http://dx.doi.org/10.1090/ulect/033 University LECTURE Series

Volume 3 3

Interpolation an d Sampling in Space s of Analytic Function s

Kristian Sei p

American Mathematical Societ y Providence, Rhod e Islan d EDITORIAL COMMITTE E Jerry L . Bon a (Chair ) Eri c M . Friedlande r Nigel J . Hitchi n Pete r Landwebe r

2000 Subject Classification. Primar y 30D45 , 30D50 , 30D55 , 30E05 , 42A99 , 46E15, 46E20 , 47A57 .

For additiona l informatio n an d update s o n this book , visi t www.ams.org/bookpages/ulect-33

Library o f Congress Cataloging-in-Publicatio n Dat a Seip, Kristian , 1962- Interpolation an d sampling i n spaces o f analytic function s / Kristia n Seip . p. cm . (Universit y lectur e series , ISS N 1047-3998 ; v. 33) Includes bibliographica l reference s an d index. ISBN 0-8218-3554- 8 (alk . paper ) 1. Analyti c functions . 2 . Hard y classes . 3 . Generalized spaces . 4 . Interpolation . I . Title . II. Universit y lectur e serie s (Providence , R.I.) ; 3 3 .

QA331 .S435 200 4 515'.9-dc22 2003070914

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o make fai r us e of the material, suc h a s to copy a chapter fo r use in teachin g o r research . Permissio n i s granted t o quote brie f passage s fro m thi s publicatio n i n reviews, provide d the customary acknowledgmen t o f the source i s given. Republication, systemati c copying , or multiple reproduction o f any material in this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed to the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n also b e made b y e-mail t o [email protected] .

© 200 4 by the author. Al l rights reserved . Printed i n the United State s o f America. @ Th e paper use d i n this boo k i s acid-free an d falls withi n the guidelines established t o ensure permanenc e an d durability. Visit th e AMS home pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 9 08 07 06 05 0 4 Contents

Acknowledgements v Introduction vi i Chapter 1 . Carleson' s interpolatio n theore m 1 Chapter 2 . Interpolatin g sequence s an d the Pic k property 1 5 Chapter 3 . Interpolatio n an d samplin g i n Bergman space s 4 1 Chapter 4 . Interpolatio n i n the Bloc h spac e 6 3 Chapter 5 . Interpolation , sampling , an d Toeplit z operator s 7 9 Chapter 6 . Interpolatio n an d samplin g i n Paley-Wiener space s 9 5 Bibliography 12 5 Index 13 5 This page intentionally left blank Acknowledgements

This book i s based o n six lectures I gave in the winter o f 2003 while I was a Visitin g Professo r a t th e Universit y o f Michigan , An n Arbor , supporte d by th e Fre d an d Loi s Gehrin g Professorshi p Fund . I a m muc h indebte d t o Fred an d Loi s Gehring , fo r th e generou s suppor t throug h th e Professorshi p Fund an d fo r thei r hospitalit y durin g m y sta y i n An n Arbor . I woul d als o like to thank Fre d Gehrin g fo r hi s encouragement durin g th e preparatio n o f this book . I thank th e Departmen t o f Mathematics a t th e Universit y o f Michigan , Ann Arbo r fo r the appointment an d fo r providing me with excellen t workin g conditions. I a m particularl y gratefu l t o Pete r Dure n an d hi s wif e Ga y fo r their friendl y car e during m y sta y i n Ann Arbor . Pete r Dure n rea d throug h most o f the early drafts o f the six chapters o f this book, an d I have benefitte d from a numbe r o f correction s an d suggestion s fro m him . Artur Nicola u rea d earl y draft s o f Chapter 4 and helpe d m e understan d his beautifu l wor k wit h Bjart e E>0e . Chapter s 5 an d 6 ar e influence d b y discussions with Andreas Hartmann durin g the summer o f 2001. Discussion s with Antoni o Serr a wer e helpfu l i n workin g ou t som e part s o f Chapte r 2 , and I als o benefitte d fro m remark s fro m Donal d Marshal l concernin g tha t chapter. Th e referee s reportin g o n th e draf t submitte d t o th e AM S gav e very valuabl e feedback , an d I believ e thi s le d t o substantia l improvements . Yurii Lyubarskii' s readin g o f th e entir e manuscrip t resulte d i n a lon g lis t of pertinen t remarks . I n th e fina l stage s o f th e writing , I als o receive d a numbe r o f correction s an d constructiv e suggestion s fro m Helg e Holden , Joaquim Ortega-Cerda , an d Antoni o Serra . I than k thes e colleague s fo r their essentia l contribution s t o th e book . Finally, I than k Yuri i Lyubarski i an d Joaqui m Ortega-Cerd a fo r th e mathematics I learned through m y long-time collaboration with them. Muc h of this collaboratio n i s reflected i n the book . This page intentionally left blank Introduction

The presen t boo k i s my attemp t t o vie w the sizabl e literatur e o n inter - polating sequence s fo r space s o f analytic function s a s on e subject . I believ e the topic merits suc h a consideration, an d I think i t may benefi t fro m takin g a somewha t genera l poin t o f view . The followin g ar e the classica l origin s o f ou r subject : (1) Th e Nevanlinna-Pic k proble m wa s studie d independentl y b y Pic k

[Pil6] an d Nevanlinn a [Neval9] . Give n z\, 22 , ••• > zn an d ai, a2,..., a n i n th e unit dis k D , i t ask s fo r condition s unde r whic h th e interpolatio n proble m f(zj) — dj, j = 1,2 , ...,n , ha s a solutio n / , analyti c i n D an d \f(z)\ < 1 , z G B. Pick' s theore m i s th e following . Th e interpolatio n proble m ha s a solution i f and onl y i f the matri x

1 - a]a k \

1 - ZjZkJ j ?A:=l,...,n is positiv e semi-definite . Her e th e functio n / ca n alway s b e take n t o b e a Blaschke produc t o f degre e a t mos t n ; Nevanlinn a [Neva29 ] late r gav e a parametrization o f al l solutions . Nevanlinna-Pic k interpolatio n i n variou s guises has grown into a vast subject . Th e main reason fo r the interest i n thi s topic ove r th e las t decade s i s the recognitio n o f it s connection s t o operato r theory an d linea r system s theory . Generalization s o f i t pla y a n importan t role i n H°° contro l theory . (2) Carleson' s interpolatio n theore m [Ca58 ] give s a geometri c descrip - tion o f thos e sequence s o f point s ^1,^2,^3,.. . i n th e uni t dis k havin g th e property tha t th e interpolatio n proble m f(zj) = dj, j = 1,2,3,.. . i s solv - able b y a bounde d analyti c functio n / fo r eac h bounde d sequenc e o f dat a ai,<22,a3,.... Thi s theore m ha s playe d a distinguishe d rol e i n th e stud y o f s fo r mor e tha n fort y years . Th e resul t appeare d firs t a s par t of a n effor t t o understan d H°° a s a Banac h algebra . I t i s intimately linke d to Carleson' s subsequen t solutio n o f th e coron a problem , an d i t als o le d naturally t o th e notio n o f a Carleso n , whic h late r cam e t o pla y a crucial rol e in the developmen t o f BMO. Its broad impac t i s stressed b y Pe - ter Jone s i n hi s tribute t o Carleson' s wor k i n Analysi s [Jo95] : "Thi s resul t is no w understoo d t o b e on e o f the pillar s o f functio n theory , an d i t show s up i n area s rangin g fro m th e coron a proble m t o operator theor y (an d man y places between). "

vii viii INTRODUCTIO N

(3) Th e samplin g theore m o r the Whittaker-Kotelnikov-Shannon theo - rem i n communication theor y [Sh49 ] say s that an y L 2(R) functio n / whos e Fourier transfor m /(£ ) = (2n)~ 1^2 J f(t)e~ lt^dt i s supported o n [—7r,7r] , ca n be represente d a s

The convergenc e i s both i n L 2 an d unifor m o n R , an d w e als o hav e

00 /»oo £ i^')i 2= / i/(*)i 2rf*- J=-oc J -°° The sampling theorem i s of fundamental importanc e in digital signal process- ing a s i t provide s the theoretica l foundatio n fo r digita l codin g o f continuou s waveforms an d th e decodin g o f digita l signal s (A/ D an d D/ A conversion) . *** The sequence s o f points zi, 22, £3,... describe d b y Carleson's theorem ar e called interpolating sequences. A s noted b y Shapiro and Shield s in 1961 , this notion makes sense for any reasonable space o f analytic functions. Numerou s results o n suc h sequence s hav e accumulate d sinc e that time . However , i t i s only durin g the las t decad e that result s parallelin g Carleson' s theore m hav e been foun d fo r thos e classica l space s mos t closel y relate d t o Hard y spaces , such a s Bergma n an d Dirichle t spaces . Mor e generally , thank s t o develop - ments durin g th e 1990's , th e functio n theorie s o f Bergma n an d Dirichle t spaces ar e no w o n a mor e equa l footin g wit h th e classica l H p theory . The samplin g theorem exhibit s a n exampl e o f an interpolatin g sequenc e for th e Paley-Wiene r spac e PW 2, whic h i s the spac e consistin g o f L 2 func - tions whos e Fourie r transform s ar e supporte d o n [—7r,7r] . Bu t ther e i s much mor e structure : Th e samplin g theore m show s that th e Paley-Wiene r space ha s a n orthonorma l basi s o f reproducing kernels . I n particular , ever y / G PW2 i s uniquely determine d b y it s values /(j), j G Z, an d th e L 2 nor m of / i s controlle d b y th e £ 2 nor m o f th e sequenc e o f value s f(j). I n ou r terminology, thi s mean s tha t Z i s als o a samplin g sequenc e fo r PW 2. At - tempts t o understand th e geometry o f interpolating an d samplin g sequence s for PW 2 begi n with th e wor k o f Paley an d Wiene r o n nonharmonic Fourie r series, an d ther e exist s no w a complet e an d beautifu l descriptio n o f them . The poin t o f vie w stresse d i n thi s book , tha t 'sampling ' appear s a s a dua l notion o f 'interpolation' , stem s fro m wor k b y Beurlin g i n th e lat e 1950's . Obtaining informatio n abou t th e geometr y o f interpolatin g an d samplin g sequences ca n b e viewe d a s a matter o f exploring the precis e meaning o f th e signal theoreti c phras e 'th e Nyquis t rate' . Thu s part s o f ou r stud y ca n b e given a purel y signa l theoreti c interpretation . The book i s about understandin g the geometry o f interpolating and sam - pling sequence s i n classica l Banac h space s o f analytic functions . I have ha d no intentio n t o writ e a n encyclopedia ; m y ai m ha s rathe r bee n t o describ e INTRODUCTION IX

