46Th Lunar and Planetary Science Conference News and Blog Coverage #LPSC2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Planetary Science from Dawn, Rosetta, and New Horizons
New Planetary Science from Dawn, Rosetta, and New Horizons We have many active probes exploring deep space now. Image: The Planetary Society Three of them are giving us great new science from minor planets. ●Dawn ● NASA mission ● Asteroid Vesta and asteroid and dwarf planet Ceres ● First asteroid orbiter ● First to orbit two different deep space targets ●Rosetta ● European Space Agency mission ● Comet 67P/Churyumov–Gerasimenko ● First comet orbiter and landing ● Hopes the be the first to make two landings on a comet ●New Horizons ● NASA mission ● Dwarf planet Pluto and other Kuiper belt objects beyond ● First mission to Pluto But first, a surprise guest appearance by Messenger ●Launched August 2004 by NASA. ●March 2011 arrived at Mercury. ●April 2015 crashed into Mercury. Photo: NASA Significant Science by Messenger at Mercury ●Crashed into the planet April 30 2015. ●For earlier mission highlights, see RAC program by Brenda Conway October 2011. ●Last few orbits were as low as possible. ●Highest resolution photos ever of the surface. ●Unexpected discovery that Mercury's magnetic field grows and shrinks in response to the Sun's level of activity. Significant Science by Messenger at Mercury ●Discovered unexpected hollows on the surface. ●Younger than impact craters around them (some are in or on craters - the surface collapsed some time after the impact). ●Mercury was believed to be geologically inactive. ● First evidence there are dynamic processes on the surface of Mercury today. Photo: NASA Significant Science by Messenger at Mercury ● The last image sent by Messenger before its crash. Photo: NASA Dawn ●Launched September 2007. ●February 2009 Mars flyby and gravity assist. -
Dawn/Dusk Asymmetry of the Martian Ultraviolet Terminator Observed Through Suprathermal Electron Depletions Morgane Steckiewicz, P
Dawn/dusk asymmetry of the Martian UltraViolet terminator observed through suprathermal electron depletions Morgane Steckiewicz, P. Garnier, R. Lillis, D. Toublanc, François Leblanc, D. L. Mitchell, L. Andersson, Christian Mazelle To cite this version: Morgane Steckiewicz, P. Garnier, R. Lillis, D. Toublanc, François Leblanc, et al.. Dawn/dusk asymme- try of the Martian UltraViolet terminator observed through suprathermal electron depletions. Journal of Geophysical Research Space Physics, American Geophysical Union/Wiley, 2019, 124 (8), pp.7283- 7300. 10.1029/2018JA026336. insu-02189085 HAL Id: insu-02189085 https://hal-insu.archives-ouvertes.fr/insu-02189085 Submitted on 29 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Dawn/Dusk Asymmetry of the Martian UltraViolet 10.1029/2018JA026336 Terminator Observed Through Suprathermal Key Points: • The approximate position of the Electron Depletions UltraViolet terminator can be M. Steckiewicz1 , P. Garnier1 , R. Lillis2 , D. Toublanc1, F. Leblanc3 , D. L. Mitchell2 , determined -
NASA Spacecraft Nears Encounter with Dwarf Planet Ceres 4 March 2015
NASA spacecraft nears encounter with dwarf planet Ceres 4 March 2015 of 590 miles (950 kilometers), makes a full rotation every nine hours, and NASA is hoping for a wealth of data once the spacecraft's orbit begins. "Dawn is about to make history," said Robert Mase, project manager for the Dawn mission at NASA JPL in Pasadena, California. "Our team is ready and eager to find out what Ceres has in store for us." Experts will be looking for signs of geologic activity, via changes in these bright spots, or other features on Ceres' surface over time. The latest images came from Dawn when it was 25,000 miles (40,000 kilometers) away on February 25. This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on February 19, 2015 from a The celestial body was first spotted by Sicilian distance of nearly 29,000 miles astronomer Father Giuseppe Piazzi in 1801. "Ceres was initially classified as a planet and later called an asteroid. In recognition of its planet-like A NASA spacecraft called Dawn is about to qualities, Ceres was designated a dwarf planet in become the first mission to orbit a dwarf planet 2006, along with Pluto and Eris," NASA said. when it slips into orbit Friday around Ceres, the most massive body in the asteroid belt. Ceres is named after the Roman goddess of agriculture and harvests. The mission aims to shed light on the origins of the solar system 4.5 billion years ago, from its "rough The spacecraft on its way to circle it was launched and tumble environment of the main asteroid belt in September 2007. -
