Upper Albian Ammonites from Odp Leg 171B Off Northern Florida

Total Page:16

File Type:pdf, Size:1020Kb

Upper Albian Ammonites from Odp Leg 171B Off Northern Florida UPPER ALBIAN AMMONITES FROM ODP LEG 171B OFF NORTHERN FLORIDA by JENS LEHMANN ABSTRACT. ODP Leg 171B investigated the sediments of the Blake Plateau off northern Florida and recovered 36 Upper Albian ammonites – one from Site 1050C, the others from Site 1052E. This unusually large number of specimens from an ODP site permits the dating of the interval between 668 to 621 m below sea-floor at Site 1052E as late Late Albian, Stoliczkaia (S.) dispar ammonite zone. This zone is indicated by the genera Mortoniceras and Stoliczkaia (S.). Site 1050C (Interval 171B-1050C-31R-3, 0·80–0·86 m) cannot be dated more precisely than Late Aptian to Mid Cenomanian by ammonites. The fauna is cosmopolitan. Tetragonites jurinianus and Puzosia mayoriana are widely distributed forms. Kossmatella muhlenbecki was thought to be restricted to a fairly small area around the Mediterranean, but the record off northern Florida presented here, indicates that it is not an endemic species; this is also true for Hemiptychoceras subgaultinum in the Albian. The event-like character of the ammonite-bearing interval at Site 1052E is unique. It is overlain by a laminated claystone succession; the top of this sequence is considered to represent maximum flooding (Oceanic Anoxic Event, OAE 1d). Ammonites perhaps profited from an increased nutrient supply derived from flooded coastal plains during a continuous transgression. C RETACEOUS ammonites from DSDP and ODP material have rarely been described (e.g. Wiedmann and Neugebauer 1978; Renz 1983; Young 1984) because they are generally too widely scattered to be recovered in borehole (drill) cores. In February 1997, several ammonites were recovered during ODP Leg 171B at the edge of the Blake Plateau off northern Florida, in the western Atlantic (Shipboard Scientific Party 1998a, p. 1052, fig. 14; Text-fig. 1). I resampled the ammonite-bearing interval at the Bremen Core Repository (BCR), Germany in December 1997. Thirty-five specimens were recovered from Cores 1052E- 57R–51R [668–621 m below sea floor (mbsf)]. The assemblage indicates the Upper Albian, upper Stoliczkaia (S.) dispar Zone and provides important new stratigraphical data, as well as data on ammonite palaeobiogeography and palaeoenvironmental conditions. PRESERVATION In ODP material, often only the aptychi of ammonites are preserved (e.g. Renz 1979) because the Mesozoic rocks at many sites were deposited below the aragonite compensation depth. Consequently, the common occurrence of ammonites in the Upper Albian at Site 1052E (Text-fig. 1) is striking and the event- like character of their occurrence has to be explained. All of the ammonites from Site 1052E are crushed and commonly flattened, and their original nacreous shell is preserved. This indicates deposition above the aragonite compensation depth. In some cases, internal moulds are coated by pyrite. The single fragment (Sample 171B-1050C-31R-3W, 0·80–0·86 m) from Site 1050C is a three- dimensional, pyritic steinkern with remains of the shell attached. This preservation also indicates deposition above the aragonite compensation depth. All specimens are preserved in the collections of the Bremen Core Repository, Cores 