4. Energy, Power, and Photons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiation Forces on Small Particles in the Solar System T
1CARUS 40, 1-48 (1979) Radiation Forces on Small Particles in the Solar System t JOSEPH A. BURNS Cornell University, 2 Ithaca, New York 14853 and NASA-Ames Research Center PHILIPPE L. LAMY CNRS-LAS, Marseille, France 13012 AND STEVEN SOTER Cornell University, Ithaca, New York 14853 Received May 12, 1978; revised May 2, 1979 We present a new and more accurate expression for the radiation pressure and Poynting- Robertson drag forces; it is more complete than previous ones, which considered only perfectly absorbing particles or artificial scattering laws. Using a simple heuristic derivation, the equation of motion for a particle of mass m and geometrical cross section A, moving with velocity v through a radiation field of energy flux density S, is found to be (to terms of order v/c) mi, = (SA/c)Qpr[(1 - i'/c)S - v/c], where S is a unit vector in the direction of the incident radiation,/" is the particle's radial velocity, and c is the speed of light; the radiation pressure efficiency factor Qpr ~ Qabs + Q~a(l - (cos a)), where Qabs and Q~c~ are the efficiency factors for absorption and scattering, and (cos a) accounts for the asymmetry of the scattered radiation. This result is confirmed by a new formal derivation applying special relativistic transformations for the incoming and outgoing energy and momentum as seen in the particle and solar frames of reference. Qpr is evaluated from Mie theory for small spherical particles with measured optical properties, irradiated by the actual solar spectrum. Of the eight materials studied, only for iron, magnetite, and graphite grains does the radiation pressure force exceed gravity and then just for sizes around 0. -
Chapter 3 Electromagnetic Waves & Maxwell's Equations
Chapter 3 Electromagnetic Waves & Maxwell’s Equations Part I Maxwell’s Equations Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist. Famous equations published in 1861 Maxwell’s Equations: Integral Form Gauss's law Gauss's law for magnetism Faraday's law of induction (Maxwell–Faraday equation) Ampère's law (with Maxwell's addition) Maxwell’s Equations Relation of the speed of light and electric and magnetic vacuum constants 1 c = 2.99792458 108 [m/s] 0 0 permittivity of free space, also called the electric constant permeability of free space, also called the magnetic constant Gauss’s Law For any closed surface enclosing total charge Qin, the net electric flux through the surface is This result for the electric flux is known as Gauss’s Law. Magnetic Gauss’s Law The net magnetic flux through any closed surface is equal to zero: As of today there is no evidence of magnetic monopoles See: Phys.Rev.Lett.85:5292,2000 Ampère's Law The magnetic field in space around an electric current is proportional to the electric current which serves as its source: B ds 0I I is the total current inside the loop. ds B i1 Direction of integration i 3 i2 Faraday’s Law The change of magnetic flux in a loop will induce emf, i.e., electric field B E ds dA A t Lenz's Law Claim: Direction of induced current must be so as to oppose the change; otherwise conservation of energy would be violated. Problem with Ampère's Law Maxwell realized that Ampere’s law is not valid when the current is discontinuous. -
DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES ....................................................................................................... -
Poynting Vector and Power Flow in Electromagnetic Fields
Poynting Vector and Power Flow in Electromagnetic Fields: Electromagnetic waves can transport energy as a result of their travelling or propagating characteristics. Starting from Maxwell's Equations: Together with the vector identity One can write In simple medium where and are constant, and Divergence theorem states, This equation is referred to as Poynting theorem and it states that the net power flowing out of a given volume is equal to the time rate of decrease in the energy stored within the volume minus the conduction losses. In the equation, the following term represents the rate of change of the stored energy in the electric and magnetic fields On the other hand, the power dissipation within the volume appears in the following form Hence the total decrease in power within the volume under consideration: Here (W/mt2) is called the Poynting vector and it represents the power density vector associated with the electromagnetic field. The integration of the Poynting vector over any closed surface gives the net power flowing out of the surface. Poynting vector for the time harmonic case: Using the convention, the instantaneous value of a quantity is the real part of the product of a phasor quantity and when is used as reference. Considering the following phasor: −푗훽푧 퐸⃗ (푧) = 푥̂퐸푥(푧) = 푥̂퐸0푒 The instantaneous field becomes: 푗푤푡 퐸⃗ (푧, 푡) = 푅푒{퐸⃗ (푧)푒 } = 푥̂퐸0푐표푠(휔푡 − 훽푧) when E0 is real. Let us consider two instantaneous quantities A and B such that where A and B are the phasor quantities. Therefore, Since A and B are periodic with period , the time average value of the product form AB, 푇 1 퐴퐵 = ∫ 퐴퐵푑푡 푎푣푒푟푎푔푒 푇 0 푇 1 퐴퐵 = ∫|퐴||퐵|푐표푠(휔푡 + 훼)푐표푠(휔푡 + 훽)푑푡 푎푣푒푟푎푔푒 푇 0 1 퐴퐵 = |퐴||퐵|푐표푠(훼 − 훽) 푎푣푒푟푎푔푒 2 For phasors, and , where * denotes complex conjugate. -