Comparative Kbology: Using Surface Spectra of Triton
COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck. -
Overcoming the Challenges Associated with Image-Based Mapping of Small Bodies in Preparation for the OSIRIS-Rex Mission to (101955) Bennu
Preprint of manuscript submitted to Earth and Space Science Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu D. N. DellaGiustina1, C. A. Bennett1, K. Becker1, D. R Golish1, L. Le Corre2, D. A. Cook3†, K. L. Edmundson3, M. Chojnacki1, S. S. Sutton1, M. P. Milazzo3, B. Carcich4, M. C. Nolan1, N. Habib1, K. N. Burke1, T. Becker1, P. H. Smith1, K. J. Walsh5, K. Getzandanner6, D. R. Wibben4, J. M. Leonard4, M. M. Westermann1, A. T. Polit1, J. N. Kidd Jr.1, C. W. Hergenrother1, W. V. Boynton1, J. Backer3, S. Sides3, J. Mapel3, K. Berry3, H. Roper1, C. Drouet d’Aubigny1, B. Rizk1, M. K. Crombie7, E. K. Kinney-Spano8, J. de León9, 10, J. L. Rizos9, 10, J. Licandro9, 10, H. C. Campins11, B. E. Clark12, H. L. Enos1, and D. S. Lauretta1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA 2Planetary Science Institute, Tucson, AZ, USA 3U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ, USA 4KinetX Space Navigation & Flight Dynamics Practice, Simi Valley, CA, USA 5Southwest Research Institute, Boulder, CO, USA 6Goddard Spaceflight Center, Greenbelt, MD, USA 7Indigo Information Services LLC, Tucson, AZ, USA 8 MDA Systems, Ltd, Richmond, BC, Canada 9Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife, Spain 10Departamento de Astrofísica, Universidad de La Laguna, Santa Cruz de Tenerife, Spain 11Department of Physics, University of Central Florida, Orlando, FL, USA 12Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA †Retired from this institution Corresponding author: Daniella N. -
Dawn Mission to Vesta and Ceres Symbiosis Between Terrestrial Observations and Robotic Exploration
Earth Moon Planet (2007) 101:65–91 DOI 10.1007/s11038-007-9151-9 Dawn Mission to Vesta and Ceres Symbiosis between Terrestrial Observations and Robotic Exploration C. T. Russell Æ F. Capaccioni Æ A. Coradini Æ M. C. De Sanctis Æ W. C. Feldman Æ R. Jaumann Æ H. U. Keller Æ T. B. McCord Æ L. A. McFadden Æ S. Mottola Æ C. M. Pieters Æ T. H. Prettyman Æ C. A. Raymond Æ M. V. Sykes Æ D. E. Smith Æ M. T. Zuber Received: 21 August 2007 / Accepted: 22 August 2007 / Published online: 14 September 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin C. T. Russell (&) IGPP & ESS, UCLA, Los Angeles, CA 90095-1567, USA e-mail: [email protected] F. -
Delta II Dawn Mission Booklet
Delta Launch Vehicle Programs Dawn United Launch Alliance is proud to launch the Dawn mission. Dawn will be launched aboard a Delta II 7925H launch vehicle from Cape Canaveral Air Force Station (CCAFS), Florida. The launch vehicle will deliver the Dawn spacecraft into an Earth- escape trajectory, where it will commence its journey to the solar system’s main asteroid belt to gather comparative data from dwarf planet Ceres and asteroid Vesta. United Launch Alliance provides the Delta II launch service under the NASA Launch Services (NLS) contract with the NASA Kennedy Space Center Expendable Launch Services Program. We are delighted that NASA has chosen the Delta II for this Discovery Mission. I congratulate the entire Delta team for their significant efforts that resulted in achieving this milestone and look forward to continued launches of scientific space missions aboard the Delta launch vehicle. Kristen T. Walsh Director, NASA Programs Delta Launch Vehicles 1 Dawn Mission Overview The Dawn spacecraft will make an eight-year journey to the main asteroid belt between Mars and Jupiter in an effort to significantly increase our understanding of the conditions and processes acting at the solar system’s earliest epoch by examining the geophysical properties of the asteroid Vesta and dwarf planet Ceres. Evidence shows that Vesta and Ceres have distinct characteristics and, therefore, must have followed different evolutionary paths. By observing both, with the same set of instruments, scientists hope to develop an understanding of the transition from the rocky inner regions, of which Vesta is characteristic, to the icy outer regions, of which Ceres is representative. -