1052E-57R–51R (668–621 mbsf) and 1050C-31R-3W, 0·80–0·86 m. Only material that is of palaeogeographical and/or stratigraphical importance is included in the Systematic Palaeontology section, but other less significant taxa are shown in Table 1 and Text-figure 2. [Palaeontology, Vol. 43, Part 1, 2000, pp. 41–61, 1 pl.] q The Palaeontological Association 42 PALAEONTOLOGY, VOLUME 43 TEXT-FIG. 1. Sketch map showing the ODP Leg 171B Blake Nose drilling area in the western North Atlantic with position of transect drill sites and the multichannel seismic line (MCS Line) TD 5. Ammonites have been sampled from sites 1050 and 1052; spots NE of Site 1052 are adjacent Sites 1053 and 1051, spot NE of Site 1050 is Site 1049 (DSDP 390). Modified after Shipboard Scientific Party (1998b, figs 1, 20). STRATIGRAPHICAL IMPLICATIONS The present material represents a typical late Late Albian ammonite fauna and undoubtedly can be referred to the Stoliczkaia (S.) dispar Zone of the European ammonite zonal scheme (e.g. Owen 1984; Hancock 1991). The ammonite assemblage shows similarities to middle and upper S.(S.) dispar Zone (respectively the Mortoniceras (Durnovarites) perinflatum Subzone and Arrhaphoceras (Praeschloenbachia) briacen- sis Subzone) faunas of the proposed stratotype for the Albian–Cenomanian boundary at Mont Risou, south-east France (Gale et al. 1996). In fact, with the exception of Tetragonites jurinianus, all ammonites from Site 1052E that have been determined at species level (Kossmatella muhlenbecki, Puzosia mayoriana and Hemiptychoceras subgaultinum also occur at Mont Risou). There is no evidence of the older subzone of M.(M.) rostratum. A correlation with previously described ammonite faunas from DSDP Leg 40 off western Africa (Wiedmann and Neugebauer 1978) is not possible. These included the Upper Albian ammonites Puzosia quenstedti (Parona and Bonarelli, 1897), Cainoceras sp. nov. ex aff. liberum van Hoepen, 1942 and Puzosia mayoriana (d’Orbigny, 1841). Only the last-named is reported herein from Leg 171B. Young (1984) assigned faunas from Sites 535 and 540 of DSDP Leg 77 in the Gulf of Mexico to the LEHMANN: UPPER ALBIAN AMMONITES 43 TEXT-FIG. 2. Ammonite occurrences at ODP Leg 171B, Site 1052E. C, Cenomanian; Ss, Substage; N, nannofossil zone; F, foraminifer zone; AZ, ammonite zone; AS, ammonite subzone. Lithological section modified after Shipboard Scientific Party (1998a, fig. 1). Upper Albian, ‘Stoliczkaia dispar and/or Arrhaphoceras substuderi zones’. These faunas, including Hypophylloceras cf. guillantoni (Collignon, 1932), an indeterminate lytoceratid, Stomohamites cf. virgulatus (Brongniart, 1822), Turrilitoides sp. juv. cf. T. toucasi (He´bert and Munier-Chalmas, 1875), and Scaphites sp. nov. aff. S. simplex Jukes-Browne, 1875, are dominated by heteromorphs, and have no genera in common with Leg 171B. Integration of ammonite, microfossil and nannofossil stratigraphy in the Upper Albian is unsatisfactory on a global scale. Mont Risou is the best section for comparison with the present data, since macrofossils, microfossils and calcareous nannofossils (Gale et al. 1996) of a large part of the Upper Albian S. (S.) dispar Zone there have been investigated. Correlation of planktonic foraminiferal events at Site 1052E, Leg 171B (data from Shipboard Scientific Party 1998c, Table 7) and the Mont Risou succession (shown in Text-fig. 4) indicates that the present ammonite fauna is from the M.