Section 22-3: Energy, Momentum and Radiation Pressure
Answer to Essential Question 22.2: (a) To find the wavelength, we can combine the equation with the fact that the speed of light in air is 3.00 " 108 m/s. Thus, a frequency of 1 " 1018 Hz corresponds to a wavelength of 3 " 10-10 m, while a frequency of 90.9 MHz corresponds to a wavelength of 3.30 m. (b) Using Equation 22.2, with c = 3.00 " 108 m/s, gives an amplitude of . 22-3 Energy, Momentum and Radiation Pressure All waves carry energy, and electromagnetic waves are no exception. We often characterize the energy carried by a wave in terms of its intensity, which is the power per unit area. At a particular point in space that the wave is moving past, the intensity varies as the electric and magnetic fields at the point oscillate. It is generally most useful to focus on the average intensity, which is given by: . (Eq. 22.3: The average intensity in an EM wave) Note that Equations 22.2 and 22.3 can be combined, so the average intensity can be calculated using only the amplitude of the electric field or only the amplitude of the magnetic field. Momentum and radiation pressure As we will discuss later in the book, there is no mass associated with light, or with any EM wave. Despite this, an electromagnetic wave carries momentum. The momentum of an EM wave is the energy carried by the wave divided by the speed of light. If an EM wave is absorbed by an object, or it reflects from an object, the wave will transfer momentum to the object. -
Electromagnetic Energy
Physics 142 Electromagnetic Enmergy Page !1 Electromagnetic Energy A child of five can understand this; send someone to fetch a child of five. — Groucho Marx Energy in the fields can move from place to place We have discussed the energy in an electrostatic field, such as that stored in a capacitor. We found that this energy can be thought of as distributed in space, with an energy per unit volume (energy density) at each point in space. We obtained a formula for this 1 2 quantity, ! ue = 2 ε0E (if there are no dielectric materials). This formula applies to any E- field. We also found that magnetic fields possess energy distributed in space, described 2 by the magnetic energy density ! um = B /2µ0 . If there are both electric and magnetic fields, the total electromagnetic energy density is the sum of ! ue and ! um . These specify how much electromagnetic field energy there is at any point in space. But we have not yet considered how this energy moves from place to place. Consider the energy flow in a flashlight. We know that energy moves from the battery to the bulb, where it is converted into heat and light. It is tempting to assume that this energy flows through the conductors, like water in a pipe. But if we look carefully we find that the electromagnetic energy density in the conductors is much too small to account for the amount of energy in transit. Nearly all of the energy gets to the bulb by flowing through space near the conductors. In a sense they guide the energy but do not carry much of it. -
Formula Sheet for LSU Physics 2113, Third Exam, Fall ’14
Formula Sheet for LSU Physics 2113, Third Exam, Fall '14 • Constants, definitions: m g = 9:8 R = 6:37 × 106 m M = 5:98 × 1024 kg s2 Earth Earth m3 G = 6:67 × 10−11 R = 1:74 × 106 m Earth-Sun distance = 1.50×1011 m kg · s2 Moon 30 22 8 MSun = 1:99 × 10 kg MMoon = 7:36 × 10 kg Earth-Moon distance = 3.82×10 m 2 2 −12 C 1 9 Nm −19 o = 8:85 × 10 2 k = = 8.99 ×10 2 e = 1:60 × 10 C Nm 4πo C 8 −19 c = 3:00 × 10 m/s mp = 1:67 × 10−27 kg 1 eV = e(1V) = 1.60×10 J −31 Q Q Q dipole moment: ~p = qd~ me = 9:11 × 10 kg charge densities: λ = ; σ = ; ρ = L A V 2 2 4 3 Area of a circle: A = πr Area of a sphere: A = 4πr Volume of a sphere: V = 3 πr Area of a cylinder: A = 2πr` Volume of a cylinder: V = πr2` • Units: Joule = J = N·m • Kinematics (constant acceleration): 1 1 2 2 2 v = vo + at x − xo = 2 (vo + v)t x − xo = vot + 2 at v = vo + 2a(x − xo) • Circular motion: mv2 2πr Fc = mac = , T = , v = !r r v • General (work, def. of potential energy, kinetic energy): 1 2 ~ K = 2 mv Fnet = m~a Emech = K + U W = −∆U (by field) Wext = ∆U = −W (if objects are initially and finally at rest) • Gravity: m1m2 GM Newton's law: jF~j = G Gravitational acceleration (planet of mass M): ag = r2 r2 M dVg GM Gravitational Field: ~g = −G r^ = − Gravitational potential: Vg = − r2 dr r 2 ! 4π m1m2 Law of periods: T 2 = r3 Potential Energy: U = −G GM r12 m1m2 m1m3 m2m3 Potential Energy of a System (more than 2 masses): U = − G + G + G + ::: r r r I 12 13 23 Gauss' law for gravity: ~g · dS~ = −4πGMins S • Electrostatics: j q1 jj q2 j Coulomb's law: jF~j = k Force on a charge in -
