbit/s Ethernet-based PON (10G EPON) ……………………………2 4 Standardization Timeline…………………………………………………………………3 4.1 10 G EPON Co-existence with 1G EPON…………………………………………………4 5 Power Budget………………………………………………………………………………5 6 10G EPON Optical Spectrum Allocation…………………………………………………6 7 Forward Error Correction (FEC)…………………………………………………………6 8 Dynamic Bandwidth Allocation (DBA)…………………………………………………6 9 10G Convergence……………………………………………………………………………7 10 10G EPON Industrial Chain………………………………………………………………7 11 Conclusion……………………………………………………………………………………8 FIGURES Figure 1 10G EPON protocol stack…………………………………………………………… Figure 2 shows the 10G EPON protocol schedule.…………………………………………… Figure 3 10G and 1G EPON co-existence……………………………………………………4 Figure 4 10G EPON Wavelength Allocation Chart……………………………………………6 Figure 5 Convergences at 10G…………………………………………………………………7 TABLES Table 1 Major Milestones in 10G EPON Study Group……………………………………… Table 2 Power Budget Explanation………………………………………………………………5 White Papers 1 Abstract For the first time in history, we can now aim to live in “ One World” , because the 1st century has ushered in a new era in man’ s ongoing quest for a better life and a better world. Telco industry is passing through a phase of multiservice revolution, with a shift from legacy to next generation networks and the introduction of new and advanced services (e.g.
    [Show full text]
  • Transceiver Product Guide
    PUBLIC_REV2017_N Transceiver Product Guide TRANSCEIVER PRODUCT GUIDE Skylaneoptics.com Transceivers for Datacom and Telecom Applications Skylane Optics is a leading provider of transceivers for optical communication. We offer an extensive portfolio for the enterprise, access, and metropolitan fiber optical market. The offerings provided by Skylane Optics are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions solving existing and future capacity needs. Solutions Data Center Optimized fiber optic solution for Data Center Application FTTH Broad Product Portfoloio and Technology for FTTH Broadband Networks Wireless Enabling Rapid Expnsion of Mobile Broadband Enterprise - Campus We provides the enterprise network market with the most comprehensive product combinations TRANSCEIVER PRODUCT GUIDE P01 Products Our Engineering and Logistics Center > Inventory, logistics, programming and quality > control based in Fraire, Belgium > IQC [Incoming Quality Control] and OQC > [Outgoing Quality Control] > 100% optimized for handling of transceivers > SD [ANSI/ESD S20.20] compliant > Clean room environment; class 100K > Traceability > High Capacity Our Laboratory > Lab, based in Fraire, Belgium > Technical support > RMA handling > Qualification tests: > - Measure performance over the temperature range to verify compliance with standards > - Compliance with standards (IEEE, IEC, MSA) > - Power consumption > - Eye diagram > - Sensitivity > - Wavelength TRANSCEIVER PRODUCT GUIDE P02 Why Skylane Optics ? Innovations for Early Adopters Quality & Assurance Customization The manufacturing environment is strictly We have cutting-edge test equipment to Due to our high experienced engineers, compliant to most avanced standard, which ensure we supply high quality products. we are enable to modify the hardware and ensure long term reliability. software of the transceivers.
    [Show full text]
  • Hankins-100-Gbe-And-Beyond.Pdf
    100 GBE AND BEYOND Greg Hankins <[email protected]> NANOG52 Diagram courtesy of the CFP MSA. NANOG52 2011/06/14 Agenda and What’s Covered in This Presentation • Ethernet interface technology • Overview • 28 Gbps Common Electrical Interfaces (CEI) • New 100 Gbps Media Modules • 100 GbE Developments • Beyond 100 GbE… • Optical technology developments are intentionally left out • Go see Drew Perkins’ talk tomorrow morning: “Dawn of the Terabit Age: Scaling Optical Capacity to Meet Internet Demand” • Skipping router packet processing, lookup capabilities and memory architectures • Wire-speed 100 GbE is ~149 Mpps, or one packet every 6.7 ns at 64 byte frames • Maybe a topic for the next NANOG? 