(D.) perinflatum Subzone rather than the A.(P.) briacensis Subzone. 44 PALAEONTOLOGY, VOLUME 43 TABLE 1. Ammonites from ODP Leg 171B, sites 1052E and 1050C. Material from Leg 171B, site 1052E Core Sc cm no. of specimens Hamites cf. duplicatus 51 1 50 or 54 1 Anagaudryceras ? 52 2 51 or 53 1 Desmoceras cf. latidorsatum 52 1 114–116 1 Kossmatella sp. 53 5 80 1 Puzosia mayoriana 53 4 94 1 Zelandites cf. odiense 53 4 91 1 Hemiptychoceras subgaultinum 53 3 60 1 Puzosia mayoriana 53 2 48 1 Tetragonites sp. 53 1 126 1 Kossmatella muhlenbecki 53 1 93 1 Hamites ? 53 1 23 1 Hamites ? 54 2 126 or 127 1 Hemiptychoceras subgaultinum 54 CC* 40–41 1 ammonite, indet. 55 6 63 1 Hemiptychoceras subgaultinum 55 6 36 1 Zelandites ? 55 6 25 1 ammonite, indet. 55 5 96 1 Puzosia ? 55 5 95 1 Lechites ? 55 4 104 1 lytoceratid ammonit, indet. 55 4 87·5 1 ammonite, indet. 55 64 85·5 2 Puzosia ? 55 4 85·5 1 Stoliczkaia (Stoliczkaia) sp. 55 4 62 1 Tetragonites ? 55 4 48 1 Puzosia mayoriana 55 4 30 1 Phyllopachyceras sp. 55 4 0–2·5 1 Puzosia sp. juv. 55 3 140 1 Tetragonites jurinianus 55 3 c. 62 1 Mortoniceras sp. 55 3 59·5 2 Puzosia sp. juv. 55 2 10 1 Kossmatella muhlenbecki 55 1 141 1 Lechites ? 55 1 132 1 Desmoceras ? 55 1 117·5 1 Hemiptychoceras subgaultinum 57 6 73 1 Material from Leg 171B, site 1050C Phylloceras sp. 31 3W 80–86 1 *CC ¼ core catcher This interpretation, based on correlation of planktonic foraminifera events, can be confirmed by calcareous nannofossils (Text-Fig. 4). In the Mont Risou section, the boundary between nannofossil subzones CC9a and 9b and that between M.(D.) perinflatum and A.(P.) briacensis ammonite subzones are almost coincident (Text-fig. 4; Gale et al. 1996, fig. 2). According to the nannofossil data at Site 1052E (Shipboard Scientific Party 1998a, fig. 20 and Text-fig. 2), this boundary is more than 90 m above the top of the ammonite-bearing interval (Text-fig. 4). Although ranges of planktonic foraminifera and calcareous nannofossils are comparable between the proposed stratotype at Mont Risou and Site 1052E, integration of the planktonic foraminiferal and calcareous nannofossil stratigraphy is still problematic. According to Bralower et al. (1995, fig. 7), the first occurrence of the foraminiferal zonal marker LEHMANN: UPPER ALBIAN AMMONITES 45 Biticinella breggiensis correlates with the boundary between calcareous nannofossil zones CC9a and 9b but this species already occurs at 682·57 m below sea floor at Site 1052E, a level which is believed to represent calcareous nannofossil zone CC8b (Shipboard Scientific Party 1998c, table 7 and fig. 20). The single ammonite recovered from Site 1050C of Leg 171B (Table 1; sample 171B-1050C-31R-3W, 0·80–0·86 m) is identified as Phylloceras sp. of the long-ranging Suborder Phylloceratina. According to planktonic foraminifera, this sample comes from the Upper Albian, Rotalipora ticinensis Zone (Shipboard Scientific Party 1998c, p. 121, fig. 29). If the interval (605·39–577·3 m below sea floor) characterized by common R. ticinensis at Site 1050C (Shipboard Scientific Party 1998c, p. 126) and at Mont Risou correspond (Gale et al. 1996, fig. 7), the horizon of the specimen is older than, or as old as, the lower Arrhaphoceras (Praeschloenbachia) briacensis Subzone (Stoliczkaia (S.) dispar Zone).