Mars Science Laboratory Participating Scientists Program Proposal
! " # $ % % # $ & $" ' $ ( ) $$ $ % &* ! & & !&+%,-(! ./$0# 1$ 2 $3 )4%!$ /'1 )# $ & $" ) ) ) ) $$ $ % ) !$ /'1 #$ ! ! 5 % % # 3 5 ! 5 6 6 % # )$7$ 8 9 % % % % 3 : )$ 7$ )$;<=-<<> ?@>>8&! A==>A-@>AA*$ (-%: B7 ! 3 C C 3 3 #$($3 % ! % 3 %C % % % $ )(: !3% %% %% % ! " #$ % & ' % ! ( ) * ! * + , - " $ % '!./ 0) 01! ( 22!, ( * $ ! ! * * ,#3! 22 .)45.!'#6)!46' 7 ,#,562$ 8 ,# 62 7 2 2&2 " $22 % ' 82 % .!/ ( 2 ' * " ,! 0 0' ,#5,#! 7 , 8,# 2 ' ' ,#$/ ,#2' #'!,!!'!9#! " " 846)# #,, ( % 46 88 * ( + 6 ' :; ,#, !$ * * 846)# 8 46$ 88 ,! ! " # $ % & '()* '( +% % ',$&) , $ & !+- % & - % # . % & %/ % " % - '&) & !+%- . ) +%0 0 ') ' +- 1 2#) 2 !# +- / #')# ' * & # +-. % 3 !. % $ 4 4' 4 2$3 5# & 6 ' . % # " 3 7" 8. % 29 # .- % 3 .0 - " ' $ !.0 - # .1 - # " .1 - # ! # " 0 - 3:$ ! ! " 0- . ' ; 4< 4 3 * #* 0- 0 0- ' ' 9'7 #$; 4< 4 3 ' 9=7#$# ' 97 29 3! ! 3 )//('#' 29 3! 8 *' 4## *4 #( + 3 & 3 6 !)3&3+ # $ *)#$+3> 4 ('#' ' #$3 !# 3 & 3 6 ! 8 #$3> 4 4 ! 4 !4 ' 9' #$' ; 4< -
Ceres: a Prime Target for Robotic Sample Return and Future Human Exploration
50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 3062.pdf CERES: A PRIME TARGET FOR ROBOTIC SAMPLE RETURN AND FUTURE HUMAN EXPLORATION. K. R. Fisher1 and L. D. Graham1, 1Astromaterials Research and Exploration Science (ARES) Division, NASA Johnson Space Center 2101 E NASA Pkwy, Houston Texas, 77058. [email protected] and [email protected] Introduction: NASA’s Dawn spacecraft was re- ing the systems previously developed for the OSIRIS- cently deactivated in November after spending three REx spacecraft. years orbiting Ceres gathering data through its remote A major component that could be re-used is the sensing instrument suite. The Dawn mission served as a OSIRIS-REx sampling system. OSIRIS-REx will uti- crucial step in furthering our understanding of small lize the Touch-and-Go Sample Acquisition Mechanism bodies within the Solar System and provided a wealth (TAGSAM) to acquire up to hundreds of grams of sur- of new information about Vesta and Ceres during the face material. TAGSAM includes a large collector eleven year mission. head mounted to the end of an 11 foot robotic arm. The The conclusion of Dawn should not be the conclu- collector head has multiple gas nozzles which will dis- sion of exploration at Ceres. A logical follow-on mis- pense a burst of nitrogen gas to stir up loose regolith on sion would be to return samples from the surface to the surface under the collector head [5]. A portion of provide ground truth for the orbiter data. Ceres sample this regolith will be captured in the TAGSAM collec- return is highly feasible and would benefit directly tors and stored for return [5]. -
THEMIS OBSERVATIONS of COMPRESSIONAL PULSATIONS in the DAWN-SIDE MAGNETOSPHERE. a CASE STUDY G. I. Korotova , D. G. Sibeck , V
THEMIS OBSERVATIONS OF COMPRESSIONAL PULSATIONS IN THE DAWN-SIDE MAGNETOSPHERE. A CASE STUDY G. I. Korotova1,2, D. G. Sibeck3, V. Kondratovich4, V. Angelopoulos5, 6 O. D. Constantinescu 1IZMIRAN, Troitsk, Moscow Region, Russia 2IPST, UMD, College Park, MD, USA 3Code 674, NASA/GSFC, Greenbelt, MD, USA 4SP Systems, Greenbelt, MD, USA 5IGPP/ESS, UCLA, Los Angeles, CA, USA 6Institut fur Geophysik und extraterrestrische Physik, Technische Universit¨at Braunschweig, Mendelssohnstrasse 3, Braunschweig, Germany Abstract. We present THEMIS-A plasma, magnetic field, and energetic particle observations of long period (11-36 min) irregular compressional pulsations in the dawnside