and explai n wha t see m t o b e the mai n structura l propertie s encountere d i n the study o f such sequences . I n parts o f the book , w e take a n abstrac t poin t of vie w without specifyin g th e spac e a t hand . However , th e stag e i s mainl y occupied b y Hard y spaces , subspace s o f Hard y spaces , o r b y th e closel y related Bergma n an d Dirichle t spaces . Mos t o f th e time , w e wil l wor k i n one comple x variabl e an d i n a Hilber t spac e setting . A t firs t sight , i t ma y seem a narro w environment , bu t a s w e g o along , w e wil l se e a territor y o f considerable diversity . *** We no w giv e a n outlin e o f the content s o f the book . I n abstrac t terms , this i s mainly wha t th e boo k i s about: Le t H b e a Hilbert spac e o f analyti c functions o n som e domai n ft i n C Suppos e poin t evaluatio n / »— > f(z) i s a bounde d functiona l fo r eac h z G ft s o tha t H ha s a reproducin g kerne l

kz G H fo r eac h z G ft. Thi s mean s tha t f(z) = (/ , k z)n for eac h / G H. Let Z = (ZJ) be a sequenc e o f distinct point s fro m ft, an d conside r th e ma p 2 /i— > (f(zj)/\\k Zj ||) . Fo r which Z i s this a map into l ? Unde r the assumptio n about boundednes s fro m H t o f 2, whe n i s the ma p right-invertibl e and/o r left-invertible, o r equivalently, surjectiv e and/o r injectiv e wit h close d range ? When right-invertibilit y holds , w e sa y tha t Z i s a universa l interpolatin g sequence1 fo r H\ whe n left-invertibilit y holds , w e sa y tha t Z i s a samplin g sequence fo r H. The firs t tw o chapter s ar e reall y abou t Carleson' s theorem . Chapte r 1 presents Carleson' s theorem an d differen t approache s t o it . W e discuss Car - leson's origina l dualit y argument , th e lin k t o Carleso n measures , construc - tive proof s an d i n particula r Pete r Jones' s remarkabl y simpl e interpolatio n formula. W e sho w ho w Jones' s formul a i s linke d t o constructiv e solution s of th e d equatio n wit h L°° estimates . Th e coron a theore m i s stated , bu t not proved . W e onl y giv e a brie f indicatio n o f ho w i t i s relate d t o th e in - terpolation theore m an d solution s o f d equations . Th e chapte r end s wit h a mention o f the "Hilber t spac e approach " t o Carleson' s theorem . Chapter 2 shoul d b e viewe d mainl y a s a n investigatio n o f th e relatio n between Nevanlinna-Pic k interpolatio n an d Carleson' s theorem , bu t fro m a genera l Hilber t spac e poin t o f view . Mor e precisely , th e ai m i s t o sho w how Carleson' s theore m ca n b e viewe d a s a consequenc e o f Pick' s theorem . The chapte r ha s it s roo t i n the operato r theoreti c approac h t o Nevanlinna - Pick interpolation , pioneere d b y Sarason , an d i t i s largel y base d o n mor e recent wor k b y Agle r an d b y Marshal l an d Sundberg . Th e ide a i s to vie w the algebr a H°°(D) o f bounded analyti c function s o n the uni t dis k D a s th e multiplier algebr a o f a particula r Hilber t space , namel y H 2(D). I f Ai(H) is the multiplie r algebr a o f the Hilber t spac e H o n th e domai n ft, the n th e interpolating sequence s fo r Ai(H) ar e thos e sequence s Z = (ZJ) o f distinc t