Recommended publications
  • Abich, H., 35 Abichi, Subzone, 34 Abrupta Group
    INDEX* Abich, H., 35 Acanthohoplites (Cont'd.) abichi, subzone, 34 — Sinzow, 106 Abrupta group, 40, 56, 58 — sp., 150 Acanthoceras, 31, 96 subangulatus, 113 milletianum var. plesioiypica, 119 subpeltoceroiies, 121 "Acanthoceras," 5 ? subpeltoceroides, 37, 38 milletianum, 120 — suture of syntypes, 136 — var. elegans, 32 teres, 22, 36, 54, 107, 108, 114, 150; PI. 20, — var. plesioiypica, 32 fig. 7 Acanthohoplitan fauna, in Quajote, 21 — distribution, 13 Acanthohoplites, 32, 33, 37, 51, 52, 54, 95, 98, — group, 108 103, 105, 106, 107, 108, 109, 113, 119, 120, tobleri, 107, 111, 112 121, 149, 150, 155 trautscholdi, 155 abichi, 38, 107, 108, 111 — zone, 39, 56 aegis Anderson, 54 "A cantltohoplites'' aschiltaensis, 33, 36, 38, 107, 108, 112 jacobi, 32, 120 — genotype, 106 plesiotypicus, 32, 120 — subzone, 35 tobleri, 121 bergeroni, 38 — var. discoidalis, 111 berkeyi, 22, 36, 54, 111, 112, 149; PI. 19, Acanthohoplitinae, 22, 32, 33, 49, 51, 56, 95, figs. 14—16 116, 121 — group, 108 — subf. nov., 17, 103 bigoureti, 32, 106,107, 111 Acila, 1, 55, 56, 61, 62, 138 — abichi, group, 108 bivirgata, 61, 62 campichei, 106, 115, 116 castrensis, 63 — correct spelling, 96 conradi, 62 erraticus, 36, 113, 114, 149; PI. 19, figs. 21-23 demessa, 62 — distribution, 13 — oldest species described, 14 evolutus, 107, 108, 114 schencki, 10, 19, 56, 62, 63 hesper, 22, 33, 36, 54, 106, 109, 115, 116, — oldest species, 1 150; PI. 20, figs. 1-6 Acila {Truncacila), 10, 16, 61 — distribution, 13 bivirgata, 56 — group, 109 — in Folkestone Gault, 14 impetrabilis, 22, 54, 112, 113, 149; PI. 19, castrensis, 62, 63 figs.
    [Show full text]
  • A New Species of Gaudryceras (Ammonoidea, Gaudryceratidae) from the Lowest Maastrichtian of Hokkaido, Japan and Its Biostratigraphic Implications
    Paleontological Research, vol. 17, no. 1, pp. 47–57, April 1, 2013 © by the Palaeontological Society of Japan doi:10.2517/1342-8144-17.1.47 A new species of Gaudryceras (Ammonoidea, Gaudryceratidae) from the lowest Maastrichtian of Hokkaido, Japan and its biostratigraphic implications 1 2 YASUNARI SHIGETA AND TOMOHIRO NISHIMURA 1Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan (e-mail: [email protected]) 2Hobetsu Museum, 80-6, Hobetsu, Mukawa, Hokkaido 054-0211, Japan Received May 11, 2012; Revised manuscript accepted August 12, 2012 Abstract. Gaudryceras hobetsense sp. nov. is described from the Nostoceras hetonaiense Zone (= lowest Maastrichtian) of the Hobetsu area, south-central Hokkaido, Northern Japan. Its shell is characterized by fine lirae on early whorls, distant rounded or flat-topped, narrow band-like ribs on middle and later whorls, and frequent collar-like ribs on later whorls. The occurrence of this new species strongly suggests the presence of lowest Maastrichtian strata in southern Alaska, and sheds light on the age delineation of the chronologically poorly defined beds in northern and eastern Hokkaido. Key words: ammonoid, Cretaceous, Gaudryceras, Hobetsu, Hokkaido, Maastrichtian Introduction age (Shigeta et al., 2012). Because of the successive occurrence of several species and their restricted strati- The genus Gaudryceras de Grossouvre, 1894 is char- graphic ranges, Gaudryceras is an ideal ammonoid for acterized by an evolute shell with a wide, shallow umbi- precise biostratigraphic correlation of Maastrichtian licus, rounded venter and various ribbing styles. strata in the North Pacific realm. Although species of the genus ranging in age from late The biostratigraphic zonation scheme established for Albian to Maastrichtian are known worldwide (Kennedy the lowest Maastrichtian of Japan is based mainly on and Klinger, 1979; Hoffmann, 2010), their typical occur- ammonoids and inoceramid bivalves from the Hakobuchi rence is in the Tethyan and Indo-Pacific realms.
