Lecture 4: Processes

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 4: Processes Lecture 4: Processes Fall 2018 Jason Tang Slides based upon Operating System Concept slides, http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html Copyright Silberschatz, Galvin, and Gagne, 2013 "1 Topics • Process Concept! • Process Lifecycle! • Scheduling! • Process Creation and Termination "2 Process Concept • An OS executes processes (programs in execution)! • Text section: executable code! • Program counter and processor registers: current state of CPU! • Stack: function parameters, return addresses, local variables! • Heap: dynamically allocated variables! • Data section: global variables "3 Process Concept • Program is passive, stored as an executable file on disk, while a process is active! • Program becomes a process when executable file loaded into memory! • Execution of program begins with a double-click, tap an app, etc.! • Single program can cause several processes! • Such as by multiple users executing the same program "4 Process Memory Layout For most operating systems and CPUs, stack grows downwards (towards address 0). "5 Process Lifecycle • A process transitions through several states during its lifetime! • New: process is being created, memory allocated and initialized! • Running: process is using the CPU to execute instructions! • Waiting: OS has suspended process because it is waiting for I/O, timer, or some other event to occur! • Ready: process has all necessary resources, but something else is occupying CPU currently! • Terminated: process has finished execution; OS is cleaning it up "6 Process Lifecycle "7 Process Control Block • OS represents each process within a Process Control Block (PCB) (also known as a task)! • Process state! • Unique process identifier! • Program counter! • Scheduling information - task priority! • Memory management - memory allocated to process "8 Process Control Block • Accounting information - CPU time spent, time elapsed! • I/O status - list of open files, network connections! • Security information - owner of process! • CPU registers - copy of registers when process is suspended "9 CPU Switch from Process to Process "10 Threads • A process with multiple program counters, one per thread! • Threads may be simultaneously executing on multiprocessor system! • PCB contains separate sections for each thread "11 Processes in Linux • Represented by C structure task_struct struct task_struct { … /* -1 unrunnable, 0 runnable, >0 stopped: */ volatile long state; /* * This begins the randomizable portion of task_struct. Only * scheduling-critical items should be added above here. */ randomized_struct_fields_start void *stack; atomic_t usage; /* Per task flags (PF_*), defined further below: */ unsigned int flags; unsigned int ptrace; … /* Filesystem information: */ struct fs_struct *fs; /* Open file information: */ struct files_struct *files; … } From include/linux/sched.h "12 Process Scheduling • While one process is waiting, OS runs another process! • Process scheduler: mechanism for how OS chooses which ready process to run next! • Scheduling queue: queues of processes, categorized by process state! • Job queue: set of all processes in system! • Ready queue: processes waiting to execute! • Device queue: processes waiting for I/O to finish "13 Process Scheduling • Queueing diagram represents queues, resources, flows "14 Schedulers • Short-term scheduler (or CPU scheduler) - selects which ready process to execute next! • Invoked frequently (every few milliseconds / microseconds)! • Invoked after handling an interrupt or a system call! • Long-term scheduler (or job scheduler) - selects which processes to bring into ready queue, used for batch processing! • Invoked infrequently (every few seconds or even minutes)! • Not present in all operating systems "15 Schedulers • Medium-term scheduler - moves suspended processes from main memory to secondary storage (swap out), or vice versa (swap in)! • Sometimes combined with long-term scheduler "16 Choosing Scheduling Algorithms • Generally, processes are of one type or another:! • I/O-bound - spends majority of time waiting for I/O or user interaction; many short CPU bursts, followed by long waiting times! • CPU-bound - spends majority of time performing calculations; few but long CPU bursts! • Schedulers must balance time spent running CPU-bound processes with interactiveness expected by I/O-bound processes "17 Context Switch • Context switch: when CPU switches to another process, it saves state of original