When w e sa y tha t Z i s a n interpolatin g sequence , w e mea n tha t th e imag e o f thi s map include s £ 2. I n man y cases , ther e i s n o distinctio n betwee n interpolatin g sequence s and universa l interpolatin g sequences . X INTRODUCTION points fro m f i fo r which the interpolation proble m ip(zj) = a,j ha s a solution cp £ M(H) fo r ever y bounded sequenc e (CLJ). By Sarason' s approach , Pick' s theore m ca n b e viewe d a s a statemen t about th e multiplie r algebr a o f H 2 (D). Ther e i s a remarkably ric h clas s o f Hilbert space s H fo r whic h Pick' s theore m holds ; w e sa y that suc h space s have th e Pic k property . Thi s clas s include s iJ 2(D), th e classica l Dirichle t space, a s wel l a s so-calle d loca l Dirichle t spaces , a s show n b y Shimorin . When H ha s the Pick property, the interpolating sequence s fo r M(H) coin - cide with the universal interpolating sequences fo r H. No w Carleson's theo- s rem ca n b e viewe d a s saying that i f the ma p / H- > (f{zj)/\\kZj\\) * bounded from H 2 t o £ 2 and Z satisfie s a trivial separatio n condition , the n that ma p is also surjective. I t appears that thi s is a general phenomenon, althoug h we are not able to prove that suc h an implication holds for every H enjoyin g th e Pick property . However , a general theore m whic h i s essentially du e to B0e , shows tha t th e implicatio n hold s fo r H 2 an d th e classica l Dirichle t space . This theore m give s a striking explanatio n o f the lin k betwee n interpolatin g sequences an d Carleso n measures . Chapter 3 deal s wit h interpolatio n an d samplin g i n Bergma n spaces . The Bergma n Hilber t space s ar e example s o f Hilber t space s whic h d o no t have th e Pic k property . W e explai n wh y samplin g sequence s wer e no t en - countered unde r th e assumptio n o f th e Pic k property . Roughl y speaking , for samplin g sequence s t o exist , w e nee d th e multiplie r algebr a t o b e rela - tively smal l compare d t o th e spac e H itself . Whe n th e spac e ha s the Pic k property, the n th e multiplie r algebr a i s in a sense maximal. W e then g o on to prov e certain precis e density theorems describin g interpolatio n an d sam - pling i n Bergma n spaces . I n particular , ther e i s a critica l densit y dividin g (universal) interpolatin g sequence s fro m samplin g sequences . A n essentia l ingredient i n the proo f i s a lemma o n approximatio n o f subharmonic func - tions b y logarithm s o f modul i o f analyti c functions . W e als o poin t a t ho w this lemm a i s related t o a version o f Hormander's theore m o n weighte d L 2 estimates fo r solution s o f d equations . Th e proo f give n i n Chapte r 3 leans on work by Berndtsson and Ortega-Cerda and differ s fro m m y original proof from 1993 . Th e notio n o f density use d i n this chapte r i s a counterpart o f a density use d b y Beurlin g o n th e rea l line . W e wil l sometime s refe r t o thi s kind o f density a s a Beurling density . Chapter 4 is about interpolatio n i n the Bloch space, following a paper b y B0e and Nicolau. W e begin the chapter by a fairly extensive discussion about how interpolating sequence s shoul d reflec t th e functio n theoreti c propertie s of the spac e a t hand . Thi s discussio n reveal s the limitation s o f the genera l approach pu t forwar d i n Chapter s 2-3 . I n particular , w e giv e a definitio n of interpolating sequence s rather specifi c t o the Bloc h space, reflecting tha t the Bloc h spac e i s a Lipschit z space . I n thi s way , th e descriptio n o f inter - polating sequence s yield s precise information abou t th e "rigidity " pose d o n this Lipschit z spac e b y the analyticit y o f its elements. W e find tha t th e de- scription obtaine d i n this chapte r ca n be related directl y to the descriptio n INTRODUCTION XI of interpolating sequence s fo r Dirichle t typ e space s i n Chapte r 2 . However , there seem s to b e n o simpl e relation betwee n th e tw o kind s o f interpolatio n problems. Th e proo f i n Chapter 4 relies very much on the functio n theor y o f the Bloc h space . Th e probabilisti c interpretatio n o f the Bloc h spac e enter s the proof , an d w e mak e us e o f Jones' s constructiv e solutio n o f d equation s from Chapte r 1 . The tw o fina l chapter s ar e essentiall y abou t th e Paley-Wiene r space . In Chapte r 5 , w e interpre t th e Paley-Wiene r spac e a s a subspac e o f H 2 invariant wit h respec t t o th e backwar d shift . Thi s mean s tha t i t ha s th e form Kj — H2 0 ZiJ 2, wit h 1 a n inne r function . W e the n discus s interpo - lation an d samplin g i n Kj fo r X a n arbitrar y inne r function , followin g a n approach o f Nikolsk i an d relyin g o n a basi c discover y o f Pavlov . W e begi n by observing that w e have reached anothe r extrem e compared t o the Hilber t spaces havin g th e Pic k property : No w th e multiplie r algebr a i s trivial, i.e. , it consist s onl y o f constan t functions . W e fin d tha t w e nee d th e multiplie r algebra t o b e trivia l t o hav e sequence s bein g simultaneousl y interpolatin g and samplin g sequences . A descriptio n o f interpolatio n an d samplin g i s then give n i n term s o f invertibilit y criteri a fo r Toeplit z operators . Her e the Helson-Szeg o conditio n appear s vi a th e Widom-Devinat z theore m o n invert ibility o f Toeplitz operators . Th e chapte r end s wit h a mention o f sev - eral long-standin g problem s relate d t o ou r descriptio n o f interpolatio n an d sampling., Chapter 6 is more specificall y abou t th e Paley-Wiener space . Th e chap - ter begin s wit h simpl e proof s o f basi c results , suc h a s the Plancherel-Poly a inequality, th e samplin g theorem , an d th e Paley-Wiene r theorem . W e the n state the theorem describing interpolation an d sampling in the Paley-Wiene r space. A simpl e versio n o f th e proo f i s give n fo r th e specia l cas e o f point s located i n a half-plane . Thi s proo f essentiall y reduce s t o th e on e give n i n Chapter 5 . Th e genera l cas e require s som e additiona l technicalities , bu t i s included fo r th e sak e o f completeness . I t i s then show n ho w th e condition s of th e theore m ca n b e applied . W e deduc e Kadets' s 1/ 4 theorem , an d a basic inequalit y o f Henr y Landau , vi a th e Helson-Szeg o conditio n an d th e John-Nirenberg theorem . W e als o sho w ho w the condition s lea d t o approx - imation problem s simila r t o the on e considere d i n Chapte r 3 , and ho w suc h problems ca n b e deal t wit h t o gai n informatio n abou t sequence s "a t th e Nyquist density" . What w e cal l the Paley-Wiene r spac e i s reall y th e simples t spac e i n a wide class o f Paley-Wiener spaces , define d a s follows . Le t S b e an arbitrar y measurable subse t o f R n, an d le t PW 2(S) denot e th e spac e o f function s whose Fourie r transform s ar e supporte d o n S. I n Chapte r 6 , w e mentio n the mos t basi c resul t abou t interpolatio n an d samplin g i n thi s genera l set - ting, namel y th e necessar y densit y condition s o f Henry Landa u i n term s o f Beurling densities . W e presen t th e cor e o f Landau's argument . I n particu - lar, thi s give s a mor e genera l versio n o f th e inequalit y obtaine d b y mean s of the John-Nirenber g theorem . W e mentio n som e othe r result s an d poin t Xll INTRODUCTION at possibl e direction s fo r futur e research . Ther e ar e a number o f interestin g and difficul t problem s relate d to interpolation an d samplin g i n more genera l Paley-Wiener spaces , bot h i n on e an d severa l variables . An oversimplified bu t rather illuminating way of summarizing the "Hilber t space part " o f the book , Chapter s 2- 3 and 5-6 , i s a s follows : • Unde r th e presenc e o f the Pic k property , th e geometr y o f interpo - lating sequence s depend s o n th e geometr y o f Carleso n measures ; no samplin g sequence s exist . • Whe n th e multiplie r algebr a i s "small " bu t nontrivial , Beurlin g densities divid e interpolatin g sequence s fro m samplin g sequences . • I f the multiplie r algebr a i s trivial, i t ma y occu r tha t a sequenc e i s both a n interpolatin g sequenc e an d a samplin g sequence . The n what matters , beside s Beurlin g densities , i s t o wha t exten t se - quences deviat e fro m certai n regula r sequence s (a s Z i n the cas e o f PW2), wit h th e deviatio n measure d i n term s o f the Helson-Szeg o condition. *** I hav e trie d t o mak e th e boo k essentiall y self-contained . I assum e th e reader i s familiar with the basics o f H p theor y a s found i n any o f the standar d books by Duren [Du70] , Garnett [Gar81] , or Koosis [Koo98]. I also assume the reader know s about BMO , includin g the H 1-BMO duality , whic h i s used at on e place . Chapter s I-I V an d V I o f Garnett's boo k shoul d giv e sufficien t background, i n addition t o basi c knowledge o f complex an d functiona l anal - ysis. Wit h fe w exceptions , al l results state d ar e give n self-containe d proofs . The mos t significan t exceptio n i n additio n t o Carleson' s coron a theore m i s found i n Chapte r 2 , wher e I decide d no t t o includ e a proo f o f Parrott' s lemma. Thi s i s a n operato r theoreti c resul t whic h enter s th e proo f tha t a variety o f Hilbert space s hav e the Pic k property . Parrott' s lemm a i s closel y related t o th e celebrate d Sz.-Nagy-Foia s commutan t liftin g theorem . M y decision reflect s tha t Chapte r 2 touches a n operator-theoreti c fiel d studie d in dept h i n a recen t monograp h b y Agle r an d McCarth y [AgMc02] . Par - rott's lemm a an d muc h mor e relate d t o th e Pic k propert y ca n b e foun d i n that book . The si x chapters ar e sectione d int o what I refe r t o a s paragraphs, num - bered 0,1, 2,.. in each chapter. Th e reader wil l probably recogniz e the origi n of the tex t a s a se t o f lecture notes , with th e paragraph s makin g u p a blen d of informal explanation s wit h technica l details . Eac h paragrap h i s intende d to be a logical unit; paragraph s ar e rarely mor e than tw o pages. I found thi s a usefu l wa y o f organizin g th e materia l whe n preparin g th e lectures , an d I hope i t ma y hel p th e reade r t o fin d hi s o r he r wa y throug h th e si x storie s that I try t o tell . Bibliography

[AH96] D . R. Adams & L. I. Hedberg, Function Spaces and Potential Theory, Grundlehre n der Mathematische n Wissenschafte n [Fundamenta l Principle s o f Mathematica l Sci - ences] 314 , Springer-Verlag , Berlin , 1996 . [Ag86] J . Agler , Interpolation, Preprint , 1986 . [AgMcOO] J . Agle r & J. E . McCarthy, Complete Nevanlinna-Pick kernels, J . Funct . Anal . 175 (2000) , 111-124 . [AmMcOl] J . Agle r & J. E . McCarthy , Interpolating sequences on the bidisk, Internat . J . Math. 1 2 (2001) , 1103-1114 . [AgMc02] J . Agle r & J . E . McCarthy , Pick interpolation and Hilbert Function Spaces, Graduate Studie s i n Mathematics 44 , Amer . Math . Soc , Providenc e RI , 2002 . [A194] A . Aleksandrov , A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, (Russian ) Zap . Nauchn . Sem . St . Peters - burg. Otdel . Mat . Inst . Steklov . (POMI ) 21 7 (1994) , Issled . p o Linein . Oper . i Teor . Funktsii. 22, 26-35, 218; translation in J. Math. Sci . (New York) 85 (1997) , 1773-1778. [Am76a] E . Amar , Ensembles d'interpolation dans le spectre d'une algebre d'operateurs, These, Univ . Pari s X I (Paris-Sud) , Orsay , 1976 . [Am76b] E . Amar , Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de C n, Canad . J . Math . 3 0 (1978) , 711-737 . [AmMe02] E . Ama r & C . Menini , A counterexample to the for operators on H 2(Bn), Pacifi c J . Math . 20 6 (2002) , 257-268. [ACP74] J . M . Anderson, J . Clunie , Sz Ch. Pommerenke, On Bloch functions and normal functions, J . Rein e Angew . Math . 27 0 (1974) , 12-37 . [ARS02] N . Arcozzi , R . Rochberg , & E . Sawyer , Carleson measures for analytic Besov spaces, Rev . Mat . Iberoamerican a 1 8 (2002) , 443-510 . [Av74] S . A . Avdonin , On the question of Riesz bases of exponential functions in L 2, (Russian) Vestni k Leningrad . Univ . Ser . Mat . 1 3 (1974) . [AI95] S . A . Avdoni n & S . A . Ivanov , Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridg e Universit y Press, Cambridge , 1995 . [Ax92] S . Axler, Interpolation by multipliers of the Dirichlet space, Quart. J. Math. Oxfor d Ser. (2 ) 4 3 (1992) , 409-419. [AG90] S . Axler & P. Gorkin , Sequences in the maximal ideal space of H°°, Proc . Amer . Math. Soc . 10 8 (1990) , 731-740 . [Be85] B . Berndtsson, Interpolating sequences for H°° in the ball, Nederl. Akad. Wetensch . Indag. Math . 4 7 (1985) , 1-10 . [B095] B . Berndtsson & J. Ortega-Cerda, On interpolation and sampling in Hilbert spaces of analytic functions, J . Rein e Angew . Math . 46 4 (1995) , 109-128 . [BT79] C . A . Berenstei n & B . A . Taylor , A new look at interpolation theory for entire functions of one variable, Adv . i n Math. 3 3 (1979) , 109-143 . [Be49] A . Beurling , On two problems concerning linear operators in Hilbert space, Act a Math. 8 1 (1949) , 239-255.