2 Standards Organizations and You, Revisited Name Primary Role (in Context of this Presentation) Primary Players Customers Buy Your Services You Run Networks Hardware Vendors Make Equipment Hardware Vendors, Ethernet Service Definitions, Standards and Certification Network Operators Hardware Vendors, Higher Layer Protocol Standards Network Operators Ethernet Standards (802.1, 802.3) Component and Fibre Channel Standards (T11) Hardware Vendors Telecom Standards (SG15) Component and Optical Module Standards Hardware Vendors, Network Operators SFF Component and Media Module Standards Committee Hardware Vendors Component and Component Interface Standards Hardware Vendors Current State of the Industry • There is already demand for other interfaces beyond the scope of IEEE 802.3ba (June 2010) • Standard defines a flexible architecture that enables many
    [Show full text]
  • Scott Kipp, Ethernet Alliance President
    AN ETHERNET ROADMAP Scott Kipp [email protected] March 2013 1 THE VIEWS EXPRESSED IN THIS PRESENTATION ARE BROCADE VIEWS AND SHOULD NOT BE CONSIDERED THE VIEWS OR POSITIONS OF THE ETHERNET ALLIANCE. This presentation is being given to work toward having a position for the Ethernet Alliance 2 Ethernet Roadmap • The IEEE defines Ethernet standards and does not release a roadmap for future standards • The industry does not have a good understanding of how Ethernet was developed or where it is headed • This presentation will look at past Ethernet developments to give a better understanding of where Ethernet will likely go in the future • The emphasis of this presentation is on high-speed optical interfaces • BASE-T and Backplane not covered 3 Gigabit Optical Modules and Speeds Key: Ethernet Speed 100G GBIC SFP 40G SC LC connector connector 10G Acronyms: 8GFC GBIC = GigaBit 4GFC Interface Converter SFP – Small Form 2GFC factor Pluggable Data Rate and Line Rate (b/s) and Line Rate Data Rate 1GFC GbE GFC – Gigabit Fiber 1G Channel GbE – Gigabit 1995 2000 2005 2010 2015 Ethernet Standard Completed 3/19/2013 4 Who Uses Gigabit Fiber in Data Centers? This is limited to Switching and not Routing Fibre Channel is >95% optics Ethernet is > 95% copper Gigabit Ethernet Switch Port Shimpents (000s) Source: Dell’Oro Ethernet Switch Layer 2+3 Report Five Year Forecast, 2013-2017 3/19/2013 5 Got Copper? 3/19/2013 6 3/19/2013 7 10-100 Gigabit Optical Modules and Speeds Key: Parallel Ethernet Speed QSFP+ Optics Fibre Channel 100G MPO Speed Connector InfiniBand
    [Show full text]
  • 40 and 100 Gigabit Ethernet: an Imminent Reality
    WHITE PAPER 40 and 100 Gigabit Ethernet: An Imminent Reality 40 and 100 Gigabit Ethernet: An Imminent Reality Many of today’s data centers are running 10 Gigabit Ethernet (GbE) over both optical fiber and balanced twisted-pair copper cabling in their backbone infrastructure where large numbers of gigabit links aggregate at core devices. As more edge devices; like servers and storage equipment, continue to move to 10 GbE, the next natural progression is for the network core to require even faster connections within the data center. Fortunately, there is a solution that is now an imminent reality. Standards have been in development since 2008, and the Institute of Electrical and Electronics Engineers (IEEE) will soon release the 802.3ba standard that will support data rates for 40 and 100 GbE over optical fiber cabling. Both cable and connectivity solutions capable of supporting these speeds already exist, and vendors are in the process of developing active equipment. Now is the time to migrate data center cabling infrastructures to support this imminent technology. 40 and 100 Gigabit Ethernet: An Imminent Reality Key Market Drivers 100 90 From storage and IP traffic growth to the advancement 35% CAGR in Storage Capacity of technology across many market sectors, the drivers 80 that moved data transmission speeds from 1 GbE to 68 10 GbE over the past decade are now expanding as 60 forecasted, creating the need for 40 and 100 GbE. 49 Petabytes 40 37 10 GbE Growth 28 20 20 While the global Ethernet switch market experienced overall decline in 2009, the migration from 1 to 10 0 GbE continued in data centers across the world.