process (registers, program counter) to main memory, and then loads from memory the new process’s state (registers, program counters)! • Context of process represented by its PCB! • During a context switch, system is not doing any useful work! • Time to make context switch based upon hardware; some architectures faster than others! • More complex OSes have more complex context switches! • Larger context switch means slower computer response time "18 Process Creation • Parent process creates child processes, which create grandchild processes, forming a process tree! • Each process has a unique process identifier (PID)! • Resource sharing options:! • Parent and children share all resources, or children share subset, or children share no resources! • Execution options:! • Parent and children execute concurrently, or parent waits for children to terminate "19 Example Linux Process Tree $ pstree -h -p -G systemd(1)!"!ModemManager(344)!"!{ModemManager}(373) # $!{ModemManager}(377) %!NetworkManager(340)!"!dhclient(12487) # %!{NetworkManager}(413) # $!{NetworkManager}(416) … %!systemd(483)!"!(sd-pam)(484) # %!at-spi-bus-laun(733)!"!dbus-daemon(738) # # %!{at-spi-bus-laun}(734) # # %!{at-spi-bus-laun}(735) # # $!{at-spi-bus-laun}(736) … # %!gnome-shell-cal(813)!"!{gnome-shell-cal}(814) # # %!{gnome-shell-cal}(816) # # %!{gnome-shell-cal}(827) # # %!{gnome-shell-cal}(828) # # $!{gnome-shell-cal}(1036) # %!gnome-terminal-(1277)!"!bash(1299)!!!pstree(28960) "20 Unix Process Creation • Typical pattern is fork() and then exec()! • fork - OS creates child process, that is duplicate of parent’s PCB! • Child PCB gains its own PID, and starts running at the parent’s PC! • execute - OS then replaces the memory space (text and data sections) with new program "21 Example Fork/Exec Pattern (Unix) #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> int main(void) { pid_t pid = fork(); if (pid < 0) { // error occurred fprintf(stderr, "fork failed\n"); exit(EXIT_FAILURE); } else if (pid == 0) { // child process execlp("/bin/ls", "ls", NULL); fprintf(stderr, "exec failed\n"); exit(EXIT_FAILURE); } // parent process waitpid(pid, NULL, 0); printf("Child process done\n"); exit(EXIT_SUCCESS); } "22 Process Termination • Process ends when it executes last statement, it prematurely quits (such as exit() function), or some other process forcibly terminates it (such as by sending it a kill() signal)! • OS stores return status data from child, so that parent can retrieve it later (via wait() or equivalent)! • OS releases the rest of process’s resources! • Closes files, deallocates memory, other cleanup activities! • In Linux, this process becomes a zombie until parent reaps the return value "23 Process Termination • For some OSes, if a parent process terminates, the OS will automatically terminate its child processes (and recursively grandchildren, etc.)! • For other OSes, a parent can terminate without causing this cascading termination! • If a parent terminates without reaping its children, those child process become orphans! • In Linux, the init process (typically PID 1) becomes the orphans’ new parent "24.
Recommended publications
  • Technical Evaluation and Legal Opinion of Warden: a Network Forensics Tool, Version 1.0 Author(S): Rod Yazdan, Newton Mccollum, Jennifer Ockerman, Ph.D
    NCJRS O FFICE OF JU STI CE PR OG RAM Se ~ N ATIONAL C RIMINAL JUSTICE REFERENCE SERVICE QJA BJS N/J OJJF OVC SMART '~ ..) The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource: Document Title: Technical Evaluation and Legal Opinion of Warden: A Network Forensics Tool, Version 1.0 Author(s): Rod Yazdan, Newton McCollum, Jennifer Ockerman, Ph.D. Document Number: 252944 Date Received: May 2019 Award Number: 2013-MU-CX-K111 This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs’ National Criminal Justice Reference Service. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. nl JOHNS HOPKINS ..APPLIED PHYSICS LABORATORY 11100 Johns Hopkins Road • Laurel, Maryland 20723-6099 AOS-18-1223 NIJ RT&E Center Project 15WA October 2018 TECHNICAL EVALUATION AND LEGAL OPINION OF WARDEN: A NETWORK FORENSICS TOOL Version 1.0 Rod Yazdan Newton McCollum Jennifer Ockerman, PhD Prepared for: r I I Nation~/ Institute Nl.I of Justice STRENGTHEN SCIENCE. ADVANCE JUSTICE. Prepared by: The Johns Hopkins University Applied Physics Laboratory 11100 Johns Hopkins Rd. Laurel, MD 20723-6099 Task No.: FGSGJ Contract No.: 2013-MU-CX-K111/115912 This project was supported by Award No. 2013-MU-CX-K111, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice.