125 126 BIBLIOGRAPHY

[Be66] A . Beurling , Local harmonic analysis with some applications to differential opera- tors, Som e Recen t Advance s i n the Basi c Sciences , Vol . 1 , Yeshiva Univ. , Ne w York , 1966, pp. 109-125 . [Be89] A . Beurling , The Collected Works of Arne Beurling. Vol 2 Harmonic analysis, Edited b y L . Carleson , P . Malliavin , J . Neuberge r an d J . Wermer , Contemporar y Mathematicians, Birkhause r Boston , Inc. , Boston, 1989 , pp. 341-365. [Bi94] C . Bishop , Interpolating sequences for the Dirichlet space and its multipliers, Preprint, 1994 . [B0O3] B . B0e , An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel, Preprint, 2003 . [B0O2] B . B0e, Interpolating sequences for Besov spaces, J. Funct . Anal . 192 (2002) , 319- 341. [BN02] B . B0e & A. Nicolau, Interpolation by functions in the Bloch space, Preprint, 2002 . [Bon90] F . F. Bonsall, A new proof of GarneWs theorem on harmonic interpolation, Bull . London Math . Soc . 22 (1990) , 171-175 . [Bor98] A . Borichev, Invariant subspaces of given index in Banach spaces of analytic func- tions, J . Rein e Angew . Math . 50 5 (1998) , 23-44 . [Bou86] J . Bourgain , A problem of Douglas and Rudin on factorization, Pacifi c J . Math . 121 (1986) , 47-50. [dB68] L . d e Branges , Hilbert Spaces of Entire Functions, Prentic e Hal l Inc. , Englewoo d Cliffs, N.J. , 1968 . [BrOl] J . Bruna , Sampling in complex and harmonic analysis, Europea n Congr . o f Math., Vol. I (Barcelona , 2000) , Progr. Math . 201 , Birkhauser, Basel , 2001 , pp. 225-246 . [BP89] J . Bruna & D. Pascuas, Interpolation in A~°°, J . London Math. Soc. (2) 40 (1989) , 452-466. [Ca50] L . Carleson, On a Class of Meromorphic Functions and Its Exceptional Sets, The - sis, Universit y o f Uppsala, 1950 . [Ca58] L . Carleson , An interpolation problem for bounded analytic functions, Amer . J . Math. 8 0 (1958) , 921-930 . [Ca62a] L . Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. o f Math. 76 , 547-559 . [Ca62b] L . Carleson, Interpolations by bounded analytic functions and the corona problem, Proc. Internat . Congr . Math . Stockhol m 1962 , 314-316. [CWW85] S.-Y . A . Chang , J . M . Wilson , & T . Wolff , Some weighted norm inequalities concerning the Schrodinger operators, Comment . Math . Helv . 60 (1985) , 217-246 . [Ch91] M . Christ , On the d equation in weighted L 2 norms in C 1, J . Geom . Anal . 1 (1991), 193-230 . [CR00] J . A . Cima & W. T. Ross, The Backward Shift on the Hardy Space, Math. Survey s Monographs 79 , Amer . Math . Soc , Providenc e R.I. , 2000 . [C172] D . Clark , One dimensional perturbations of restricted shifts, J . Anal . Math . 2 5 (1972), 169-191 . [Co82j W . Cohn , Carleson measures for functions orthogonal to invariant subspaces, Pa - cific J . Math . 10 3 (1982) , 347-364 . [C086] W . Cohn , Carleson measures and operators on star-invariant subspaces, J . Oper - ator Theor y 15 , 181-102 . [Co93] W . Cohn , Interpolation and multipliers on Besov and Sobolev spaces, Comple x Variables Theor y Appl . 2 2 (1993) , 35-45. [CR80] R . R . Coifma n & R . Rochberg , Representation theorems for holomorphic and harmonic functions in L p, Asterisqu e 7 7 (1980) , 1-66 . [Da92] I . Daubechies , Ten Lectures on Wavelets, CBMS-NS F Regiona l Conferenc e Serie s in Applie d Mathematics , Vol . 61, SIAM, Philadelphia , 1992 . [De64] A . Devinatz, Toeplitz operators on H2 spaces, Trans. Amer. Math. Soc. 112 (1964) , 304-317. BIBLIOGRAPHY 127

[DR69] R . G . Dougla s & W. Rudin , Approximation by inner functions. Pacifi c J . Math . 31 (1969) , 313-320 . [DSS70] R . G . Douglas , H . S . Shapiro , & A . L . Shields , Cyclic vectors and invariant subspaces for the backward shift operator, An n Inst . Fourie r (Grenoble ) 2 0 (1970) , 37-76. [DrOl] D . Drasin, Approximation of subharmonic functions with applications, i n "Approx - imation, Comple x Analysis , an d Potentia l Theory " (Montreal , QC , 2000) , 163-189 , NATO Sci . Ser . I I Math . Phys . Chem . 37 , Kluwe r Acad . Publ. , Dordrecht , 2001 . [DS52] R . J . Duffi n & A . C . Schaeffer , A class of nonharmonic Fourier series, Trans . Amer. Math . Soc . 72 (1952) , 341-366 . [Du70] P . L . Duren, Theory of H p spaces, Academi c Press , New York-London, 1970 . [DS04] P . L. Duren & A. P. Schuster, Bergman Spaces, Mathematica l Survey s and Mono - graphs, Amer . Math . Soc , Providenc e RI , 2004 . [DW71] P . L. Duren & D. L. Williams, Interpolation problems in function spaces, J. Funct . Anal. 9 (1972) , 75-86 . [Ea70] J . P . Earl , On the interpolation of bounded sequences by bounded functions, J . London Math . Soc . 2 (1970) , 544-548. [Ea76] J . P . Earl, A note on bounded interpolation in the unit disc, J . Londo n Math . Soc . 13 (1976) , 419-423. [Fe69] H . Federer , Geometric Measure Theory, Springer-Verlag , Ne w York , 1969 . [Fe71] C . Fefferman , The multiplier problem for the ball, Ann. o f Math. 9 4 (1971) , 330 - 336. [FS72] C . Fefferman & E. M. Stein, H p spaces in several variables, Act a Math. 129 (1972) , 137-193. [F198] K . Flornes , Sampling and interpolation in the Paley-Wiener spaces L^,0 < p < 1 , Publ. Mat . 4 2 (1998) , 103-118 . [Fu74j B . Fuglede , Commuting self-adjoint partial differential operators and a group the- oretic problem, J . Funct . Anal . 1 6 (1974) , 101-121 . [Gam80] T . W . Gamelin , Wolff's proof of the corona theorem, Israe l J . Math . 3 7 (1980) , 113-119. [Gar71] J . B . Garnett , Interpolating sequences for bounded harmonic functions, Indian a Univ. Math . J . 2 1 (1971/1972) , 187-192 . [Gar81] J . B . Garnett, Bounded Analytic Functions, Academi c Press , Ne w York , 1981 . [GJ82] J . B . Garnett & P. W. Jones , BMO from dyadic BMO, Pacifi c J . Math. 9 9 (1982) , 351-371. [GGJ83] J . B . Garnett , F . W . Gehring , & P . W . Jones , Conformally invariant length sums, Indian a Univ . Math . J . 3 2 (1983) , 809-829 . [GN96] J . B. Garnett Sz A. Nicolau, Interpolating Blaschke products generate H°°, Pacifi c J. Math . 17 3 (1996) , 501-510 . [Gi94] M . A . Girnyk , Approximation of functions subharmonic in a disk by the logarithm of the modulus of an analytic function, (Russian ) Ukrai'n . Mat . Zh . 46 (1994) , 1080 - 1083; translation i n Ukrainian Math . J . 4 6 (1996) , 1188-1192 . [GR96] K . Grocheni g Sz H. Razafinjatovo, On Landau's necessary conditions for sampling and interpolation of band-limited functions, J . Londo n Math. Soc . (2 ) 54 (1996) , 557- 565. [Ha49] G . H . Hardy , Divergent Series, Clarendo n Press , Oxford , 1949 . [HMNT03] A . Hartmann , X . Massaneda , A . Nicolau , & P. Thomas , Interpolation in the Nevanlinna class and harmonic majorants, Preprint , 2003 . [HS03] A . Hartman n & K . Seip , Extremal functions as divisors for kernels of Toeplitz operators, J . Funct . Anal . 20 2 (2003) , 342-362 . [Ha75] W . W . Hastings , A Carleson measure theorem for Bergman spaces, Proc . Amer . Math. Soc . 5 2 (1975) , 237-241 . 128 BIBLIOGRAPHY