    [Show full text]
  • Palaeontology and Biostratigraphy of the Lower Cretaceous Qihulin
    Dissertation Submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Master of Science: Gang Li Born in: Heilongjiang, China Oral examination: 30 November 2001 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes (Printed with the support of German Academic Exchange Service) Palaeontology and biostratigraphy of the Lower Cretaceous Qihulin Formation in eastern Heilongjiang, northeastern China Referees: Prof. Dr. Peter Bengtson Prof. Pei-ji Chen This manuscript is produced only for examination as a doctoral dissertation and is not intended as a permanent scientific record. It is therefore not a publication in the sense of the International Code of Zoological Nomenclature. Abstract The purpose of the study was to provide conclusive evidence for a chronostratigraphical assignment of the Qihulin Formation of the Longzhaogou Group exposed in Mishan and Hulin counties of eastern Heilongjiang, northeastern China. To develop an integrated view of the formation, all collected fossil groups, i.e. the macrofossils (ammonites and bivalves) and microfossils (agglutinated foraminifers and radiolarians) have been studied. The low-diversity ammonite fauna consists of Pseudohaploceras Hyatt, 1900, and Eogaudryceras Spath, 1927, which indicate a Barremian–Aptian age. The bivalve fauna consists of eight genera and 16 species. The occurrence of Thracia rotundata (J. de C: Sowerby) suggests an Aptian age. The agglutinated foraminifers comprise ten genera and 16 species, including common Lower Cretaceous species such as Ammodiscus rotalarius Loeblich & Tappan, 1949, Cribrostomoides? nonioninoides (Reuss, 1836), Haplophragmoides concavus (Chapman, 1892), Trochommina depressa Lozo, 1944. The radiolarians comprise ten genera and 17 species, where Novixitus sp., Xitus cf.
    [Show full text]
  • The Gaudryceratid Ammonoids from the Upper Cretaceous of the James Ross Basin, Antarctica
    The gaudryceratid ammonoids from the Upper Cretaceous of the James Ross Basin, Antarctica MARÍA E. RAFFI, EDUARDO B. OLIVERO, and FLORENCIA N. MILANESE Raffi, M.E., Olivero, E.B., and Milanese, F.N. 2019. The gaudryceratid ammonoids from the Upper Cretaceous of the James Ross Basin, Antarctica. Acta Palaeontologica Polonica 64 (3): 523–542. We describe new material of the subfamily Gaudryceratinae in Antarctica, including five new species: Gaudryceras submurdochi Raffi and Olivero sp. nov., Anagaudryceras calabozoi Raffi and Olivero sp. nov., Anagaudryceras subcom- pressum Raffi and Olivero sp. nov., Anagaudryceras sanctuarium Raffi and Olivero sp. nov., and Zelandites pujatoi Raffi and Olivero sp. nov., recorded in Santonian to Maastrichtian deposits of the James Ross Basin. The early to mid-Campan- ian A. calabozoi Raffi and Olivero sp. nov. exhibits a clear dimorphism, expressed by marked differences in the ornament of the adult body chamber. Contrary to the scarcity of representative members of the subfamily Gaudryceratinae in the Upper Cretaceous of other localities in the Southern Hemisphere, the Antarctic record reveals high abundance and di- versity of 15 species and three genera in total. This highly diversified record of gaudryceratins is only comparable with the Santonian–Maastrichtian Gaudryceratinae of Hokkaido, Japan and Sakhalin, Russia, which yields a large number of species of Anagaudryceras, Gaudryceras, and Zelandites. The reasons for a similar, highly diversified record of the Gaudryceratinae in these distant and geographically nearly antipodal regions are not clear, but we argue that they prob- ably reflect a similar paleoecological control. Key words: Ammonoidea, Phylloceratida, Gaudryceratinae, Lytoceratoidea, Cretaceous, Antarctica. María E.