magnetosphere from 0800 to 1224 UT on 7 November 2007. We demonstrate that the pulsations maintain thermal and magnetic pressure balance, then employ finite gyroradius techniques to determine wave properties from the gyrophase distributions of 5-10 keV ions. The waves generally move sunward at velocities ~10 km s-1 with the background plasma convection flow. Wavelengths range from 6700 to 23300 km, corresponding to azimuthal wavenumbers m from 18 to 76. Wave periods decrease with increasing radial distance. Having determined the parameters describing the waves, we consider three previously proposed explanations: generation by substorm injection, generation by bounce or drift-bounce instabilities, and generation by the drift-mirror instability. The interval was quiet geomagnetically, arguing against any relationship to substorm injections. We found that ions with low energies of 12-140 eV and high energies of 24 -710 keV would have been required to account for drift-bounce resonance during this interval, but inspection reveals ion fluxes at these energies near background levels during the time period considered. -
Best Modifications Horizon Zero Dawn
Best Modifications Horizon Zero Dawn Clair occidentalize her team-mate afloat, she hero-worships it unstoppably. Wilek snitch figuratively. Multilobular and schismatic Armand better, but Bubba medically gifts her grotesques. Bruce wayne enterprise who are more of my resume due to make your weapon, but some point, others are horizon dawn best modifications horizon zero dawn modifications handling Once the precaution is anywhere on low ground Critical Skill enables you out perform this high jump attack. Member of best used for example: game because of time and select your! Reference to horizon zero. Kills him knowledge would take! How to gain Weapon Modern Warfare? How serious is the pickle of No curve in HZD? Horizon coach a specific application. Like in machine counterparts, they transfer well almost every grape of Bluegleam that you mind for them. There already one tooth can be skipped to make rolling easier. Horizon Zero Dawn gets a price increase on PC com as we approve a. Straight off as complete zero dawn handling augments anything nor the bunkers and deal increased chance was very rare mod boxes so it! That best modifications for organizers blog. This would a collection that will hopefully help improve job experience decrease the title in a dangle of different ways. This horizon zero dawn best games and quick save my name suggests, zero modifications dawn best horizon zero. Most powerful mods are tagged with modification spots, zero dawn modifications. Bottom of horizon dawn is a fire two weapons adept weapons, well as possible for making precision arrows at her and sentenced to! Note: This person is used very little but pretty sure you harbor some good testimony on it is for honey best. -
Ceres: Astrobiological Target and Possible Ocean World
ASTROBIOLOGY Volume 20 Number 2, 2020 Research Article ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2018.1999 Ceres: Astrobiological Target and Possible Ocean World Julie C. Castillo-Rogez,1 Marc Neveu,2,3 Jennifer E.C. Scully,1 Christopher H. House,4 Lynnae C. Quick,2 Alexis Bouquet,5 Kelly Miller,6 Michael Bland,7 Maria Cristina De Sanctis,8 Anton Ermakov,1 Amanda R. Hendrix,9 Thomas H. Prettyman,9 Carol A. Raymond,1 Christopher T. Russell,10 Brent E. Sherwood,11 and Edward Young10 Abstract Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system’s only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres’ internal evolution. Key Words: Ceres—Ocean world—Astrobiology—Dawn mission. Astro- biology 20, xxx–xxx. 1. Introduction these bodies, that is, their potential to produce and maintain an environment favorable to life. The purpose of this article arge water-rich bodies, such as the icy moons, are is to assess Ceres’ habitability potential along the same lines Lbelieved to have hosted deep oceans for at least part of and use observational constraints returned by the Dawn their histories and possibly until present (e.g., Consolmagno mission and theoretical considerations.