[HN94] V . P . Havi n & N . K . Nikolski , Linear and Complex Analysis. Problem Book 3. Part II. Lectur e Note s i n Mathematics 1574 , Springer-Verlag , Berlin , 1994 . [Ha58] W . K . Hayman , Interpolation by bounded functions, Ann . Inst . Fourier . Grenobl e 8 (1958) , 277-290 . [He91] H . Hedenmalm , A factorization theorem for square area-integrable analytic func- tions, J . Rein e Angew . Math . 42 2 (1991) , 45-68. [He93] H . Hedenmalm, An invariant subspace of the Bergman space having the codimen- sion two property, J . Rein e Angew . Math . 44 3 (1993) , 1-9 . [HKZ00] H . Hedenmalm, B . Korenblum, Sz K. Zhu , Theory of Bergman Spaces, Graduat e Texts i n Mathematics 199 , Springer-Verlag , Ne w York, 2000 . [HRS96] H . Hedenmalm , S . Richter , & ; K. Seip , Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J . Rein e Angew . Math . 47 7 (1996) , 13-30. [HS60] H . Helso n Sz G. Szego , A problem in prediction theory, Ann . Mat . Pur a Appl . 5 1 (1960), 107-138 . [He62] C . S . Herz , Fourier transforms related to convex sets, Ann . o f Math . 7 5 (1962) , 81-92. [Hi85] J . R . Higgins , Five short stories about the cardinal series, Bull . Amer . Math . Soc . 12 (1985) , 45-89. [Hj04] G . A . Hjelle , i n preparation . [H667] L . Hormander, Generators for some rings of analytic functions, Bull . Amer. Math . Soc. 7 3 (1967) , 943-949 . [H673] L . Hormander, An Introduction to Complex Analysis in Several Variables, Secon d Edition, North-Hollan d Publ . Co. , Amsterdam, 1973 . [Ho74] C . Horowitz, Zeros of functions in the Bergman spaces, Duk e Math. J . 41 (1974) , 693-710. [Hr79] S . V . Hruscev , Perturbation theorems for bases consisting of exponentials and the Muckenhoupt condition, (Russian ) Dokl . Akad . Nau k SSS R 24 7 (1979) , 44-48. [HNP81] S . V . Hruscev , N . K . Nikol'skh , & B . S . Pavlov , Unconditional bases of expo- nentials and reproducing kernels, i n "Comple x Analysi s an d Spectra l Theory " (V . P . Havin an d N . K . Nikol'skii , Eds.), Lecture Note s i n Mathematics, Vol . 864 , Springer - Verlag, Berlin , 1981 . [In34] A . E. Ingham, A note on Fourier transforms, J . London Math. Soc . 9 (1934) , 29-32. [IKT01] A . Iosevich , N . H . Katz , & T. Tao , Convex bodies with a point of curvature do not have Fourier bases, Amer. J . Math . 12 3 (2001) , 115-120 . [JN84] N . S . Jayan t & P . Noll , Digital Coding of Waveforms, Prentice-Hal l Inc. , Engle - wood Cliffs , N.J. , 1984 . [JMT96] M . Jevtic , X . Massaneda , & P. J . Thomas , Interpolating sequences for weighted Bergman spaces of the ball, Michigan Math . J . 43 (1996) , 495-517. [JN61] F . Joh n & L. Nirenberg , On functions of bounded mean oscillation, Comm . Pur e Appl. Math . 1 4 (1961) , 415-426 . [Jo80] P . W . Jones , Carleson measures and the Fefferman-Stein decomposition of BMO(i?) Ann . o f Math. (2 ) 11 1 (1980) , 197-208 . [Jo81] P . W. Jones , Ratios of interpolating Blaschke products, Pacifi c J . Math . 95 (1981) , 311-321. [Jo83] P . W . Jones , L° ° estimates for the d problem in a half-plane, Act a Math . 15 0 (1983), 137-152 . [Jo95] P . W. Jones , Lennart Carleson's work in analysis, Festschrif t i n honour o f Lennar t Carleson an d Yngv e Doma r (Uppsala , 1993) , 17-28 , Acta Univ . Upsaliensi s Skr . Up - psala Univ . C Organ. Hist. , 58 , Uppsala Univ. , Uppsala , 1995 . [Ka64] I . M. Kadets, The exact value of the Paley-Wiener constant, (Russian ) Dokl . Akad. Nauk SSS R 15 5 (1964) , 1253-1254 . BIBLIOGRAPHY 129

[KS88] R . Kerma n & E . Sawyer , Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer . Math . Soc . 309 (1988) , 87-98. [Koo98] P . Koosis, Introduction to H p Spaces, Secon d edition, Cambridg e Tracts in Math - ematics 115 , Cambridg e Universit y Press, Cambridge , 1998 . With tw o appendices b y V. P . Havin , translate d t o Englis h fro m th e Russia n edition , MI R Editors , Mosco w 1984. [KooOO] P . Koosis , Carleson 's interpolation theorem deduced from a result of Pick, Com - plex Analysis , Operators , an d Relate d Topics , 151-162 , Oper . Theor y Adv . Appl . 113, Birkhauser , Basel , 2000 . [Kor75] B . Korenblum , An extension of the Nevanlinna theory, Act a Math . 13 5 (1975) , 187-219. [Lab02] I . Laba , The spectral set conjecture and multiplicative roots of polynomials, J . London Math . Soc . 65 (2002) , 661-671 . [Lan67a] H . J . Landau , Necessary density conditions for sampling and interpolation of certain entire functions, Act a Math . 11 7 (1967) , 37-52. [Lan67b] H . J . Landau , Sampling, data transmission, and the Nyquist rate, Proc . IEE E 55, 1701-1706 . [Le61] B . Ya . Levin , On bases of exponentials in I?, zap . Har'ko v Gos . Univ . i Har'ko v Math. Obsc . 2 7 (1961) , 39-48. [Le96] B . Ya. Levin Lectures on Entire Functions, Transl . Math. Monograph s 150 , Amer . Math. Soc , Providence , RI , 1996 . [LiOl] N . Lindholm , Sampling in weighted L p spaces of entire functions in C n and esti- mates of the Bergman kernel, J . Funct . Anal . 18 2 (2001) , 390-426 . [Lu81] D . Luecking , Inequalities on Bergman spaces, Illinoi s J . Math . 2 5 (1981) , 1-11 . [Lu83] D . Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer . Math . Soc . 87 (1983) , 656-660 . [LuOO] D . Luecking, Sampling measures for Bergman spaces on the unit disk, Math. Ann . 316 (2000) , 659-679. [LM01] Yu . Lyubarski i & E . Malinnikova , Approximation of subharmonic functions, J . Anal. Math . 8 3 (2001) , 121-149 . [LROO] Yu . Lyubarski i & A . Rashkovskii , Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons, Ark . Mat . 3 8 (2000) , 139-170 . [LS94] Yu . Lyubarski i & K. Seip , Sampling and interpolation of entire functions and ex- ponential systems in convex domains, Ark . Mat . 3 2 (1994) , 157-193 . [LSe97a] Yu . Lyubarski i & K . Seip , Complete interpolating sequences for Paley-Wiener spaces and MuckenhoupVs (A p) condition, Rev . Mat. Iberoamerican a 1 3 (1997) , 361- 376. [LSe97b] Yu . Lyubarski i & K . Seip , Sampling and interpolating sequences for multiband- limited functions and exponential bases on disconnected sets, J . Fourie r Anal . Appl. 3 (1997), 597-615 . [LSp96] Yu . Lyubarski i & I. Spitkovsky , Sampling and interpolation for a lacunary spec- trum, Proc . Roy . Soc . Edinburgh Sect . A 12 6 (1996) , 77-87 . [Mak89] N . Makarov, Probability methods in the theory of conformal mappings, (Russian ) Algebra i Analiz 1 (1989) , 3-59; translation i n Leningra d Math . J . 1 (1990) , 1-56 . [MMO03] N . Marco , X . Massaneda , & J . Ortega-Cerda , Interpolating and sampling se- quences for entire functions, Geom . Funct . Anal . 1 3 (2003) , 862-914 . [Mar74] D . E . Marshall , An elementary proof of the Pick-Nevanlinna theorem, Michiga n Math. J . 2 1 (1974) , 219-233. [MS96] D . E . Marshal l & A. Stray , Interpolating Blaschke products, Pacifi c J . Math . 17 3 (1996), 491-499 . [MS93] D . E . Marshal l & C . Sundberg , Interpolating sequences for the multipliers of the Dirichlet space, Preprin t 1993 . Availabl e a t http://www.math.washington.edu/~marshall/preprints/preprints.html 130 BIBLIOGRAPHY