    [Show full text]
  • 131. a Note on the Japanese Ammonites Belonging to the Caudryceratidae*
    666 [Vol. 18, 131. A Note on the Japanese Ammonites Belonging to the Caudryceratidae*. By Taturo MATUMOTO. (Comm. by T. KATO,M.I.A., Dec. 12, 1942.) The Japanese fossils of the Gaudryceratidae, one of the important families of Cretaceous Ammonoidea, have been studied by H. Yabe and other Japanese paleontologists. I also had the opportunity of studying the material in connection with the biostratigraphic investi- gation on the Cretaceous deposits of Hokkaido and Karahuto. The following is a short note on the result of my study.' The numerous Japanese specimens so far examined are classified as follows. Family Gaydryceratidae. Genus Parajaubertella; Matumoto nov. P. kawakitana Matumoto nov. (genotype) Genus Anagaudryceras, Shimizu emend. A, sacya (Fortes) em. (genotype) A. sacya var. plicatocostata Matumoto MS. A. limatum (Yabe) A. yokoyamai (Yabe) A, ryugasense Matumoto MS. A. madraspatanum (Blanford) Genus Gaudryceras, Grossouvre em. G. denseplicatum (Jimbo) G. denseplicatum var. intermedia (Yabe) em. G. denseplicatum var. kawadai Matumoto MS. G. tenuiliratum Yabe em. G. tenuiliratum var. frequence Matumoto MS. G. tenuiliratum var. substriata Matumoto MS. G. tenuiliratum var. ornata Yabe G. striatum (limbo) (=? G, sachalinensis (Schmidt)) G. striatum var. paucistriata Matumoto MS. G. striatum var. picta Yabe G. striatum var. lata Matumoto MS. G. crassicostatum (Jimbo) G. subcostatum Matumoto MS. Genus Zelandites, Marshall em. Matumoto Z. odiensis (Kossmat) Z, odiensis var. lateumbilicata Matumoto MS. Z. mihoensis Matumoto Z. mihoensis var. capricornus Matumoto MS. Z. kawadai (limbo) em. Z. varuna (Forties) var. japonica Matumoto Z. sp. (n, sp. ?) A close investigation of the ontogenetic development enables us to elucidate the proper systematic position of species and genera.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]
  • Ammonite Faunal Dynamics Across Bio−Events During the Mid− and Late Cretaceous Along the Russian Pacific Coast
    Ammonite faunal dynamics across bio−events during the mid− and Late Cretaceous along the Russian Pacific coast ELENA A. JAGT−YAZYKOVA Jagt−Yazykova, E.A. 2012. Ammonite faunal dynamics across bio−events during the mid− and Late Cretaceous along the Russian Pacific coast. Acta Palaeontologica Polonica 57 (4): 737–748. The present paper focuses on the evolutionary dynamics of ammonites from sections along the Russian Pacific coast dur− ing the mid− and Late Cretaceous. Changes in ammonite diversity (i.e., disappearance [extinction or emigration], appear− ance [origination or immigration], and total number of species present) constitute the basis for the identification of the main bio−events. The regional diversity curve reflects all global mass extinctions, faunal turnovers, and radiations. In the case of the Pacific coastal regions, such bio−events (which are comparatively easily recognised and have been described in detail), rather than first or last appearance datums of index species, should be used for global correlation. This is because of the high degree of endemism and provinciality of Cretaceous macrofaunas from the Pacific region in general and of ammonites in particular. Key words: Ammonoidea, evolution, bio−events, Cretaceous, Far East Russia, Pacific. Elena A. Jagt−Yazykova [[email protected]], Zakład Paleobiologii, Katedra Biosystematyki, Uniwersytet Opolski, ul. Oleska 22, PL−45−052 Opole, Poland. Received 9 July 2011, accepted 6 March 2012, available online 8 March 2012. Copyright © 2012 E.A. Jagt−Yazykova. This is an open−access article distributed under the terms of the Creative Com− mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Bulletin of the British Museum (Natural History), Geology