    [Show full text]
  • Optical Networking and Photonics Technology Players Based Locally and the Would-Be Players from Abroad, Both in the Private and Public Sectors
    Table Of Contents TABLE OF CONTENTS ACKNOWLEDGEMENTS...................................................................................................................... III EXECUTIVE SUMMARY..........................................................................................................................V 1 INTRODUCTION...............................................................................................................................1 1.1 OBJECTIVE ......................................................................................................................................... 1 1.2 DRIVERS FOR NEXT GENERATION OPTICAL NETWORKS ....................................................................................... 2 1.3 CHALLENGES & BENEFITS FOR NETWORK OPERATORS ........................................................................................ 3 2 NEXT GENERATION OPTICAL NETWORKS.......................................................................................5 2.1 ATTRIBUTES OF THE DIFFERENT NETWORK SEGMENTS........................................................................................ 5 2.1.1 Long-Haul Network...................................................................................................................................5 2.1.2 Metropolitan Area Network........................................................................................................................7 2.1.3 Access Network........................................................................................................................................8
    [Show full text]
  • Optic Modules Datasheet
    Data Sheet Optic Modules Product Description Juniper Networks® has platforms ranging from the Juniper Networks CTP Series Circuit to datasheet is intended to guide the user through the various options available when choosing an Packet Platforms, BX Series Multi-Access Gateways, E Series Broadband Services Routers, M optic module for a given platform depending on the architecture. Series Multiservice Edge Routers, MX Series 3D Universal Edge Routers, to the T Series Core Features and Benefits Routers. These platforms support multiple interface types and technologies such as Ethernet, ATM, and SONET. Depending on the deployment scenario, they support different pluggable The following table lists the different pluggable optic modules and supported platforms, along optic modules that can be selected based on distance, form factor, and wavelength. This with the technical specifications for each. Table 1: Optic Modules Matrix Interface Form l (TX) l (RX) Max SKU Description Platforms Standard Media Cable Type Factor (nm) (nm) Reach CTP-SFP-1GE-LX Small form-factor pluggable (SFP) CTP2008, CTP2024, and GbE SFP 1000BASE-LX 1310 SMF 9/125 10 km 1000BASE-LX Gigabit Ethernet optic module. CTP2056 MMF 50/125 550 m 62.5/125 550 m CTP-SFP-1GE-SX SFP 1000BASE-SX Gigabit Ethernet optic CTP 2008, CTP2024, and GbE SFP 1000BASE-SX 850 MMF 50/125 550 m module. CTP2056 62.5/125 275 m CTP-SFP-1GE-T SFP 1000BASE-T Gigabit Ethernet module CTP 2008, CTP2024, and GbE SFP 1000BASE-T Copper 4 twisted 100 m (uses Cat 5 cable). CTP2056 pair, Category 5 shielded RX-10KM-SFP 1-port 10 km GbE SFP adapter: provides E120, E320, ERX310, GbE SFP 1000BASE-LX 1310 SMF 9/125 10 km (1) SFP Gigabit Ethernet single-mode (10 ERX705, ERX710, ERX1410, km) physical port with an LC full duplex ERX1440 connection.
    [Show full text]
  • Modern Ethernet
    Color profile: Generic CMYK printer profile Composite Default screen All-In-One / Network+ Certification All-in-One Exam Guide / Meyers / 225345-2 / Chapter 6 CHAPTER Modern Ethernet 6 The Network+ Certification exam expects you to know how to • 1.2 Specify the main features of 802.2 (Logical Link Control) [and] 802.3 (Ethernet): speed, access method, topology, media • 1.3 Specify the characteristics (for example: speed, length, topology, and cable type) of the following cable standards: 10BaseT and 10BaseFL; 100BaseTX and 100BaseFX; 1000BaseTX, 1000BaseCX, 1000BaseSX, and 1000BaseLX; 10GBaseSR, 10GBaseLR, and 10GBaseER • 1.4 Recognize the following media connectors and describe their uses: RJ-11, RJ-45, F-type, ST,SC, IEEE 1394, LC, MTRJ • 1.6 Identify the purposes, features, and functions of the following network components: hubs, switches • 2.3 Identify the OSI layers at which the following network components operate: hubs, switches To achieve these goals, you must be able to • Define the characteristics, cabling, and connectors used in 10BaseT and 10BaseFL • Explain how to connect multiple Ethernet segments • Define the characteristics, cabling, and connectors used with 100Base and Gigabit Ethernet Historical/Conceptual The first generation of Ethernet network technologies enjoyed substantial adoption in the networking world, but their bus topology continued to be their Achilles’ heel—a sin- gle break anywhere on the bus completely shut down an entire network. In the mid- 1980s, IBM unveiled a competing network technology called Token Ring. You’ll get the complete discussion of Token Ring in the next chapter, but it’s enough for now to say that Token Ring used a physical star topology.
    [Show full text]
  • 10G-EPON Standardization and Its Development Status
    © 2009 OSA/OFC/NFOEC 2009 NThC4.pdf 10G-EPON Standardization and Its Development Status Keiji Tanaka KDDI R&D Laboratories Inc. [email protected] Outline 1. Background and motivation 2. IEEE 802.3av standardization 3. Research activities 4. Development status 5. Summary ᵐ K.Tanaka, OFC/NFOEC 2009, Mar. 23-26, 2009 All Rights Reserved © 2009 KDDI, Tokyo 978-1-55752-865-0/09/$25.00 ©2009 IEEE 1 Outline 1. Background and motivation (a) FTTH growth in Japan (b) FTTH systems (c) Why 10G-EPON necessary? (d) When 10G-EPON feasible? 2. IEEE 802.3av standardization 3. Research activities 4. Development status 5. Summary ᵑ K.Tanaka, OFC/NFOEC 2009, Mar. 23-26, 2009 All Rights Reserved © 2009 KDDI, Tokyo FTTH growth in Japan The number of FTTH lines, more than 13 million at the end of Sep. 2008, exceeded the number of DSL lines in 2Q/2008. 20 Shifted to decrease StatisticsStatistics asas ofof Sep.Sep. 20082008 DSL 15 $ Number of lines: FTTH: 13.8 M DSL: 12.0 M FTTH CATV: 4.0 M 10 (Mobile: 92.0 M) $ Number of operators: FTTH: 171 5 CATV DSL: 47 CATV: 381 Number of broadband users [Million] 0 ‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 Year Source: Ministry of Internal Affairs and Communications statistics database ᵒ K.Tanaka, OFC/NFOEC 2009, Mar. 23-26, 2009 All Rights Reserved © 2009 KDDI, Tokyo 2 Flavors of FTTH systems High WDM-PON Apartment Data rate SS (Bandwidth) TDM-PON VDSL Efficiency High DSLAM Optical access system VDSL CPE 100Mbit/s CO or Residential house SS 1Gbit/s Media converter Single star Media converter Media converter Power Power splitter splitter Optical fiber PON Passive double star PON-OLT Power splitter PON topology is suitable for accommodating a lot of users and distributing broadcasting video services.