[MTOO] X . Massaned a & P . Thomas , Interpolating sequences for Bargmann-Fock spaces in C n, Indag . Math . (N.S. ) 1 1 (2000) , 115-127 . [Maz62] V . G . Maz'ya , The negative spectrum of the higher-dimensional Schrdinger oper- ator (Russian ) Dokl . Akad . Nau k SSS R 14 4 (1962) , 721-722 . [Maz64] V . G . Maz'ya , On the theory of the higher-dimensional Schrodinger operator (Russian) Izv . Akad . Nau k SSS R Ser . Mat . 2 8 (1964) , 1145-1172 . [McCa03] J . E . McCarthy , Pick's theorem - what's the big deal?, Amer. Math . Monthl y 110 (2003) , 36-45. [McCa04] J . E . McCarthy , Hilbert spaces of Dirichlet series and their multipliers, Trans . Amer. Math . Soc , t o appear . [McCu] S . McCullough , The local de Branges-Rovnyak construction and complete Nevanlinna-Pick kernels, i n "Algebrai c Method s i n Operato r Theory" , pp . 15-24 , Birkhauser Boston , Boston , MA , 1994 . [Mi91] A . M . Minkin , The reflection of indices and unconditional bases of exponentials (Russian) Algebr a i Anali z 3 (1991) , 109-134 ; transl . i n St . Petersbur g Math . J . 3 (1992), 1043-1068 . [MoOO] R . Mortini , Interpolating sequences in the spectrum of H°°. I. Proc. Amer. Math . Soc. 12 8 (2000) , 1703-1710 . [Na93] T . Nakazi , Toeplitz operators and weighted norm inequalities, Act a Sci . Math . (Szeged) 5 8 (1993) , no . 1-4 , 443-452 . [Na90] J . Narita , Interpolating sequences on plane domains, Koda i Math . J . 1 3 (1990) , no. 3 , 311-31 6 [NV02] F . Nazaro v Sz A. Volberg , Bellman function, two weighted Hilbert transform, and embeddmgs of the model spaces KQ, J. Anal . Math . 8 7 (2002) , 385-414 . [Neval9] R . Nevanlinna , Uber beschrdnkte Funktionen, die in gegebenen Punkten vorgeschrieben Werte annehmen, Ann . Acad . Sci . Fenn. Ser . A 13 (1919) , N o 1 . [Neva29] R . Nevanlinna , Uber beschrdnkte analytische Funktionen, Ann . Acad . Sci . Fenn . Ser. 3 2 (1929) , N o 7 . [Nevi77] C . W . Neville , A short proof of an inequality of Carleson's, Proc . Amer . Math . Soc. 65 (1977) , 131-132 . [Ne59] D . J. Newman, Interpolation in H°° , Trans . Amer. Math. Soc . 92 (1959) , 501-507. [NOS03] A . Nicolau , J . Ortega-Cerda , & K . Seip , The constant of interpolation, Pacifi c J. Math. , t o appear . [Ni80] N . K. Nikol'skh, Bases of exponentials and values of reproducing kernels, (Russian ) Dokl. Acad . Nau k SSS R 25 2 (1980) , 1316-1320 . [Ni86] N . K . Nikolskii , Treatise on the Shift Operator. Spectral Function Theory. Wit h an appendi x b y S . V. Hrusce v an d V . V. Peller . Translated fro m th e Russia n b y Jaa k Peetre. Grundlehre n de r Mathematische n Wissenschafte n [Fundamenta l Principle s o f Mathematical Sciences ] 273 , Springer-Verlag , Berlin , 1986 . [Ni02] N . Nikolski, Operators, Functions, and Systems: An Easy Reading. Vol. 1-2, Trans- lated fro m th e French by Andreas Hartmann an d revised b y the author, Mathematica l Surveys an d Monograph s 92-93 , Amer . Math . Soc , Providence , RI , 2002 . [Or98] J . Ortega-Cerda , Sampling measures, Publ . Mat . 4 2 (1998) , 559-566 . [Or02] J . Ortega-Cerda , Multipliers and weighted d estimates, Rev . Mat . Iberoamerican a 18 (2002) , 355-377. [Or04] J . Ortega-Cerda , i n preparation . [OS99] J . Ortega-Cerd a & K . Seip , Multipliers for entire functions and an interpolation problem of Beurlmg, J . Funct . Anal . 16 2 (1999) , 400-415. [OS02] J . Ortega-Cerd a k K . Seip , Fourier frames, Ann . o f Math . (2 ) 15 5 (2002) , 789 - 806. [OS03] J . Ortega-Cerd a & K . Seip , Harmonic measure and uniform densities, Preprin t 2003. Availabl e a t http://www.math.ntnu.no/~seip/recentpapers.html . BIBLIOGRAPHY 131

[PW34] R . E . A . C . Pale y & N . Wiener , Fourier Transforms in the Complex Domain, Amer. Math . Soc , New York, 1934 . [Par78] S . Parrott, On a quotient norm and the Sz.-Nagy-Foias lifting theorem, J . Funct . Anal. 3 0 (1978) , 311-328. [Pav79] B . S . Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt, Dokl . Akad . Nau k SSS R 247 (1979) , 37-40 . }Pil6] G . Pick , Uber die Beschrdnkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math . Ann . 7 7 (1916) , 7-23. [PP36] A . Planchere l & ; G . Polya , Fonctions entieres et integrales Fourier multiples, Comm. Math . Helv . 1 0 (1936) , 110-163 . [Qu93] P . Quiggin , For which reproducing kernel Hilbert spaces is Pick's theorem true?, Integral Equation s Operato r Theor y 1 6 (1993) , 244-266 . [RaSt95] J . Ramanatha n & T . Steger , Incompleteness of sparse coherent states, Appl . Comp. Harm . Anal . 2 (1995) , 350-354 . [Re02] C . Remling , Schrodinger operators and de Branges spaces, J . Funct . Anal . 19 6 (2002), 323-394 . [Ri91] S . Richter , A representation theorem for cyclic analytic two-isometries, Trans . Amer. Math . Soc . 328 (1991) , 325-349 . [RiSu92] S . Richter & C. Sundberg , Multipliers and invariant subspaces in the Dirichlet space, J. Operato r Theor y 2 8 (1992) , 167-186 . [Ro77] R . Rochberg, Toeplitz operators on weighted H p spaces. Indiana Univ . Math. J. 2 6 (1977), 291-298 . [Ro82] R . Rochberg , Interpolation by functions in Bergman spaces, Michigan Math. J . 2 9 (1982), 229-236 . [Ro85] R . Rochberg , Decomposition theorems for Bergman spaces and their applications, in "Operator s an d Functio n Theory " (Lancaster , 1984) , NATO Adv . Sci . Inst. Ser . C Math. Phys . Sci. , 153 , Reidel , Dordrecht , 1985 , pp. 225-277 . [RW93] R . Rochber g & Z. Wu, A new characterization of Dirichlet type spaces and appli- cations, Illinoi s J . Math . 3 7 (1993) , 101-122 . [RS02] W . T . Ros s & H . S . Shapiro , Generalized Analytic Continuation, Universit y Lec - ture Serie s 25 , Amer . Math . Soc , Providence , RI , 2002 . [Ru73] W . Rudin , Functional Analysis, McGraw-Hill , Ne w York-Diisseldorf-Johannes - burg, 1973 . [Sa67] D . Sarason, Generalized interpolation in H°°, Trans . Amer. Math. Soc . 127 (1967) , 179-203. [Sc99] A . P . Schuster , Interpolation by Bloch functions, Illinoi s J . Math . 4 3 (1999) , 677 - 691. [ScOO] A . P . Schuster , On Seip's description of sampling sequences for Bergman spaces. Complex Variable s Theor y Appl . 42 (2000) , 347-367. [SV02] A . P . Schuste r & D . Varolin , Sampling sequences for Bergman spaces for p < 1 , Complex Var . Theor y Appl . 47 (2002) , 243-253. [SV03] A . P . Schuste r & D . Varolin , Interpolation and sampling on Riemann surfaces, Preprint, 2003 . [SS98] A . P . Schuster & K. Seip , A Carleson-type condition for interpolation in Bergman spaces, J . Rein e Angew . Math . 49 7 (1998) , 223-233. [SS00] A . P. Schuster & K. Seip , Weak conditions for interpolation in holomorphic spaces, Publ. Mat . 44 (2000) , 277-293. [Sei92] K . Seip , Density theorems for sampling and interpolation in the Bargmann-Fock space I, J . Rein e Angew . Math . 42 9 (1992) , 91-106 . [Sei93a] K . Seip , Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer . Math . Soc . 11 7 (1993) , 213-220 . [Sei93b] K . Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993) , 21-39. 132 BIBLIOGRAPHY

[Sei95a] K . Seip , On Korenblum's density condition for the zero sequences of A a , J . Anal. Math . 6 7 (1995) , 307-322 . [Sei95b] K . Seip , On the connection between exponential bases and certain related se- quences m L 2(-7r,7r), J . Funct . Anal . 13 0 (1995) , 131-160 . [Sei95c] K . Seip , A simple construction of exponential bases in L 2 of the union of several intervals, Proc . Edinburg h Math . Soc . (2 ) 3 8 (1995) , 171-177 . [Sei98] K . Seip , Developments from nonharmonic Fourier series, Proceeding s o f the Inter - national Congres s o f Mathematicians, Vol . II (Berlin , 1998) . Doc. Math. 1998 , Extr a Vol. II, 713-72 2 [SW92] K . Sei p an d R . Wallsten , Density theorems for sampling and interpolation in the Bargmann-Fock space II, J . Rein e Angew . Math . 42 9 (1992) , 107-113 . [Ser02] A . Serra, Interpolation problems in Local Dirichlet spaces, PhD Thesis , Universit y of California , Berkeley , 2002 . [Sh49] C . Shannon , Communication in the presence of noise, Proc . I.R.E . 46 , (1949) . 10-21. [SS61] H . S . Shapiro & A. L . Shields , On some interpolation problems for analytic func- tions, Amer . J . Math . 8 3 (1961) , 513-532 . [SS62] H . S. Shapiro & A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math . Z . 80 (1962) , 217-229 . [Sh02] S . Shimorin, Complete Nevanlinna-Pick property of Dirichlet-type spaces, J. Funct . Anal. 19 1 (2002) , 276-296 . [St72] A . Stray, Interpolation by analytic functions, Pacifi c J . Math . 42 (1972) , 527-533. [St80] D . A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math . 2 4 (1980) , 113- 139. [Su84] C . Sundberg , Values of BMOA functions on interpolating sequences, Michiga n Math. J . 3 1 (1984) , 21-30. [SW83] C . Sundber g & T. Wolff , Interpolating sequences for QAB, Trans . Amer . Math . Soc. 27 6 (1983) , 551-581 . [Ta03] T . Tao , Fuglede's conjecture is false in 5 and higher dimensions, Preprin t 2003 , available a t http://www.arxiv.org/abs/math.CO/0306134 . [Th95] J . E . Thomson , Bounded point evaluations and polynomial approximation, Proc . Amer. Math . Soc . 12 3 (1995) , 1757-1761. [Th91] J . E . Thomson, Approximation in the mean by polynomials, Ann . o f Math. (2 ) 13 3 (1991), 477-507 . [Tr02] S . Treil , Estimates in the Corona Problem and ideals of H 00: A problem of T. Wolff, J. Anal . Math . 8 7 (2002) , 481-495. [TV86] S . R . Trei l & A . L . Volberg , Embedding theorems for invariant subspaces of the inverse shift operator, (Russian ) Zap . Nauchn . Sem . Leningrad . Otdel . Mat . Inst . Steklov (LOMI ) 14 9 (1986) , 38-51 ; translatio n i n J . Sovie t Math . 4 2 (1988) , 1562 - 1572. [Va76] V . I . Vasyunin , The number of Carleson series, (Russian ) Zap . Naucn . Sem . Leningrad. Otdel . Mat . Inst . Steklov . (LOMI ) 6 5 (1976) , 178-182 . [Ve85] I . E . Verbitsky , Multipliers in spaces with "fractional norm", and inner functions, Sibirsk. Math . Zh . 2 6 (1985) , 51-72. (Russian ) [Vi83] S . A. Vinogradov, Some remarks on free interpolation by bounded and slowly grow- ing analytic functions, Zap . Nauchn . Sem . Leningrad . Otdel . Mat . Inst . Steklov . (LOMI) 12 6 (1983) , 35-46, Investigations o n linear operators an d the theory o f func - tions, XII . M R 85d:3005 3 [VGH81] S . A . Vinogradov , E . A . Gorin , an d S . V . Hruscev , Free interpolation in H°° in the sense of P. Jones, Zap . Nauchn . Sem . Leningrad . Otdel . Mat . Inst . Steklov . (LOMI) 11 3 (1981) , 212-214 , 268 , Investigations o n linea r operator s an d th e theor y of functions, X L M R 82k:4603 9 [Wi60] H . Widom, Inversion of Toeplitz matrices. II, Illinoi s J . Math . 4 (1960) , 88-99. BIBLIOGRAPHY 133

