Mesenchymal-Epithelial Transition in Sarcomas Is Controlled by the Combinatorial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Cytoplasmic Mineralocorticoid Receptor Expression Predicts
ANTICANCER RESEARCH 39 : 5879-5890 (2019) doi:10.21873/anticanres.13792 Cytoplasmic Mineralocorticoid Receptor Expression Predicts Dismal Local Relapse-free Survival in Non-triple-negative Breast Cancer ANNIINA JÄÄSKELÄINEN 1,2 , ARJA JUKKOLA 3, KIRSI-MARIA HAAPASAARI 2, PÄIVI AUVINEN 4, YLERMI SOINI 2,5 and PEETER KARIHTALA 1 1Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; 2Department of Pathology, Medical Research Center, Oulu University Hospital, Oulu, Finland; 3Department of Oncology, Tampere University Hospital, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland; 4Department of Oncology and Cancer Center, Kuopio University Hospital, and Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; 5Department of Pathology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland Abstract. Background/Aim: The aim of the study was to predictor of local recurrence in non-metastatic breast cancer investigate the prognostic role of androgen receptor (AR), patients with non-TNBC tumour phenotype. mineralocorticoid receptor (MR) and glucocorticoid receptor β ( GR β) expression in HER-2 negative breast cancer The expression of oestrogen (ER) and progesterone receptors patients. Materials and Methods: The study population (PR) and amplification of human epidermal growth factor (n=152) was enriched with triple-negative breast cancers receptor 2 (HER2) are important prognostic and predictive (TNBC) (n=96; 63.2%). The median follow-up time was 100 factors in breast cancer (1). Moreover, androgen receptor months. AR, MR and GR β immunocytochemical staining was (AR), mineralocorticoid receptor (MR) and glucocorticoid compared with that of epithelial-mesenchymal transition receptor β ( GR β) belong to the nuclear receptor superfamily (EMT) markers (vimentin, SIP1, ZEB1). -
Computational Analysis of the Mesenchymal Signature Landscape in Gliomas Orieta Celiku1†, Anita Tandle1†, Joon-Yong Chung2, Stephen M
Celiku et al. BMC Medical Genomics (2017) 10:13 DOI 10.1186/s12920-017-0252-7 RESEARCH ARTICLE Open Access Computational analysis of the mesenchymal signature landscape in gliomas Orieta Celiku1†, Anita Tandle1†, Joon-Yong Chung2, Stephen M. Hewitt2, Kevin Camphausen1 and Uma Shankavaram1* Abstract Background: Epithelial to mesenchymal transition, and mimicking processes, contribute to cancer invasion and metastasis, and are known to be responsible for resistance to various therapeutic agents in many cancers. While a number of studies have proposed molecular signatures that characterize the spectrum of such transition, more work is needed to understand how the mesenchymal signature (MS) is regulated in non-epithelial cancers like gliomas, to identify markers with the most prognostic significance, and potential for therapeutic targeting. Results: Computational analysis of 275 glioma samples from “TheCancerGenomeAtlas” was used to identify the regulatory changes between low grade gliomas with little expression of MS, and high grade glioblastomas with high expression of MS. TF (transcription factor)-gene regulatory networks were constructed for each of the cohorts, and 5 major pathways and 118 transcription factors were identified as involved in the differential regulation of the networks. The most significant pathway - Extracellular matrix organization - was further analyzed for prognostic relevance. A 20-gene signature was identified as having prognostic significance (HR (hazard ratio) 3.2, 95% CI (confidence interval) = 1.53–8.33), after controlling for known prognostic factors (age, and glioma grade). The signature’ssignificancewasvalidatedinanindependentdataset.TheputativestemcellmarkerCD44 was biologically validated in glioma cell lines and brain tissue samples. Conclusions: Our results suggest that the differences between low grade gliomas and high grade glioblastoma are associated with differential expression of the signature genes, raising the possibility that targeting these genes might prolong survival in glioma patients. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
KLF4 Induces Mesenchymal-Epithelial Transition (MET)
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457621; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. KLF4 induces Mesenchymal - Epithelial Transition (MET) by suppressing multiple EMT-inducing transcription factors Running title: KLF4 induces mesenchymal-epithelial transition (MET) Ayalur Raghu Subbalakshmi1, Sarthak Sahoo1, Isabelle McMullen2, Aaditya Narayan Saxena3, Sudhanva Kalasapura Venugopal, Jason Somarelli2,4*, Mohit Kumar Jolly1* 1 Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 2 Department of Medicine, Duke University, Durham, NC, United States 3 Department of Biotechnology, Indian Institute of Technology, Kharagpur, India 4 Duke Cancer Institute, Duke University, Durham, NC, United States Authors to whom correspondence to be addressed: [email protected] (J.A.S), [email protected] (M.K.J.) Abstract Epithelial-Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs) – TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, FOXC2 – are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2, GRHL1/2). Here, using mechanism-based mathematical modeling, we show that the transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote phenotypic shift toward a more epithelial state, an observation suggested by negative correlation of KLF4 with EMT-TFs and with transcriptomic based EMT scoring metrics in cancer cell lines. -