    [Show full text]
  • XAUI V12.3 Logicore IP Product Guide (PG053)
    XAUI v12.3 LogiCOREDiscontinued IP Product Guide Vivado Design Suite PG053 December 5, 2018 NOTICE: This is the last release of this IP solution. While supported for Vivado® Design Suite 2018.3, this core will not be supported in the future releases. For more information, see AR 71454. IP Table of Contents IP Facts ChapterDiscontinued 1: Overview Additional Features . 6 About the Core. 6 Recommended Design Experience . 7 Applications . 7 Licensing and Ordering . 8 Feedback. 8 Chapter 2: Product Specification Standards Compliance . 10 Performance. 10 Resource Utilization. 11 Verification. 11 Port Descriptions . 12 Register Space . 30 Chapter 3: Designing with the Core General Design Guidelines . 63 Shared Logic . 64 Clocking: UltraScale Architecture . 65 Clocking: Zynq-7000, Virtex-7, Artix-7, and Kintex-7 Devices. .IP . 70 Multiple Core Instances. 77 Reset Circuits . 77 Receiver Termination: Virtex-7 and Kintex-7 FPGAs . 77 Transmit Skew . 77 Data Interface: Internal XGMII Interfaces . 78 Interfacing to the Transmit Client Interface. 79 Interfacing to the Receive Client Interface. 80 Configuration and Status Interfaces . 81 MDIO Interface. 81 Configuration and Status Vectors . 85 Debug Port . 87 XAUI v12.3 Product Guide Send Feedback 2 PG053 December 5, 2018 www.xilinx.com Chapter 4: Design Flow Steps Customizing and Generating the Core . 88 Output Generation. 92 Constraining the Core . 93 Simulation . 95 Synthesis and Implementation . 95 Chapter 5: Example Design ChapterDiscontinued 6: Test Bench Appendix A: Verification and Interoperability Simulation . 102 Hardware Testing. 102 Appendix B: Upgrading Device Migration . 103 Migrating to the Vivado Design Suite. 103 Upgrading in the Vivado Design Suite . 103 Appendix C: Debugging Designs Finding Help on xilinx.com .
    [Show full text]
  • DATA CENTER BANDWIDTH SCENARIOS Scott Kipp [email protected] March 2014
    DATA CENTER BANDWIDTH SCENARIOS Scott Kipp [email protected] March 2014 1 Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance. 2 From Applications to Data Centers • Applications, servers, storage, networks and data centers have varied compute, bandwidth and availability requirements • Intel has 150 different processors for server market • Servers vary from <1/10U to multiple racks • Switch ports range from 100 Mb/s to 100 Gb/s • Storage devices vary from 10GB to 100s of Petabytes • 100 servers to 100,000 servers in a data center • Because of the varied requirements and capabilities, it is difficult to talk about anything specific without losing something • I’ll try anyway… 4/4/2014 3 Starting with Servers Multiple Server Categories • Microservers • Blade Servers 95% of Volume, Cray X-ES – 46 Microservers • <1U Servers Not revenue • 1-2U Servers • 4-12U Servers • Rack and multi-rack Servers IBM Mainframe 4/4/2014 4 Bandwidth Requirements of Servers ~10M servers ship every year, >95% are x86 GbE 10GbE 40GbE 100GbE 10M Servers Servers Servers Servers Servers that need less than 4Gb/s use Mega- multiple GbE NICs Data 5M # Serversof Server Center Server Bandwidth Bump Bandwidth Demand Demand in in 2014 2019 0 100M 1G 4G 10G 40G 100G Source: Multiple Bandwidth per Server (b/s) Sources and Estimates 4/4/2014 5 10GbE and 40GbE Server Ports 10GBASE-T will Most 10GbE Servers continue to ramp but 40GbE servers will connect with SFP+ or not used in
    [Show full text]