    [Show full text]
  • Linux Tutorial Last Updated: September 29 2021 for Windows Users
    VLAAMS SUPERCOMPUTER Innovative Computing CENTRUM for A Smarter Flanders Linux Tutorial Last updated: September 29 2021 For Windows Users Authors: Jasper Devreker (UGent), Ewan Higgs (UGent), Kenneth Hoste (UGent) Acknowledgement: VSCentrum.be Audience: This document is a hands-on guide for using the Linux command line in the context of the UGent HPC infrastructure. The command line (sometimes called ’shell’) can seems daunting at first, but with a little understanding can be very easy to use. Everything you do startsatthe prompt. Here you have the liberty to type in any commands you want. Soon, you will be able to move past the limited point and click interface and express interesting ideas to the computer using the shell. Gaining an understanding of the fundamentals of Linux will help accelerate your research using the HPC infrastructure. You will learn about commands, managing files, and some scripting basics. Notification: In$ commands this tutorial specific commands are separated from the accompanying text: These should be entered by the reader at a command line in a terminal on the UGent-HPC. They appear in all exercises preceded by a $ and printed in bold. You’ll find those actions ina grey frame. Button are menus, buttons or drop down boxes to be pressed or selected. “Directory” is the notation for directories (called “folders” in Windows terminology) or specific files. (e.g., “/user/home/gent/vsc400/vsc40000”) “Text” Is the notation for text to be entered. Tip: A “Tip” paragraph is used for remarks or tips. They can also be downloaded from the VSC website at https://www.vscentrum.be.
    [Show full text]
  • Checkpointing Under Linux with Berkeley Lab Checkpoint/Restart
    N1GE6 Checkpointing and Berkeley Lab Checkpoint/Restart Liang PENG Lip Kian NG N1GE6 Checkpointing and Berkeley Lab Checkpoint/Restart Liang PENG Lip Kian NG APSTC-TB-2004-005 Abstract: N1GE6, formerly known as Sun Grid Engine, is widely used in HPTC environment for efficient utilization of compute resources. As applications in such environment are generally compute intensive, fault tolerance is required to minimize the impact of hardware failure. N1GE6 has several fault tolerance features and in this report, the focus will be on the checkpointing support and the integration of Berkeley Lab Checkpoint/Restart will be used as an example. Keywords: checkpoint, Grid Engine, blcr Email Address: [email protected] [email protected] Revision History Version Date Comments 1.1 Jul 14, 2004 1.2 Dec 28, 2004 Feedback from Reuti (reuti__at__staff.uni-marburg.de) • Transparent interface is user-level (Table 1). • Update to state diagram (Illustration 2). N1GE6 Checkpointing and Berkeley Lab Checkpoint/Restart Liang PENG Lip Kian NG Asia Pacific Science and Technology Center Sun Microsystems Pte Ltd, Singapore Introduction Checkpointing is the process of writing out the state information of a running application to physical storage periodically. With this feature, an application will be able to restart from the last checkpointed state instead of from the beginning which would have been computationally expensive in HPTC environment. In general, checkpointing tools can be classified into 2 different classes: • Kernel-level – Such tools are built into the kernel of the operating system. During a checkpoint, the entire process space (which tends to be huge) is written to physical storage.
    [Show full text]
  • HP Decset for Openvms Guide to the Module Management System
    HP DECset for OpenVMS Guide to the Module Management System Order Number: AA–P119J–TE July 2005 This guide describes the Module Management System (MMS) and explains how to get started using its basic features. Revision/Update Information: This is a revised manual. Operating System Version: OpenVMS I64 Version 8.2 OpenVMS Alpha Version 7.3–2 or 8.2 OpenVMS VAX Version 7.3 Windowing System Version: DECwindows Motif for OpenVMS I64 Version 1.5 DECwindows Motif for OpenVMS Alpha Version 1.3–1 or 1.5 DECwindows Motif for OpenVMS VAX Version 1.2–6 Software Version: HP DECset Version 12.7 for OpenVMS Hewlett-Packard Company Palo Alto, California © Copyright 2005 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java is a US trademark of Sun Microsystems, Inc. Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.