RNA-Seq Transcriptome Analysis Of
on: Sequ ati en er c Le Luyer et al, Next Generat Sequenc & Applic 2015, 2:1 n in e g G & t x A DOI: 10.4172/2469-9853.1000112 e p Journal of p N l f i c o a l t a i o n r ISSN: 2469-9853n u s o J Next Generation Sequencing & Applications Research Article Open Access RNA-Seq Transcriptome Analysis of Pronounced Biconcave Vertebrae: A Common Abnormality in Rainbow Trout (Oncorhynchus mykiss, Walbaum) Fed a Low-Phosphorus Diet Le Luyer J1, Deschamps MH1, Proulx E1, Poirier Stewart N1, Droit A2, Sire JY3, Robert C1 and Vandenberg GW1* 1Département of des sciences animales, Pavillon Paul-Comtois, Université Laval, Québec, QC, Canada G1V 0A6, Canada 2Department of Molecular Medicine, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2 Canada 3Institut de Biologie Paris-Seine, UMR 7138-Evolution Paris-Seine, Université Pierre et Marie Curie, Paris, France Abstract The prevalence of bone deformities, particularly linked with mineral deficiency, is an important issue for fish production. Juvenile triploid rainbow trout (Oncorhynchus mykiss) were fed a low-phosphorus (P) diet for 27 weeks (60 to 630 g body mass). At study termination, 24.9% of the fish fed the low-P diet displayed homogeneous biconcave vertebrae (deformed vertebrae phenotype), while 5.5% displayed normal vertebral phenotypes for the entire experiment. The aim of our study was to characterize the deformed phenotype and identify the putative genes involved in the appearance of P deficiency-induced deformities. Both P status and biomechanical measurements showed that deformed vertebrae were significantly less mineralized (55.0 ± 0.4 and 59.4 ± 0.5,% ash DM, for deformed and normal vertebrae, respectively) resulting in a lower stiffness (80.3 ± 9.0 and 140.2 ± 6.3 N/mm, for deformed and normal phenotypes, respectively). -
Testicular Orphan Receptor 4 (TR4) Is a Marker for Metastasis and Poor Prognosis in Non-Small Cell Lung Cancer That Drives the EMT Phenotype
Lung Cancer 89 (2015) 320–328 Contents lists available at ScienceDirect Lung Cancer journal homepage: www.elsevier.com/locate/lungcan Testicular orphan receptor 4 (TR4) is a marker for metastasis and poor prognosis in non-small cell lung cancer that drives the EMT phenotype Liyi Zhang a,1, Jianzhi Zhang a,1, Yuanyuan Ma a,1, Jinfeng Chen a, Bin Dong b, Wei Zhao c, Xing Wang a, Qinfeng Zheng a, Fang Fang a, Yue Yang a,∗ a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Beijing, People’s Republic of China b Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China c Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China article info abstract Article history: Objectives: Aberrant expression of testicular orphan receptor 4 (TR4) has been shown to regulate biological Received 11 December 2014 processes near solid tumors. However, the role of TR4 in non-small cell lung cancer (NSCLC) patient Received in revised form 30 May 2015 prognosis and the development of NSCLC cancer cells are unclear. Accepted 11 June 2015 Methods: Immunohistochemical analysis was used to evaluate the correlation between TR4 expression and clinicopathological characteristics in 291 cases of NSCLC specimens. A knockdown and overex- Keywords: pression of TR4 was performed to assess the role of TR4. Transwell and colony formation assays were Testicular orphan receptor 4 completed to investigate the metastatic and proliferative abilities. Quantitative real-time PCR, Western NSCLC Prognosis blotting and immunofluorescence staining were carried out to analyze the epithelial-to-mesenchymal Metastasis transition (EMT) phenotype. -
Dedifferentiation and Neuronal Repression Define Familial Alzheimer’S Disease Andrew B
bioRxiv preprint doi: https://doi.org/10.1101/531202; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseCaldwell. et al. BIORXIV/2019/531202 Dedifferentiation and neuronal repression define Familial Alzheimer’s Disease Andrew B. Caldwell1, Qing Liu2, Gary P. Schroth3, Douglas R. Galasko2, Shauna H. Yuan2,8, Steven L. Wagner2,4, & Shankar Subramaniam1,5,6,7* Affiliations 1Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. 2Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA. 3Illumina, Inc., San Diego, CA, USA. 4VA San Diego Healthcare System, La Jolla, CA, USA. 5Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. 6Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA. 7Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA. 8Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, Minneapolis, MN, USA; GRECC, Minneapolis VA Health Care System, Minneapolis, MN, USA. *Correspondence: Correspondence and requests for materials should be addressed to S.S. ([email protected]). Abstract Early-Onset Familial Alzheimer’s Disease (EOFAD) is a dominantly inherited neurodegenerative disorder elicited by over 300 mutations in the PSEN1, PSEN2, and APP genes1. Hallmark pathological changes and symptoms observed, namely the accumulation of misfolded Amyloid-β (Aβ) in plaques and Tau aggregates in neurofibrillary tangles associated with memory loss and cognitive decline, are understood to be temporally accelerated manifestations of the more common sporadic Late-Onset Alzheimer’s Disease. -