Properties of Electromagnetic Waves Any Electromagnetic Wave Must Satisfy Four Basic Conditions: 1
Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell’s Equations: Maxwell’s Equations James Clerk Maxwell •1831 – 1879 •Scottish theoretical physicist •Developed the electromagnetic theory of light •His successful interpretation of the electromagnetic field resulted in the field equations that bear his name. •Also developed and explained – Kinetic theory of gases – Nature of Saturn’s rings – Color vision Start at 12:50 https://www.learner.org/vod/vod_window.html?pid=604 Correcting Ampere’s Law Two surfaces S1 and S2 near the plate of a capacitor are bounded by the same path P. Ampere’s Law states that But it is zero on S2 since there is no conduction current through it. This is a contradiction. Maxwell fixed it by introducing the displacement current: Fig. 34-1, p. 984 Maxwell hypothesized that a changing electric field creates an induced magnetic field. Induced Fields . An increasing solenoid current causes an increasing magnetic field, which induces a circular electric field. An increasing capacitor charge causes an increasing electric field, which induces a circular magnetic field. Slide 34-50 Displacement Current d d(EA)d(q / ε) 1 dq E 0 dt dt dt ε0 dt dq d ε E dt0 dt The displacement current is equal to the conduction current!!! Bsd μ I μ ε I o o o d Maxwell’s Equations The First Unified Field Theory In his unified theory of electromagnetism, Maxwell showed that electromagnetic waves are a natural consequence of the fundamental laws expressed in these four equations: q EABAdd 0 εo dd Edd s BE B s μ I μ ε dto o o dt QuickCheck 34.4 The electric field is increasing. -
Poynting's Theorem and the Wave Equation
Chapter 18: Poynting’s Theorem and the Wave Equation Chapter Learning Objectives: After completing this chapter the student will be able to: Use Poynting’s theorem to determine the direction and magnitude of power flow in an electromagnetic system. Use Maxwell’s Equations to derive a general homogeneous wave equation for the electric and magnetic field. Derive a simplified wave equation assuming propagation in a vacuum and an electric field polarized in only one direction. Use Maxwell’s Equations to derive the speed of light in a vacuum. You can watch the video associated with this chapter at the following link: Historical Perspective: John Henry Poynting (1852-1914) was an English physicist who did work in electromagnetic energy flow, elasticity, and astronomy. He coined the term “Greenhouse Effect.” Both the Poynting Vector and Poynting’s Theorem are named in his honor. Photo credit: https://upload.wikimedia.org/wikipedia/commons/5/5f/John_Henry_Poynting.jpg, [Public domain], via Wikimedia Commons. 1 18.1 Poynting’s Theorem With Maxwell’s Equations, we now have the tools necessary to derive Poynting’s Theorem, which will allow us to perform many useful calculations involving the direction of power flow in electromagnetic fields. We will begin with Faraday’s Law, and we will take the dot product of H with both sides: (Copy of Equation 16.24) (Equation 18.1) Next, we will start with Ampere’s Law and will take the dot product of E with both sides: (Copy of Equation 17.13) (Equation 18.2) Now, let’s subtract both sides of Equation 18.2 from both sides of Equation 18.1: (Equation 18.3) We can now apply the following mathematical identity to the left side of Equation 18.3: (Equation 18.4) This substitution yields: (Equation 18.5) Distributing the E across the right side gives: (Equation 18.6) 2 Now let’s concentrate on the first time on the right side. -
The Poynting Vector: Power and Energy in Electromagnetic fields
