Chapter 2 Topological Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Topological Spaces Chapter 2 Topological Spaces This chapter contains a very bare summary of some basic facts from topology. 2.1 Definition of Topology A topology O on a set X is a collection of subsets of X satisfying the following conditions: (T1) ; 2 O (T2) X 2 O (T3) O is closed under finite intersections, i.e. if A; B 2 O then A \ B 2 O (T4) O is closed under unions, i.e. if S ⊂ O then [S 2 O We have used the set-theoretic notation for unions: [S is the union of all the sets in S. Note also that by the usual induction argument, condition (T2) implies that if A1; :::; An are a finite number of open sets then A1 \ · · · \ An is also open. A topological space (X; OX ) is a set X along with a topology OX on it. Usuallly, we just say \X is a topological space." If x 2 X and U is an open set with x 2 U then we say that U is a neighborhood of x. There are two extreme topologies on any set X: • the indiscrete topology f;; Xg 1 2 CHAPTER 2. TOPOLOGICAL SPACES • the discrete topology P(X) consisting of all subsets of X A set A in O is said to be open in the topology O. The complement of an open set is called a closed set. Taking complements of (T1)-(T4) it follows that: (C1) X is closed (C2) ; is closed (C3) the union of a finite number of closed sets is closed (C4) the intersection of any family of closed sets is closed. Let F ⊂ X. The interior F 0 of F is the union of all open sets contained in F (F 0 could be empty, in case the only open set which is a subset of F is the empty set). It is of course an open set and is the largest open set which is a subset of F . The closure F of F is the intersection of all closed sets which contain F as a subset. Thus F is a closed set, the smallest closed set which contains F as a subset. The intersection of any set of topologies on X is clearly also a topology. Let S be any non-empty collection of subsets of X. Consider the collection TS of all topologies which contain S, i.e. for which the sets of S are open. Note that P(X) 2 TS. Then \TS is the smallest topology on X containing all the sets of S. It is called the topology on X generated by S. A topological space X is Hausdorff if any two points have disjoint neigh- borhoods: i.e. for any x; y 2 X with x =6 y, there exist open sets U and V , with x 2 U, y 2 V , and U \ V = ;. 2.2 Continuous maps Let (X; OX ) and (Y; OY ) be topological spaces, and f : X ! Y a mapping. We say that f is continuous if −1 f (OY ) ⊂ OX ; 2.3. COMPACT SETS 3 i.e. if for every open set B ⊂ Y the inverse image f −1(A) is an open subset of X. It is clear that the identity map X ! X is continuous, when X is given any particular topology. The other simple fact is that if f : X ! Y is continuous and g : Y ! Z is continuous then the composite g ◦ f : X ! Z is also continuous. A mapping f : X ! Y between topological spaces is a homeomorphism of f is a bijection and both f and f −1 are continuous. 2.3 Compact Sets In this section X is a topological space. Let A ⊂ X. An open cover of A is a collection S of open sets such that A ⊂ [S It is usually convenient to index the sets of S: i.e we talk of an open cover fUαgα2I of A, for some indexing set I. If S is an open cover of A, then a subcover of S is a subset S0 ⊂ S which also covers A. A set K ⊂ X is compact if every open cover has a finite subcover. Observe that the union of a finite number of compact sets is compact. Lemma 1 A closed subset of a compact set is closed. Proof. Let C be closed and C ⊂ K where K is compact. If S is an open cover of C then we obtain an open cover of K by throwing in the open set Cc along with S. Then S [ fCcg is an open cover of the compact set K and so has a finite subcover S0. The S0 is also automatically a finite cover of C, and remains so if we discard Cc from S0 in case S0 does contain Cc. This yields a finite subset of S which still covers C. QED Lemma 2 In a Hausdorff space X: 4 CHAPTER 2. TOPOLOGICAL SPACES (i) if K is a compact subset of X and y 2 X a point outside K then y and K have disjoint neighborhoods, i.e. there is an open neighborhood Wy of y and an open set Vy ⊃ K with Wy \ Vy = ;. (ii) every compact subset of X is closed. (iii) any two disjoint compact subsets of X have disjoint open neighborhoods, i.e. if C and D are compact subsets of X then there exist open sets U ⊃ C and V ⊃ D with U \ V = ;. The finiteness argument used in the proof here is typical. Proof. Let y be a point outside the compact set K. For each x 2 K, Hausdorffness gives us disjoint open sets Ux and Fx, with x 2 Ux and y 2 Fx. The open sets Ux, with x running over K, form an open cover of K. By compactness there exist x1; ::; xN 2 K such that Ux1 ; :::; UxN cover K, i.e. K ⊂ Vy = Ux1 [ · · · [ UxN On the other hand we have the open set Wy = Fy1 \ · · · \ FyN which contains y. Observe that Vy and Wy are disjoint. This proves (i). From (i) we see that each point outside the compact set K has an open neighborhood contained entirely inside the complement K c, which implies Kc is open, i.e. K is closed. This proves (ii). The finiteness argument used to prove (i) also proves (iii). By (i), for any y 2 D, there exist disjoint open sets Vy and Wy with y 2 Wy and C ⊂ Vy. The sets Wy form an open covering of D which has a finite subcover Wy1 ; :::; Wym . Let U = Vy1 \ · · · \ Vym and V = Wy1 [ · · · [ Wym . Then U and V are open sets, they are disjoint, and C ⊂ U and D ⊂ V . QED 2.4 Locally Compact Hausdorff Spaces Let X be a topological space. We say that X is locally compact if for each point x 2 X there is an open set U and a compact set K such that x 2 U ⊂ K 2.4. LOCALLY COMPACT HAUSDORFF SPACES 5 If X is Hausdorff, then K would be closed and so for a Hausdorff space, being locally compact means that each point has a neighborhood U whose closure U is compact. The following separation result is useful: Lemma 3 Suppose X is a locally compact Hausdorff space. If C is a closed subset of X and x a point outside C then x and C have disjoint open neigh- borhoods, the neighborhood of x having compact closure. Equivalently, if W is an open neigborhood of a point x 2 X then there is an open neighborhood V of x such that the closure V is compact and V ⊂ W . Proof We prove the second formulation. Because X is locally compact Hausdorff, there is an open neighborhood U of x and compact K with U ⊂ K. Since W c and K are closed, W c \ K is closed. Being closed and a subset of the compact set K, it is also compact. So there is an open neighborhood F of x with closure F lying in the complement of W c \ K. Let V = F \ U. Then V is an open neighborhood of x, and V ⊂ U ⊂ K So V is compact. Moreover, since V is a subset of F the set V lies in the complement of W c \ K, i.e. V ⊂ W [ Kc But we have already seen that V is a subset of K, so V ⊂ W which is what we wanted. QED The following stronger separation result follows easily from the preceding result: Lemma 4 Suppose X is a locally compact Hausdorff space. If C is a closed subset of X and D a compact set disjoint from C then C and D have disjoint open neighborhoods, the neighborhood of D being also compact. Equivalently, if K is a compact set and U and open set with K ⊂ U then there is an open set V , with compact closure V , such that K ⊂ V ⊂ V ⊂ U 6 CHAPTER 2. TOPOLOGICAL SPACES 2.5 Urysohn's Lemma The main theorem of use for us is Urysohn's Lemma: Theorem 1 Suppose X is a locally compact Hausdorff space. Let K be a compact subset of X and U an open subset of X with K ⊂ U. Then there is a function f 2 Cc(X), continuous of compact support, such that 1K ≤ f ≤ 1U Proof. Since X is locally compact Hausdorff and the compact set K is contained in the open set U, there is an open set U1 with compact closure U 1 and K ⊂ U1 ⊂ U 1 ⊂ U Applying this argument again to the compact set U 1 lying inside the open set U, we have an open set U0, with compact closure, such that U 1 ⊂ U0 ⊂ U 0 ⊂ U Thus we have the open sets U0 and U1, each with compact closure, satisfying K ⊂ U1 ⊂ U 1 ⊂ U0 ⊂ U 0 ⊂ U We shall produce for each rational number r 2 (0; 1) an open set Ur, with compact closure, in such a way that U r ⊂ Us whenever s < r.
Recommended publications
  • De Rham Cohomology
    De Rham Cohomology 1. Definition of De Rham Cohomology Let X be an open subset of the plane. If we denote by C0(X) the set of smooth (i. e. infinitely differentiable functions) on X and C1(X), the smooth 1-forms on X (i. e. expressions of the form fdx + gdy where f; g 2 C0(X)), we have natural differntiation map d : C0(X) !C1(X) given by @f @f f 7! dx + dy; @x @y usually denoted by df. The kernel for this map (i. e. set of f with df = 0) is called the zeroth De Rham Cohomology of X and denoted by H0(X). It is clear that these are precisely the set of locally constant functions on X and it is a vector space over R, whose dimension is precisley the number of connected components of X. The image of d is called the set of exact forms on X. The set of pdx + qdy 2 C1(X) @p @q such that @y = @x are called closed forms. It is clear that exact forms and closed forms are vector spaces and any exact form is a closed form. The quotient vector space of closed forms modulo exact forms is called the first De Rham Cohomology and denoted by H1(X). A path for this discussion would mean piecewise smooth. That is, if γ : I ! X is a path (a continuous map), there exists a subdivision, 0 = t0 < t1 < ··· < tn = 1 and γ(t) is continuously differentiable in the open intervals (ti; ti+1) for all i.