Alterations in Gene Expression During Sexual Differentiation in Androgen Receptor Knockout Mice Induced by Environmental Endocrine Disruptors
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 399-404, 2015 Alterations in gene expression during sexual differentiation in androgen receptor knockout mice induced by environmental endocrine disruptors DEHONG LIU1,2, LIPING SHEN1, YONGLIN TAO3, YING KUANG4, LEI CAI4, DAN WANG5, MEIDUO HE3, XUEBO TONG1, SHUGUANG ZHOU1, JIE SUN1, CHENCHEN SHI3, CHUNXIAO WANG1 and YI WU1 1Department of Pediatric Surgery, Ruijin Hospital, 2Department of Pediatric Surgery, Ruijin Hospital North, 3Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025; 4Shanghai Research Center for Model Organisms, Shanghai 201203; 5School of Life Science, Shanghai University, Shanghai 200444, P.R. China Received April 4, 2014; Accepted November 13, 2014 DOI: 10.3892/ijmm.2014.2015 Abstract. In the present study, we aimed to explore the effect heterozygous and wild-type male mice offspring during sexual of environmental endocrine disruptors (EEDs) on sexual differentiation, but has no effect on homozygous offspring. differentiation in androgen receptor (AR)-/-, AR+/- and AR+/+ Therefore, EEDs play an important role during the third stage male mice. By using a Cre-loxP conditional knockout strategy, of sexual differentiation. we generated AR knockout mice. By mating flox-AR female mice with AR-Cre male mice, the offspring male mice which Introduction were produced were examined. Mice not subjected to any type of intervention were used as the controls. Furthermore, male Endocrine disruption has become a critical issue in environ- mice of different genotypes were selected and further divided mental science, particularly after the endocrine-disrupting into subgroups as follows: the control group, bisphenol A (BPA) chemical pollution accident in Taiwan which attracted public group and the D binding protein (DBP) group. -
Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic
JVI Accepts, published online ahead of print on 19 November 2014 J. Virol. doi:10.1128/JVI.02781-14 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 2 Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic 3 reactivation in epithelial and B cells by activating transcription from both the 4 R and Z promoters 5 6 Jessica A. Reusch1, Dhananjay M. Nawandar1, Kenneth L. Wright2, Shannon C. Kenney1,3, and 7 Janet E. Mertz1# 8 9 1McArdle Laboratory for Cancer Research and 3Department of Medicine, University of 10 Wisconsin School of Medicine and Public Health, Madison, WI 53705; 2Department of 11 Immunology, Moffitt Cancer Center, Tampa, FL, 33612 12 13 Running Title: BLIMP1 induces EBV reactivation via both Rp and Zp 14 Key words: EBV latent-lytic switch, EBV-positive epithelial cells, PRDI-BF1, PRDM1, EBV R 15 promoter 16 17 #Corresponding author. Phone: (608) 262-2383; Fax: (608) 262-2824; E-mail: 18 [email protected] 19 20 Abstract word count: 243 21 Text word count: 12,284 1 22 Abstract: EBV maintains a life-long latent infection within a subset of its host’s memory B cells, 23 while lytic EBV replication takes place in plasma cells and differentiated epithelial cells. 24 Therefore, cellular transcription factors such as BLIMP1 that are key mediators of differentiation 25 likely contribute to the EBV latent-to-lytic switch. Previous reports showed that ectopic BLIMP1 26 expression induces reactivation in some EBV(+) B-cell lines and transcription from Zp, with all 27 Z(+) cells in oral hairy leukoplakia being BLIMP1(+). -
Genome-Wide Screen for Differentially Methylated Long Noncoding Rnas
OPEN Oncogene (2017) 36, 6446–6461 www.nature.com/onc ORIGINAL ARTICLE Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer K Heilmann, R Toth, C Bossmann, K Klimo, C Plass and C Gerhauser The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein- coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In- depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. -
Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes
RESEARCH ARTICLE Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes Daniel Meier1, Martin Lopez1, Paul Franken2, Adriano Fontana1* 1 Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland, 2 Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland * [email protected] Abstract Background Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of OPEN ACCESS clock genes. In the present study we have assessed the two E-box binding transcriptional Citation: Meier D, Lopez M, Franken P, Fontana A regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. (2015) Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes. PLoS ONE 10 (9): e0137229. doi:10.1371/journal.pone.0137229 Methods Editor: Henrik Oster, University of Lübeck, The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 GERMANY mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated Received: June 17, 2015 for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siR- NAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) Accepted: August 14, 2015 assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a Published: September 11, 2015 3xPer1 E-box or a Dbp E-box.