    . Cretaceous faunas from Zululand and Natal, South Africa. The ammonite family Gaudryceratidae W. J. Kennedy_ Department of Geology and Mineralogy, University of Oxford, Parks Road, Oxford OX1 3PR H. C. Klinger South African Museum, P.O. Box 61, Cape Town 8000, Republic of South Africa Contents Synopsis 122 Introduction . 122 Location of specimens .......... 123 Field localities 1 23 Dimensions of specimens 123 Suture terminology . .. .. 123 Systematic palaeontology 123 Family Gaudryceratidae Spath 123 Genus Eogaudryceras Spath 123 Subgenus Eogaudryceras Spath 1 24 Eogaudryceras {Eogaudryceras) shimizui skoenbergense Collignon .. 124 Eogaudryceras {Eogaudryceras) hertleini (Wiedmann) . .. 125 Subgenus Eotetragonites Breistroffer 126 Eogaudryceras {Eotetragonites) raspaili raspaili Breistroffer ... 126 Eogaudryceras {Eotetragonites) umbilicostriatus Collignon .. 127 Genus Gaudryceras de Grossouvre . .. .. ... 128 Gaudryceras cf. varagurense Kossmat .. .. 129 Gaudryceras stefaninii Venzo . .. 130 Gaudryceras varicostatum van Hoepen . 133 Gaudryceras tenuiliratum Yabe .... .. 136 Gaudryceras denseplicatum (Jimbo) 140 1 ''Gaudryceras' sigcau van Hoepen . 142 'Gaudryceras' spp. .......... 142 Genus Anagaudryceras Shimizu . .. 142 Anagaudryceras buddha (Forbes) ... ... 146 Anagaudryceras subsacya (Marshall) .. ... 152 Anagaudryceras politissimum (Kossmat) . ... .. 154 Anagaudryceras subtilineatum (Kossmat) .. .. 155 Anagaudryceras pulchrum (Crick) 157 Genus Vertebrites Marshall 159 Vertebrites kayei (Forbes) ..... 160 Genus Zelandites Marshall
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Palaeontological Society of Japan
    Transactions and Proceedings of the Palaeontological Society of Japan New Series No. 97 Palaeon tolog ical Society of Japan April 30, 1975 Editor Takashi HAMADA Associate Editor Ikuwo OBATA Officers for 1975 - 1976 Honorary President: Teiichi KOBAYASHI President: Tatsuro MATSUMOTO Councillors (*Executive): *Kazuo ASAMA, Kiyoshi ASANO, *Kiyotaka CHINZEI, *Takashi HAMADA, *Tetsuro HANAI, *1 taru HAY AMI, Tadao KAMEl, *Kametoshi KANMERA, *Tamio KOTAKA, *Tatsuro MATSUMOTO, Tokio SHIKAMA, Tsugio SHUTO, *Yokichi TAKAYANAGI, Toshimasa TANAI, *Hiroshi UJIIE Executive Committee: General Affairs: Tetsuro HANAI, Itaru HAYAMI, Kiyotaka CHINZEI, Saburo KANNO, Y asuhide IWASAKI Membership: Kazuo ASAMA, Kazuhiko UEMURA Finance: Hiroshi UJIIE Planning: Tamio KOTAKA, Hiroshi NODA Publications Transactions: Takashi HAMADA, Ikuwo OBATA Special Papers ~ Kametoshi KANMERA, Ienori FUJIY AMA, Tomowo OZAWA "Fossils": Yokichi TAKAYANAGI, Toshiaki TAKAYAMA Fossil on the cover is the six leaves in a whorl of Trizygia oblongifolia (GERM. & KAULF.) ASAMA from the Maiya formation (Parafusulina zone), Maiya, N. E. Japan. All communications relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Japan Yayoi 2-4-16, Bunkyo-ku, Tokyo 113, Japan Sole agent: University of Tokyo Press, Hongo, Tokyo Trans. Proc. Palaeont. Soc. Japan, N.S., No. 97, pp. 1-6, April 30, 1975 AMMONITOLOGY IN JAPAN-A HISTORICAL REVIEW (Presidential address, Palaeontological Society of Japan, 1975) TATSURO MATSUMOTO Department of Geology, Kyushu University, Fukuoka 812 B*K~~~7~~~1~~~~~:h~OOK~~~7~~~1~~~~~~, ~~~. ~1l~4i!.J~~f6~.!::, ~~iHcht-: "" -C ~ B*~~~~ ~5tt.51!Wvc~ ? ffltJ:* ~ ~ '0 ~ J: yC 100 if.~~5I:: ~*~Ij-t ~ .!::, iX~ 4 W:~lc:B-~ ~ .: .!:: tJ:-(- ~ ~o ~~1:M (1873-1915) mln;*~ (1l:!i1!:EfJ~/:"77); ~2Wl (1920-1950) L.F.