    [Show full text]
  • 1.1.5 Hausdorff Spaces
    1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x).
    [Show full text]
  • The Non-Hausdorff Number of a Topological Space
    THE NON-HAUSDORFF NUMBER OF A TOPOLOGICAL SPACE IVAN S. GOTCHEV Abstract. We call a non-empty subset A of a topological space X finitely non-Hausdorff if for every non-empty finite subset F of A and every family fUx : x 2 F g of open neighborhoods Ux of x 2 F , \fUx : x 2 F g 6= ; and we define the non-Hausdorff number nh(X) of X as follows: nh(X) := 1 + supfjAj : A is a finitely non-Hausdorff subset of Xg. Using this new cardinal function we show that the following three inequalities are true for every topological space X d(X) (i) jXj ≤ 22 · nh(X); 2d(X) (ii) w(X) ≤ 2(2 ·nh(X)); (iii) jXj ≤ d(X)χ(X) · nh(X) and (iv) jXj ≤ nh(X)χ(X)L(X) is true for every T1-topological space X, where d(X) is the density, w(X) is the weight, χ(X) is the character and L(X) is the Lindel¨ofdegree of the space X. The first three inequalities extend to the class of all topological spaces d(X) Pospiˇsil'sinequalities that for every Hausdorff space X, jXj ≤ 22 , 2d(X) w(X) ≤ 22 and jXj ≤ d(X)χ(X). The fourth inequality generalizes 0 to the class of all T1-spaces Arhangel ski˘ı’s inequality that for every Hausdorff space X, jXj ≤ 2χ(X)L(X). It is still an open question if 0 Arhangel ski˘ı’sinequality is true for all T1-spaces. It follows from (iv) that the answer of this question is in the afirmative for all T1-spaces with nh(X) not greater than the cardianilty of the continuum.
    [Show full text]
  • 3. Closed Sets, Closures, and Density
    3. Closed sets, closures, and density 1 Motivation Up to this point, all we have done is define what topologies are, define a way of comparing two topologies, define a method for more easily specifying a topology (as a collection of sets generated by a basis), and investigated some simple properties of bases. At this point, we will start introducing some more interesting definitions and phenomena one might encounter in a topological space, starting with the notions of closed sets and closures. Thinking back to some of the motivational concepts from the first lecture, this section will start us on the road to exploring what it means for two sets to be \close" to one another, or what it means for a point to be \close" to a set. We will draw heavily on our intuition about n convergent sequences in R when discussing the basic definitions in this section, and so we begin by recalling that definition from calculus/analysis. 1 n Definition 1.1. A sequence fxngn=1 is said to converge to a point x 2 R if for every > 0 there is a number N 2 N such that xn 2 B(x) for all n > N. 1 Remark 1.2. It is common to refer to the portion of a sequence fxngn=1 after some index 1 N|that is, the sequence fxngn=N+1|as a tail of the sequence. In this language, one would phrase the above definition as \for every > 0 there is a tail of the sequence inside B(x)." n Given what we have established about the topological space Rusual and its standard basis of -balls, we can see that this is equivalent to saying that there is a tail of the sequence inside any open set containing x; this is because the collection of -balls forms a basis for the usual topology, and thus given any open set U containing x there is an such that x 2 B(x) ⊆ U.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • Open Sets in Topological Spaces
    International Mathematical Forum, Vol. 14, 2019, no. 1, 41 - 48 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.913 ii – Open Sets in Topological Spaces Amir A. Mohammed and Beyda S. Abdullah Department of Mathematics College of Education University of Mosul, Mosul, Iraq Copyright © 2019 Amir A. Mohammed and Beyda S. Abdullah. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we introduce a new class of open sets in a topological space called 푖푖 − open sets. We study some properties and several characterizations of this class, also we explain the relation of 푖푖 − open sets with many other classes of open sets. Furthermore, we define 푖푤 − closed sets and 푖푖푤 − closed sets and we give some fundamental properties and relations between these classes and other classes such as 푤 − closed and 훼푤 − closed sets. Keywords: 훼 − open set, 푤 − closed set, 푖 − open set 1. Introduction Throughout this paper we introduce and study the concept of 푖푖 − open sets in topological space (푋, 휏). The 푖푖 − open set is defined as follows: A subset 퐴 of a topological space (푋, 휏) is said to be 푖푖 − open if there exist an open set 퐺 in the topology 휏 of X, such that i. 퐺 ≠ ∅,푋 ii. A is contained in the closure of (A∩ 퐺) iii. interior points of A equal G. One of the classes of open sets that produce a topological space is 훼 − open.
    [Show full text]
  • I-Sequential Topological Spaces∗
    Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • The Seifert-Van Kampen Theorem Via Covering Spaces
    Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory.
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
    INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C.
    [Show full text]