The Poynting vector: power and energy in electromagnetic fields Kenneth H. Carpenter Department of Electrical and Computer Engineering Kansas State University October 19, 2004 1 Conservation of energy in electromagnetics The concept of conservation of energy (along with conservation of momen- tum) is one of the basic principles of physics – both classical and modern. When dealing with electromagnetic fields a way is needed to relate the con- cept of energy to the fields. This is done by means of the Poynting vector: P = E × H. (1) In eq.(1) E is the electric field intensity, H is the magnetic field intensity, and P is the Poynting vector, which is found to be the power density in the electromagnetic field. The conservation of energy is then established by means of the Poynting theorem. 2 The Poynting theorem By using the Maxwell equations for the curl of the fields along with Gauss’s divergence theorem and an identity from vector analysis, we may prove what is known as the Poynting theorem. 1 EECE557 Poynting vector – supplement to text - Fall 2004 2 The Maxwell’s equations needed are ∂B ∇ × E = − (2) ∂t ∂D ∇ × H = J + (3) ∂t along with the material relationships D = 0E + P (4) B = µ0H + µ0M (5) or for isotropic materials D = E (6) B = µH (7) In addition, the identity from vector analysis, ∇ · (E × H) ≡ −E · (∇ × H) + H · (∇ × E), (8) is needed. 2.1 The derivation If P is to be power density, then its surface integral over the surface of a volume must be the power out of the volume. -
On the Magnetic Dipole Energy Expression of an Arbitrary Current
On the magnetic dipole energy expression of an arbitrary current distribution Keeyung Lee Department of Physics, Inha University, Incheon, 402-751, Korea (Dated: October 16, 2012) We show that the magnetic dipole energy term appearing in the expansion of the magnetic potential energy of a localized current distribution has the form U = +m · B which is wrong by a sign from the well known −m · B expression. Implication of this result in relation to the electric dipole energy −p·E, and the force and torque on the magnetic dipole based on this energy expression is also discussed. PACS numbers: 13.40 Em, 21.10. Ky I. Introduction netic potential energy and show that the expansion of Potential energy of a charge distribution in an external the magnetic energy of an arbitrary current distribution electric field or the potential energy of a current distribu- system results in the expression +m·B for the dipole en- tion in an external magnetic field is an important concept ergy term. Implication of this result in connection with in the electromagnetic theory. It is well known that in the force and torque on the dipole is also discussed. the energy expansion of a localized charge or of a local- ized current distribution, the dipole energy term becomes II. Magnetic Energy Expansion important. Before discussing the magnetic energy case, let us For an electrically neutral system, since the monopole consider first the expansion of electric potential energy term vanishes, electric dipole energy which has the form U = dV ρ(r)φ(r) of a static charge distribution with U = −p · E becomes the most important term in most chargeR density ρ(r) under the influence of an external cases. -
MONITORING of AERODYNAMIC PRESSURES for VENUS EXPRESS in the UPPER ATMOSPHERE DURING DRAG EXPERIMENTS BASED on TELEMETRY Sylvain
MONITORING OF AERODYNAMIC PRESSURES FOR VENUS EXPRESS IN THE UPPER ATMOSPHERE DURING DRAG EXPERIMENTS BASED ON TELEMETRY Sylvain Damiani(1,2), Mathias Lauer(1), and Michael Müller(1) (1) ESA/ESOC; Robert-Bosch-Str. 5, 64293 Darmstadt, Germany; +49 6151900; [email protected] (2)GMV GmbH; Robert-Bosch-Str. 7, 64293 Darmstadt, Germany; +49 61513972970; [email protected] Abstract: The European Space Agency Venus Express spacecraft has to date successfully completed nine Aerodynamic Drag Experiment Campaigns designed in order to probe the planet's upper atmosphere over the North pole. The daily monitoring of the campaign is based on housekeeping telemetry. It consists of reducing the spacecraft dynamics in order to obtain a timely evolution of the aerodynamic torque over a pericenter passage, from which estimations of the accommodation coefficient, the dynamic pressure and the atmospheric density can be extracted. The observed surprising density fluctuations on short timescales justify the use of a conservative method to decide on the continuation of the experiments. Keywords: Venus Express, Drag Experiments, Attitude Dynamics, Aerodynamic Torque. 1. Introduction The European Space Agency's Venus Express spacecraft has been orbiting around Venus since 2006, and its mission has now been extended until 2014. During the extended mission, it has already successfully accomplished 9 Aerodynamic Drag Experiment campaigns until September 2012. Each campaign aims at probing the planet’s atmospheric density at high altitude and next to the North pole by lowering the orbit pericenter (down to 165 km of altitude), and observing its perturbations on both the orbit and the attitude of the probe.