    [Show full text]
  • Cephalopod Fauna from the Bracquegnies Formation at Strépy-THIEU (Hainaut, Southern Belgium)
    GEOLOGICA BELGICA (2008) 11: 35-69 THE LATE LATE ALBIAN (MORTONICERAS FALLAX ZONE) CEPHALOPOD FAUNA FROM THE BRACQUEGNIES FORMATION AT STRÉPY-THIEU (HAINAUT, SOUTHERN BELGIUM) W. James KENNEDY1, John W. M. JAGT2, *, Francis AMÉDRO3 & Francis ROBASZYNSKI4 (2 figures, 10 plates) 1.Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, United Kingdom; E-mail: [email protected] 2.Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands; E-mail: [email protected] [* corresponding author] 3. 26 rue de Nottingham, F-62100 Calais, France; and Université de Bourgogne (UMR 5561), CNRS Biogéosciences, 6 boulevard Gabriel, F-21000 Dijon, France; E-mail: [email protected] 4.Faculté Polytechnique de Mons, 9 rue de Houdain, B-7000 Mons, Belgium; E-mail: [email protected] ABSTRACT. Excavations in 1989-1990 for the construction of a boat lift near the villages of Strépy and Thieu, east of Mons (province of Hainaut, southern Belgium), exposed a 40-metre section of the Bracquegnies Formation (Haine Green Sandstone Group; the ‘Meule de Bracquegnies’ of previous authors). Several hundred well-preserved, silicified cephalopods were collected from between 15 and 35 metres above the base of the sequence temporarily exposed there. The fauna is: Eutrephoceras clementianum (d’Orbigny, 1840), Puzosia (Puzosia) mayoriana (d’Orbigny, 1841), Callihoplites tetragonus (Seeley, 1865), Discohoplites valbonnensis valbonnensis (Hébert & Munier-Chalmas, 1875), Cantabrigites cantabrigense Spath, 1933, Mortoniceras (Mortoniceras) fallax (Breistroffer, 1940), M. (M.) nanum Spath, 1933, Neophlycticeras (Neophlycticeras) blancheti (Pictet & Campiche, 1859), Stoliczkaia (Stoliczkaia) notha (Seeley, 1865), Anisoceras armatum (J. Sowerby, 1817), Hamites subvirgulatus Spath, 1941, Lechites (Lechites) gaudini (Pictet & Campiche, 1861) and Scaphites (Scaphites) sp.
    [Show full text]
  • Ecological Disparity Is More Susceptible to Environmental
    Swiss J Palaeontol (2018) 137:49–64 https://doi.org/10.1007/s13358-017-0140-y REGULAR RESEARCH ARTICLE Ecological disparity is more susceptible to environmental changes than familial taxonomic richness during the Cretaceous in the Alpstein region (northeastern Switzerland) 1 2 1 Amane Tajika • Peter Ku¨rsteiner • Christian Klug Received: 12 June 2017 / Accepted: 26 September 2017 / Published online: 12 October 2017 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2017 Abstract Studies of global palaeoecology through time disparity are decoupled and that the ecological disparity is usually ignore regional details. Such regional studies on more highly variable in response to environmental changes palaeoecology are required to better understand both than familial taxonomic richness. regional- and global-scale palaeoecolgical changes. We analyzed the palaeoecolgy of a Cretaceous sedimentary Keywords Palaeoecology Á Diversity Á Ecological sequence in the Alpstein (cantons of Appenzell Ausser- disparity Á Cretaceous Á Switzerland rhoden, Appenzell Innerrhoden and St. Gallen, northeast- ern Switzerland), which covers from the Barremian to Cenomanian stage. Two diversity indices of familial tax- Introduction onomic richness and ecological disparity (ecospace occu- pation) with the trophic nucleus concept were employed in The ‘Big Five’ mass extinctions (End-Ordovician, Late order to document changes in palaeocommunities through Devonian, End-Permian, End-Triassic and End-Cretaceous) time. Our results illustrate that taxonomic richness did not are known to have severely affected the earth’s ecosystems change dramatically, while distinct changes occurred in and ecology (e.g., Murphy et al. 2000; Sheehan 2001;Hes- ecospace occupation through time. The changes in eco- selbo et al. 2007; Knoll et al.
    [Show full text]