[Wu99] Z . Wu , Carleson measures and multipliers for Dirichlet spaces, J . Funct . Anal . 169 (1999) , 148-163 . [Xi98] J . Xiao, Carleson measure, atomic decomposition and free interpolation from Block space, Ann. Acad . Sci . Fenn . Ser . A I Math. 1 9 (1994) , 35-46 . [Xi98] J . Xiao , The d-problem for multipliers of the Sobolev space, Manuscripta Math. 9 7 (1998), 217-232 . (YoOl] R . M . Young, An Introduction to Nonharmonic Fourier Series, Revise d Firs t Edi - tion, Academi c Press , Ne w York , 2001. [Yu85] R . S . Yulmukhametov, Approximation of subharmonic functions, (Russian ) Anal . Math. 1 1 (1985) , 257-282 . [Zh90] K . Zhu, Operator Theory in Function Spaces, Marce l Dekker, Inc., New York, 1990 . This page intentionally left blank Index

Page numbers that appea r i n boldface poin t to the page o n which the term i s defined .

Bp, 4 1 £(X), 11 8 D+(X) (onR) , 8 2 £(Z) , 8 0 D+(X) (o n M n), 11 8 M(H), 1 6 D+(Z) (o n B>) , 56 d equation , 8 D~(X) (onR) , 8 2 ~(X) (onR n), 11 8 ~ , 1 7 D_(Z) (onD) , 5 6 0(*,C) , 2 2

DQ, 1 7 £H(Z,C) , 2 1 Dj(e), 4 2 CH(Z) , 7 if, 1 5 cj(Z) , 7 tfi,83 CHJ(Z), 8 Hl8S <*(*,C) , 64

7700 x dm , 1 8 HP(C+), 1 h, 1 6 ifp(D), 1 *^ > 2 4 ify, 8 7 ™(*) > 12 #?, 8 3 Adams, D.R. , 2 0 #?, 9 0 Agler property , 26 , 28-3 1 M(Z), 2 v M '* Agler , J. , ix , xii, 13-15 , 21, 26-30 Aleksandrov, A. , 9 1 PW(5'), 11 8 Amar, E. , 12 , 43, 62 PW2, 7 9 pr, s i analytic Beso v space, 3 3 analytic Sobole v space , 3 3 p+, 1 2 analyzing wavelet , 4 5 P/, 8 5 Anderson, J . M. , 6 3 ®W> 4 Arcozzi , N. , 18 , 21, 37, 3 8 S* 8 3 5555 5 T^,' arithmetic-geometri8 6 Avdonin, S . A. , 81, c10 mea9 n inequality, 5 9 XW' 11 3 Axler , S. , 13 , 21 Z\ 10 1 B, 6 3 backwar d shift , 8 3 C+, 1 Bari' s theorem , 23 , 35 Capa, 1 9 Berenstein , C . A. , 1 4 ID5, 1 Bergma n space , 15 , 62 O, 1 5 Bergma n L p space , 32 , 61, 63 T, 1 o n bounded symmetri c domains , 4 3 <5(Z), 3 weighted , 17 , 39, 41, 42, 45, 81 <, 1 7 Berndtsson , B. , x, 13 , 56, 60, 6 1

135 136 INDEX

Bernstein space , 5 6 Cohn's conjecture , 90 , 9 1 Bernstein-Boas formula , 11 3 Cohn's theore m Bessel capacity , 1 9 on Carleso n measures , 9 0 Beurling densities, see also uniform den - on interpolation i n D a, 3 7 sity Cohn, W. , 33 , 90 Beurling, A. , x , 56 , 82, 83, 12 3 Coifman, R . R. , 4 3 Beurling, P. , 6 complete interpolatin g sequence , 7 9 Bishop, C, 15 , 32, 3 3 for K\, 89 , 9 2 Bishop-Marshall-Sundberg theorem , 3 7 for PW 2, 80 , 108 , 109 , 113 , 11 4 Bloch martingale , 6 9 for PW 2(S), 118 , 122 , 12 3 Bloch space , 15 , 38, 63, 64 , 66, 68, 7 2 for PW P, 8 2 conformal invariance , 63 , 64 , 66 , 67 , for PW P(S), 12 4 70, 7 1 complete Pic k property , 2 6 mean valu e property , 6 8 conjugation operator , 87 , 9 9 BMO, 13 , 64, 77 , 93, 100 , 107 , 11 0 constant o f interpolation, 2 , 4 9 BMOA, 64 , 7 7 Bonsall, F. F. , 1 4 Daubechies, L , 4 7 Borichev, A. , 6 2 decomposition theorem , 4 7 Bourgain, J. , 8 9 dense de Branges , L. , 8 0 £-dense, 4 2 Bruna, J. , 14 , 61 Devinatz, A. , 8 7 Buck, R . C, 1 3 Dirichlet shift , 3 0 B0e's theorem , 3 6 Dirichlet space , 15 , 17, 30, 33, 37, 64, 65 B0e, B., v, x, 2 , 33, 34, 37, 63-66, 76 , 7 7 distance ^-distance, 21 , 47 capacitary stron g type inequality , 2 0 (j-distance, 9 7 Carleson Douglas, R . G. , 89 , 9 0 condition, 3 , 4 , 5 , 12 , 31 , 32 , 36 , 68 , Drasin, D. , 5 2 75, 85 , 88, 98, 103 , 104 , 11 1 Duffin, R . J. , 47 , 8 1 for H, 3 2 Duren, G. , v for Bp, 6 1 Duren, P. , v , xii, 3 , 14 , 41, 42, 54, 6 4 for Di, 3 2 dyadic subdivision , 3 8 for D , 3 3 a Earl, J . P. , 6 for H, 32-3 4 measure, 5 , 9-11, 15 , 73-7 6 Federer, PL , 7 4 X-Carleson measure , 9 0 Fefferman's X-Carleson measure , 9 1 duality theorem , 10 7 for £/3 , 41, 42, 4 3 theorem on multipliers on the ball, 12 4 for D a, 1 8 Fefferman, C , 13 , 12 4 for H, 16 , 43, 44, 47-4 9 Fefferman-Stein decomposition , 1 3 2 for PW , 9 8 Flornes, K. , 8 2 Carleson's frame, 45 , 46 , 47, 80, 8 1 corona theorem , ix , xii, 1 0 of complex exponentials , 80 , 8 1 embedding theorem , 4 , 5 , 107 , 10 8 of normalized reproducin g kernels , 46, interpolation theorem , vii , ix , x, 3, 1 - 86 15, 6 1 of wavelets, 4 5 Carleson, L. , vii, ix , 2-6, 10-13 , 25 , 31 free interpolation , 1 5 champagne subdomain , 6 1 Frostman's theorem , 91 , 92, 100 , 10 2 Chang, S.-Y . A, 7 0 Fuglede's conjecture , 80 , 123 , 12 4 Christ, M. , 6 1 Fuglede, B. , 12 3 Cima, J . A. , 8 4 functional o f point evaluation , 12 , 15 , 16 Clark, D. , 8 0 Clunie, J. , 6 3 Gabor transform , 4 5 INDEX 137