    [Show full text]
  • Windows Operations Agent User Guide
    Windows Operations Agent User Guide 1.6 VMC-WAD VISUAL Message Center Windows Operations Agent User Guide The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement. Copyright Notice Copyright © 2013 Tango/04 All rights reserved. Document date: August 2012 Document version: 2.31 Product version: 1.6 No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic mechani- cal, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Tango/04. Trademarks Any references to trademarked product names are owned by their respective companies. Technical Support For technical support visit our web site at www.tango04.com. Tango/04 Computing Group S.L. Avda. Meridiana 358, 5 A-B Barcelona, 08027 Spain Tel: +34 93 274 0051 Table of Contents Table of Contents Table of Contents.............................................................................. iii How to Use this Guide.........................................................................x Chapter 1 Introduction ......................................................................................1 1.1. What You Will Find in this User Guide............................................................2 Chapter 2 Configuration ....................................................................................3 2.1. Monitor Configuration......................................................................................3
    [Show full text]
  • Linux-Kernel
    linux-kernel #linux- kernel Table of Contents About 1 Chapter 1: Getting started with linux-kernel 2 Remarks 2 Versions 2 Examples 2 Installation or Setup 2 Download extract and enter to the kernel directory 2 Build the dependencies, compile the kernel and modules. 3 Chapter 2: Creation and usage of Kernel Threads 4 Introduction 4 Examples 4 Creation of kernel threads 4 Chapter 3: Event Tracing 6 Examples 6 Tracing I2C Events 6 Chapter 4: Fork System call 7 Examples 7 fork() system call 7 Chapter 5: How to find the right person for help. 9 Introduction 9 Examples 9 Find the "likely" maintainers for the FTDI USB serial converter 9 Chapter 6: Linux Hello World Device driver 10 Examples 10 An empty kernel module 10 Building and running the module 10 Chapter 7: Linux: Named Pipes(FIFO) 12 Examples 12 What is Named Pipe (FIFO) 12 Credits 13 About You can share this PDF with anyone you feel could benefit from it, downloaded the latest version from: linux-kernel It is an unofficial and free linux-kernel ebook created for educational purposes. All the content is extracted from Stack Overflow Documentation, which is written by many hardworking individuals at Stack Overflow. It is neither affiliated with Stack Overflow nor official linux-kernel. The content is released under Creative Commons BY-SA, and the list of contributors to each chapter are provided in the credits section at the end of this book. Images may be copyright of their respective owners unless otherwise specified. All trademarks and registered trademarks are the property of their respective company owners.
    [Show full text]
  • SUSE Linux Enterprise Server 11 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 11 SP4
    SUSE Linux Enterprise Server 11 SP4 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 11 SP4 Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third party trademarks are the property of their respective owners. A trademark symbol (®, ™ etc.) denotes a SUSE or Novell trademark; an asterisk (*) denotes a third party trademark. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xi 1 Available Documentation xii 2 Feedback xiv 3 Documentation Conventions xv I BASICS 1 1 General Notes on System Tuning 2 1.1 Be Sure What Problem to Solve 2 1.2 Rule Out Common Problems 3 1.3 Finding the Bottleneck 3 1.4 Step-by-step Tuning 4 II SYSTEM MONITORING 5 2 System Monitoring Utilities 6 2.1 Multi-Purpose Tools 6 vmstat 7
    [Show full text]
  • Introduction to UNIX Summary of Some Useful Commands
    Introduction to UNIX "...the number of UNIX installations has grown to 10, with more expected..." - Dennis Ritchie and Ken Thompson, June 1972 (Bell Lab.) Universities, research institutes, government bodies and computer companies all began using the powerful UNIX system to develop many of the technologies which today are part of a UNIX system. Guide to UNIX on the beginners level: http://www.ee.surrey.ac.uk/Teaching/Unix/ Summary of some useful commands: Some basic UNIX commands cd directory_name change to the directory directory_name cd .. change to the directory above the current directory cd ~ change to the home directory cp file_1 file_2 copy the file file_1 to the file file_2 ln –s source linkname link the file with the name source to the file linkname ls directory_name show the content of the directory directory_name ls –l directory_name show in detail the content of the directory directory_name ls –a directory_name show all files including hidden files of the directory directory_name mkdir directory_name create the new directory directory_name less file_name show the content of the file file_name tail file_name show the last part of a file file_name head file_name show the top part of a file file_name (x)emacs file_name edit the file file_name using the editor xemacs mv file_1 to file_2 change the filename file_1 to file_2 rm –i file_name remove the file file_name (the system asks for confirmation) rm –ri directory_name remove all files recursive in the directory directory_name rmdir directory_name remove the directory directory_name
    [Show full text]
  • The Big Picture So Far Today: Process Management
    The Big Picture So Far From the Architecture to the OS to the User: Architectural resources, OS management, and User Abstractions. Hardware abstraction Example OS Services User abstraction Processor Process management, Scheduling, Traps, Process protection, accounting, synchronization Memory Management, Protection, virtual memory Address spaces I/O devices Concurrency with CPU, Interrupt Terminal, mouse, printer, handling system calls File System File management, Persistence Files Distributed systems Networking, security, distributed file Remote procedure calls, system network file system System calls Four architectures for designing OS kernels Computer Science CS377: Operating Systems Lecture 4, page 1 Today: Process Management • A process as the unit of execution. • How are processes represented in the OS? • What are possible execution states and how does the system move from one state to another? • How are processes created in the system? • How do processes communicate? Is this efficient? Computer Science CS377: Operating Systems Lecture 4, page 2 What's in a Process? • Process: dynamic execution context of an executing program • Several processes may run the same program, but each is a distinct process with its own state (e.g., MS Word). • A process executes sequentially, one instruction at a time • Process state consists of at least: ! the code for the running program, ! the static data for the running program, ! space for dynamic data (the heap), the heap pointer (HP), ! the Program Counter (PC), indicating the next instruction, ! an execution stack with the program's call chain (the stack), the stack pointer (SP) ! values of CPU registers ! a set of OS resources in use (e.g., open files) ! process execution state (ready, running, etc.).
