LECTURE Series

LECTURE Series

http://dx.doi.org/10.1090/ulect/033 University LECTURE Series Volume 3 3 Interpolation an d Sampling in Space s of Analytic Function s Kristian Sei p American Mathematical Societ y Providence, Rhod e Islan d EDITORIAL COMMITTE E Jerry L . Bon a (Chair ) Eri c M . Friedlande r Nigel J . Hitchi n Pete r Landwebe r 2000 Mathematics Subject Classification. Primar y 30D45 , 30D50 , 30D55 , 30E05 , 42A99 , 46E15, 46E20 , 47A57 . For additiona l informatio n an d update s o n this book , visi t www.ams.org/bookpages/ulect-33 Library o f Congress Cataloging-in-Publicatio n Dat a Seip, Kristian , 1962- Interpolation an d sampling i n spaces o f analytic function s / Kristia n Seip . p. cm . (Universit y lectur e series , ISS N 1047-3998 ; v. 33) Includes bibliographica l reference s an d index. ISBN 0-8218-3554- 8 (alk . paper ) 1. Analyti c functions . 2 . Hard y classes . 3 . Generalized spaces . 4 . Interpolation . I . Title . II. Universit y lectur e serie s (Providence , R.I.) ; 3 3 . QA331 .S435 200 4 515'.9-dc22 2003070914 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o make fai r us e of the material, suc h a s to copy a chapter fo r use in teachin g o r research . Permissio n i s granted t o quote brie f passage s fro m thi s publicatio n i n reviews, provide d the customary acknowledgmen t o f the source i s given. Republication, systemati c copying , or multiple reproduction o f any material in this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed to the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n also b e made b y e-mail t o [email protected] . © 200 4 by the author. Al l rights reserved . Printed i n the United State s o f America. @ Th e paper use d i n this boo k i s acid-free an d falls withi n the guidelines established t o ensure permanenc e an d durability. Visit th e AMS home pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0 9 08 07 06 05 0 4 Contents Acknowledgements v Introduction vi i Chapter 1 . Carleson' s interpolatio n theore m 1 Chapter 2 . Interpolatin g sequence s an d the Pic k property 1 5 Chapter 3 . Interpolatio n an d samplin g i n Bergman space s 4 1 Chapter 4 . Interpolatio n i n the Bloc h spac e 6 3 Chapter 5 . Interpolation , sampling , an d Toeplit z operator s 7 9 Chapter 6 . Interpolatio n an d samplin g i n Paley-Wiener space s 9 5 Bibliography 12 5 Index 13 5 This page intentionally left blank Acknowledgements This book i s based o n six lectures I gave in the winter o f 2003 while I was a Visitin g Professo r a t th e Universit y o f Michigan , An n Arbor , supporte d by th e Fre d an d Loi s Gehrin g Professorshi p Fund . I a m muc h indebte d t o Fred an d Loi s Gehring , fo r th e generou s suppor t throug h th e Professorshi p Fund an d fo r thei r hospitalit y durin g m y sta y i n An n Arbor . I woul d als o like to thank Fre d Gehrin g fo r hi s encouragement durin g th e preparatio n o f this book . I thank th e Departmen t o f Mathematics a t th e Universit y o f Michigan , Ann Arbo r fo r the appointment an d fo r providing me with excellen t workin g conditions. I a m particularl y gratefu l t o Pete r Dure n an d hi s wif e Ga y fo r their friendl y car e during m y sta y i n Ann Arbor . Pete r Dure n rea d throug h most o f the early drafts o f the six chapters o f this book, an d I have benefitte d from a numbe r o f correction s an d suggestion s fro m him . Artur Nicola u rea d earl y draft s o f Chapter 4 and helpe d m e understan d his beautifu l wor k wit h Bjart e E>0e . Chapter s 5 an d 6 ar e influence d b y discussions with Andreas Hartmann durin g the summer o f 2001. Discussion s with Antoni o Serr a wer e helpfu l i n workin g ou t som e part s o f Chapte r 2 , and I als o benefitte d fro m remark s fro m Donal d Marshal l concernin g tha t chapter. Th e referee s reportin g o n th e draf t submitte d t o th e AM S gav e very valuabl e feedback , an d I believ e thi s le d t o substantia l improvements . Yurii Lyubarskii' s readin g o f th e entir e manuscrip t resulte d i n a lon g lis t of pertinen t remarks . I n th e fina l stage s o f th e writing , I als o receive d a numbe r o f correction s an d constructiv e suggestion s fro m Helg e Holden , Joaquim Ortega-Cerda , an d Antoni o Serra . I than k thes e colleague s fo r their essentia l contribution s t o th e book . Finally, I than k Yuri i Lyubarski i an d Joaqui m Ortega-Cerd a fo r th e mathematics I learned through m y long-time collaboration with them. Muc h of this collaboratio n i s reflected i n the book . This page intentionally left blank Introduction The presen t boo k i s my attemp t t o vie w the sizabl e literatur e o n inter - polating sequence s fo r space s o f analytic function s a s on e subject . I believ e the topic merits suc h a consideration, an d I think i t may benefi t fro m takin g a somewha t genera l poin t o f view . The followin g ar e the classica l origin s o f ou r subject : (1) Th e Nevanlinna-Pic k proble m wa s studie d independentl y b y Pic k [Pil6] an d Nevanlinn a [Neval9] . Give n z\, 22 , ••• > zn an d ai, a2,..., a n i n th e unit dis k D , i t ask s fo r condition s unde r whic h th e interpolatio n proble m f(zj) — dj, j = 1,2 , ...,n , ha s a solutio n / , analyti c i n D an d \f(z)\ < 1 , z G B. Pick' s theore m i s th e following . Th e interpolatio n proble m ha s a solution i f and onl y i f the matri x 1 - a]a k \ 1 - ZjZkJ j ?A:=l,...,n is positiv e semi-definite . Her e th e functio n / ca n alway s b e take n t o b e a Blaschke produc t o f degre e a t mos t n ; Nevanlinn a [Neva29 ] late r gav e a parametrization o f al l solutions . Nevanlinna-Pic k interpolatio n i n variou s guises has grown into a vast subject . Th e main reason fo r the interest i n thi s topic ove r th e las t decade s i s the recognitio n o f it s connection s t o operato r theory an d linea r system s theory . Generalization s o f i t pla y a n importan t role i n H°° contro l theory . (2) Carleson' s interpolatio n theore m [Ca58 ] give s a geometri c descrip - tion o f thos e sequence s o f point s ^1,^2,^3,.. i n th e uni t dis k havin g th e property tha t th e interpolatio n proble m f(zj) = dj, j = 1,2,3,.. i s solv - able b y a bounde d analyti c functio n / fo r eac h bounde d sequenc e o f dat a ai,<22,a3,.... Thi s theore m ha s playe d a distinguishe d rol e i n th e stud y o f Hardy space s fo r mor e tha n fort y years . Th e resul t appeare d firs t a s par t of a n effor t t o understan d H°° a s a Banac h algebra . I t i s intimately linke d to Carleson' s subsequen t solutio n o f th e coron a problem , an d i t als o le d naturally t o th e notio n o f a Carleso n measure , whic h late r cam e t o pla y a crucial rol e in the developmen t o f BMO.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us