Gamelin, T . W. , 1 1 for PW 2, 80 , 98 , 99 , 103-105 , 107 , Garnett's theore m o n harmoni c interpo - 111, 11 2 lation, 1 4 for PW V, 8 2 Garnett, J . B. , xii, 1 , 2 , 6 , 8 , 11 , 14 , 61, invariant are a measure , 5 0 76, 89 , 91, 92, 105 , 11 0 Iosevich, A. , 12 4 Gehring, F . W., v , 6 1 Ivanov, S . A., 8 1 Gehring, L. , v Girnyk, M . A. , 5 2 Jayant, N . S. , 8 0 Gorin, E . A. , 8 Jensen's formula , 5 9 Gorkin, P. , 1 3 Jevtic, M. , 6 1 Grammian, 3 4 John, F. , 11 0 Grochenig, K. , 12 0 John-Nirenberg theorem, xi, 95, 110, 120 Jones, P . W. , vii , ix , 6 , 8 , 9 , 11 , 13 , 33, Hankel operator, 8 7 61, 76 , 9 2 Hardy space , 1 , 15 , 45, 81 Kothe-Toeplitz theorem , 2 3 Hardy, G . H. , 2 9 Kadets's 1/ 4 theorem , xi , 108 , 11 4 Hardy-Littlewod maxima l theorem , 2 0 Kadets, I . M. , 10 8 harmonic measure , 6 1 Katz, N . H. , 12 4 Hartmann, A. , v , 14 , 93 Kerman, R. , 1 8 Hastings, W. W. , 4 2 Koosis, P. , xii, 2 , 8 , 3 6 Havin, V . P, 8 , 9 2 Korenblum, B. , 41, 61, 62 Hayman, W . K. , 1 3 Koszul complex , 1 1 Hedberg, L . I., 2 0 Hedenmalm, H. , 41, 62 Laba, L , 12 4 Helson, H. , 10 5 Landau, H . J. , xi , 95, 109 , 111 , 118, 12 0 Helson-Szego Levin, B . Ya., 81 , 96 condition, 87 , 88 , 99, 100 , 105 , 10 6 Lindholm, N. , 12 0 theorem, 105 , 10 6 linear operato r o f interpolation, 6 Herz, C . S. , 12 2 Lipschitz space , x , 64 , 6 5 Higgins, J . R. , 8 0 local Dirichle t space , 3 0 Hilbert transform , 10 5 logarithmic capacity , 1 9 weighted nor m estimates , 91 , 10 5 logarithmically regular partition, 114 , 11 6 Hjelle, G . A. , 8 9 Luecking, D. , 42 , 6 1 Holden, H. , v Lyubarskii, Yu. , v , 52 , 61, 105, 114 , 122 , Hormander, L. , 8 , 11 , 122 123 Hormander's theorem on weighted L 2 es - timates, 6 0 Makarov, N. , 63 , 69, 7 0 Horowitz, C, 25 , 44 Malinnikova, E. , 52 , 11 4 Hruscev, S . V., 8 , 81, 84, 93, 99, 10 9 Marco, N. , 52 , 6 1 hyperbolic Marshall, D . E., ix , 2 , 12 , 13 , 15, 29, 30, geodesic, 49 , 58, 59, 64, 67 , 10 8 32, 33 , 89, 10 1 metric, 6 4 Marshall, D . E„ v Massaneda, X. , 14 , 52 , 6 1 Ingham, A . E. , 10 9 maximal functio n interpolating Hardy-Littlewood, 2 0 Blaschke product, 85 , 89 , 101 , 10 3 nontangential, 5 , 2 0 sequence Maz'ya, V . G. , 2 0 for B, 65 , 7 7 McCarthy, J . E. , xii , 13-15 , 21, 26-30 for M(H), 2 1 McCullough, S. , 2 6 for H, 21 , 47 McCullough-Quiggin theorem , 2 6 for #°°, 2 , 5 , 11 , 13 Menini, C, 6 2 2 for K Bl 8 9 Minkin, A . M. , 9 9 for K\, 85 , 86, 8 8 Mortini, R. , 1 3 138 INDEX

Muckenhoupt's (A p) condition , 9 3 Remling, C. , 8 0 multiplication operator, 1 6 reproducing kernel , 1 6 multiplier algebra , ix , 13 , 16, 18 , 25, 44, Richter, S. , 30 , 6 2 79 Riesz basis Nakazi's conjecture , 9 3 of complex exponentials, 80 , 12 4 Nakazi, T. , 9 3 of normalize d reproducin g kernels , Narita, J. , 1 4 85 Nazarov, F. , 90 , 9 1 measure, 50-52 , 8 2 Nehari's theorem, 8 7 projection, 12 , 2 0 Nevanlinna's theorem, 2 sequence, 23 , 8 0 Nevanlinna, R. , vii , 2 , 6 of complex exponentials, 80 , 8 1 Nevanlinna-Pick problem, 1 , 2, 6, 12 , 24 Rochberg, R. , 17 , 18 , 21, 37, 38 , 43, 47, Neville, C . W., 4 , 5 93 Newman, D . J. , 1 3 Ross, W. T. , 8 4 Nicolau, A. , v , x , 8 , 14 , 63-66 , 76 , 77 , Rudin, W. , 86 , 8 9 89, 9 2 Nikolski, N . K., xi , 11 , 13-15, 23, 35, 81, sampling 83, 84 , 87, 92 , 93, 99 constant, 4 8 Nirenberg, L. , 11 0 measure, 6 2 Nollas, P. , 8 0 sequence, 62 , 79, 81 Nyquist for B, 66 , 6 7 density, 4 5 for B(3, 43, 45, 53, 56, 5 9 rate, 11 8 for H, 44 , 45, 47, 48, 86 Nyquist, H. , 4 5 for K%, 8 9 for K}, 83 , 85, 86, 88, 92 Ortega-Cerda, J. , v , x , 8 , 52 , 56 , 60 , 61, for PW 2, 80 , 97 , 99 , 104 , 105 , 107 , 66, 82 , 99, 111 , 113, 114 , 12 4 108, 110-112 , 114 , 117 , 120 , 12 1 for PW 2(S), 118-120 , 122 , 12 3 Palamodov, V . P. , 12 3 for PW P, 8 2 Paley, R . E . A . C, 81 , 108 theorem, viii , xi , 80 , 82 , 96 , 97 , 108 , Paley-Wiener 120 space, 79 , 81 , 95, 97, 118 , 12 2 Sarason, D., ix , x, 2 6 theorem, xi , 79 , 80, 96, 97, 12 2 Sawyer, E. , 18 , 21, 37, 3 8 Parrott's lemma , xii , 2 8 Schaeffer, A . C, 47 , 8 1 Pascuas, D. , 1 4 Schur product, 2 8 Pavlov, B. S. , xi, 81, 84, 93, 99 Schuster, A . P. , 32 , 41, 42, 54, 61, 64 Phragmen-Lindelof principle , 82 , 9 5 Segal, I. , 12 4 Pick property , 13 , 15, 24, 25 , 26, 29-34, Seip, K. , 8 , 25, 32, 52, 54, 56, 61, 62, 82, 36, 37 , 44, 7 9 93, 99 , 105 , 111, 113, 114, 12 2 Pick's theorem, ix , x, 1 , 2 , 1 3 separated sequence , 5 Pick, G. , vii , 1 H-separated sequence , 21, 47 Plancherel, A. , 9 6 cr-separated sequence, 98, 104 , 105, 111 Plancherel-Polya inequality , 96, 9 8 Serra, A. , v , 26 , 27 , 3 0 Polya, G. , 9 6 Shannon, C. , vii i Pommerenke, Ch. , 6 3 Shapiro, H. S., viii, 12 , 25, 29, 31, 81, 84, pseudohyperbolic metric, 2 2 90 Quiggin, P. , 26 , 2 7 Shapiro-Shields interpolation theorem , 1 3 Ramanathan, J. , 45 , 12 0 property, 2 9 Rashkovskii, A. , 12 3 Shields, A . L. , viii , 12 , 25, 29, 31, 81, 90 Razafinjatovo, H. , 12 0 Shimorin, S. , x , 3 0 reflection operator , 9 7 Spitkovsky, L , 12 2 INDEX

Stegenga's theorem , 18 , 1 9 Wolff, T. , 11 , 13, 70 Stegenga, D . A. , 18 , 37 Wu, Z. , 17 , 1 8 Steger, T. , 45 , 12 0 Stein, E . M. , 1 3 Xiao, J. , 33 , 64 Stray, A. , 14 , 89, 10 1 Young, R . M. , 8 1 Sundberg, C , ix , 2 , 12 , 13 , 15 , 29 , 30 , Yulmukhametov, R . S. , 5 2 32, 33 , 76 Sz.-Nagy-Foia§ commutan t liftin g theo - zero sequence, 2 5 rem, xii , 2 8 Zhu, K. , 41 , 47 Szego, G. , 10 5

Tao, T. , 123 , 12 4 Taylor, B . A., 1 4 Thomas, P. , 14 , 61 Thomson, J . E. , 6 2 Toeplitz operato r invertibility criterion , 87 , 93, 10 5 on H 2, 81 , 82, 86, 89 , 92 on H p, 9 3 Treil, S. , 11 , 90, 9 1 Treil-Volberg theorem , 9 0 unconditional basi c sequence , 2 3 uniform densit y lower on D , 5 6 on E , 8 2 onJET, 11 8 upper on D , 56 , 8 9 on R , 8 2 onln, 11 8 uniformly separate d sequence , 3 universal interpolatin g sequence , 12 , 1 7 for Da, 6 6 for if , 13 , 15, 79 for H 2, 1 3 for K%, 85

Varolin, D. , 6 1 Vasyunin, V . I. , 1 4 Verbitsky, I . E. , 3 3 Vinogradov, S . A., 8 , 1 3 Volberg, A. , 90 , 9 1

Wallsten, R. , 6 1 weak-operator topology , 2 4 Whittaker-Kotelnikov-Shannon theorem , see also sampling theore m Widom, H. , 8 7 Widom-Devinatz theorem, xi, 88, 92, 105 Wiener, N. , 81, 10 8 Williams, D . L. , 1 4 Wilson, J . M. , 7 0