    [Show full text]
  • System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 15 SP1
    SUSE Linux Enterprise Server 15 SP1 System Analysis and Tuning Guide System Analysis and Tuning Guide SUSE Linux Enterprise Server 15 SP1 An administrator's guide for problem detection, resolution and optimization. Find how to inspect and optimize your system by means of monitoring tools and how to eciently manage resources. Also contains an overview of common problems and solutions and of additional help and documentation resources. Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its aliates. Asterisks (*) denote third-party trademarks. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xii 1 Available Documentation xiii
    [Show full text]
  • 6.087 Practical Programming in C, Lecture 14
    Outline Review Inter process communication Signals Fork Pipes FIFO Spotlights 1 6.087 Lecture 14 – January 29, 2010 Review Inter process communication Signals Fork Pipes FIFO Spotlights 2 Review: multithreading • Race conditions • non-determinism in thread order. • can be prevented by synchronization • atomic operations necessary for synchronization • Mutex: Allows a single thread to own it • Semaphores: Generalization of mutex, allows N threads to acquire it at a time. • P(s) : acquires a lock • V(s) : releases lock • sem_init(),sem_destroy() • sem_wait(),sem_trywait(),sem_post() • Other problems: deadlock, starvation 2 Sockets • <sys/socket.h> • enables client-server computing • Client: connect() • Server: bind(),listen(),accept() • I/O: write(),send(),read(),recv() 3 6.087 Lecture 14 – January 29, 2010 Review Inter process communication Signals Fork Pipes FIFO Spotlights 4 Preliminaries • Each process has its own address space. Therefore, individual processes cannot communicate unlike threads. • Interprocess communication: Linux/Unix provides several ways to allow communications • signal • pipes • FIFO queues • shared memory • semaphores • sockets 4 <signals.h> • Unix/Linux allows us to handle exceptions that arise during execution (e.g., interrupt, floating point error, segmentation fault etc.). • A process recieves a signal when such a condition occurs. void (∗signal(int sig,void(∗handler)(int )))( int ) • determines how subsequent signals will be handled. • pre-defined behavior: SIG_DFL (default), SIG_IGN (ignore) • returns the previous handler. 5 <signal.h> Valid signals: SIGABRT abnormal termination SIGFPE floating point error SIGILL illegal instruction SIGINT interrupt SIGSEGV segmentation fault SIGTERM termination request SIGBUS bus error SIGQUIT quit The two signals SIGSTOP,SIGKILL cannot be handled. 6 <signal.h> int raise( int sig) can be used to send signal sig to the program.
    [Show full text]
  • Lecture 4: September 13 4.1 Process State
    CMPSCI 377 Operating Systems Fall 2012 Lecture 4: September 13 Lecturer: Prashant Shenoy TA: Sean Barker & Demetre Lavigne 4.1 Process State 4.1.1 Process A process is a dynamic instance of a computer program that is being sequentially executed by a computer system that has the ability to run several computer programs concurrently. A computer program itself is just a passive collection of instructions, while a process is the actual execution of those instructions. Several processes may be associated with the same program; for example, opening up several windows of the same program typically means more than one process is being executed. The state of a process consists of - code for the running program (text segment), its static data, its heap and the heap pointer (HP) where dynamic data is kept, program counter (PC), stack and the stack pointer (SP), value of CPU registers, set of OS resources in use (list of open files etc.), and the current process execution state (new, ready, running etc.). Some state may be stored in registers, such as the program counter. 4.1.2 Process Execution States Processes go through various process states which determine how the process is handled by the operating system kernel. The specific implementations of these states vary in different operating systems, and the names of these states are not standardised, but the general high-level functionality is the same. When a process is first started/created, it is in new state. It needs to wait for the process scheduler (of the operating system) to set its status to "new" and load it into main memory from secondary storage device (such as a hard disk or a CD-ROM).
    [Show full text]