Lecture 5: Closed Sets, and an Introduction to Continuous Functions

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 5: Closed Sets, and an Introduction to Continuous Functions Lecture 5: closed sets, and an introduction to continuous functions Saul Glasman September 16, 2016 Clarification on URL. To warm up today, let's talk about one more example of a topology. Definition 1. Let X be a set. The cofinite topology Tfc on X is the following class of subsets: U 2 Tfc if and only if U = ; or X n U is finite. In order to prove that Tfc is a topology, it'll be convenient to introduce closed sets in a topological space. The definition is simple: Definition 2. Let X be a topological space. A set Z ⊆ X is called closed if its complement Z n X is open. We'll talk a lot more about closed sets later, but for now you should think of closed sets as sets which are in \sharp focus": they have no fuzzy edges. Let's have some examples of closed sets. Example 3. Since X n ; = X and X n X = ;, ; and X are always closed. Example 4. In R, the \closed interval" [a; b] = fr 2 R j a ≤ r ≤ bg is a closed set. To show this, we need to show that the complement R n [a; b] = (−∞; a) [ (b; 1) = fr 2 R j r < a or r > bg is open. But I can write this as a union of open intervals: [ (−∞; a) = (a − n; a) n2N and similarly for (b; 1). In particular, we can take a = b. Then the closed interval [a; a] is the single point fag, and so fag is a closed subset of R. This is very typical behavior: for many nice topological spaces, it's the case that single points are closed subsets. 1 Let's now recall an extra bit of set theory. Lemma 5. Taking complements turns intersections into unions and unions into intersections: Let X be a set and let (Ui)i2I be a collection of subsets of X. Then [ \ X n ( Ui) = (X n Ui) i2I i2I and \ [ X n ( Ui) = (X n Ui): i2I i2I These two statements are known as deMorgan's laws. If they're not im- mediately obvious to you, I recommend you try to prove them at home as an exercise. The upshot is that we can define a topology just as well with closed sets as with open sets: Lemma 6. Let X be a set and let T be a collection of subsets of X. Let T c = fX n U j U 2 T g be the set of complements of elements of T . Then T is a topology if and only if T c satisfies the following conditions: 1. ; 2 T c. 2. X 2 T c. 3. An arbitrary intersection of elements of T c is in T c. 4. A finite union of elements of T c is in T c. Of course, if you know what the closed sets are, you also know what the open sets are: X n (X n U) = U; so (T c)c = T : The point I want to make right now is that in some cases, such as the cofinite topology, it's easier to check the topology axioms with closed sets than with open sets. Indeed, a subset Z ⊆ X is closed in the cofinite topology if and only if it's finite or equal to X. But 1. the empty set is finite; 2. X is equal to X; 3. an arbitrary intersection of finite sets is finite; 4. a finite union of finite sets is finite. 2 Although the indiscrete topology is pretty useless, the cofinite topology actually shows up in the wild (for example, in algebraic geometry). It's the coarsest topology which satisfies the reasonable condition that one-point sets are closed. Now let's learn how to relate topological spaces to one another: the study of continuous functions between topological spaces. Show of hands on who's encountered the − δ definition of continuity before. Judging by prerequisites, it should be everyone. To give a brief reminder: a function f : R ! R is continuous if, informally, when x changes a small amount, f(x) only changes a small amount. This rules out functions with \jumps", or crazy functions like ( 1 x 2 Q χQ(x) = 0 x2 = Q: The actual definition is as follows: Definition 7. f is continuous at x 2 R if for every > 0, there is some δ > 0 such that f((x − δ; x + δ)) ⊆ (f(x) − , f(x) + ): In other words, if jx − x0j < δ, then jf(x) − f(x0)j < . f is continuous if it's continuous at x for every x 2 R. Our goal for the moment is to rephrase this in a way that makes sense for any function between two topological spaces. Let's start by noting that we can be more flexible with the nature of our intervals: Lemma 8. f is continuous at x if and only if for every open interval set I containing f(x), there's an open interval J containing x such that f(J) ⊆ I. Proof. Suppose f is continuous. Let I be an open interval with f(x) 2 I. Then there's some > 0 such that (f(x) − , f(x) + ) ⊆ I: Then for the corresponding δ whose existence is guaranteed by continuity, we can take J = (x − δ; x + δ). Then f(J) ⊆ I. Conversely, suppose f satisfies our condition. Take > 0, and let I = (f(x)−, f(x)+). Then there's some open interval J with x 2 J and f(J) ⊆ I. There is some δ such that (x − δ; x + δ) ⊆ J. So f is continuous. With this lemma, we've not only given ourselves more wiggle room and made the definition (I think) much prettier, we've almost banished the real numbers from the definition statement - it's now a statement solely about open sets and open intervals. Let's make this definition even snappier with the aid of a little piece of language. Definition 9. Let X and Y be sets and f : X ! Y be a function. If U is a subset of Y , then the preimage of U under f is f −1(U) = fx 2 X jf(x) 2 Ug: 3 Don't confuse this notation with the function f −1, the inverse of f when f is bijective! Preimages make perfect sense even if f is not bijective. If f is bijective, then the preimage of U is also the image of U under f −1, so there's no notational ambiguity. Here are some facts about preimages that I'll leave as an exercise: Lemma 10. Let f : X ! Y be a function. Then • If (Ui)i2I is a family of subsets of Y , then ! −1 [ [ −1 f Ui = f (Ui): i2I i2I • Similarly, ! −1 \ \ −1 f Ui = f (Ui): i2I i2I • If U; V ⊆ Y , then f −1(U n V ) = f −1(U) n f −1(V ): With this, we can reformulate the definition of continuity in a way that will generalize to topological spaces: Lemma 11. f : R ! R is continuous if and only if the preimage under f of any open set is open. Proof. To rephrase our previous lemma: f is continuous if and only if for every open set I and every x with f(x) 2 I, there's an open interval J with x 2 J and f(J) ⊆ I. Rephrasing some more, this is the same as saying: for every x 2 f −1(I), there's an open interval J with x 2 J and J ⊆ f −1(I). But this is the same as saying that f −1(I) is open. Definition 12. Let X and Y be topological spaces. A function f : X ! Y is called continuous if the preimage under f of any open subset of Y is an open subset of X. A continuous function is often called a continuous map, or just a map. Remark 13. Since f −1(Y n U) = X n f −1(U); f is continuous if and only if the preimages under f of closed subsets are closed. It's time for some trivial examples. Example 14. The identity function is always continuous, of course, since id−1(U) = U. 4 Example 15. Suppose that f : X ! Y and g : Y ! Z are continuous functions. Then g ◦ f is continuous: indeed, for U ⊆ Z, (g ◦ f)−1(U) = f −1(g−1(U)): But g−1(U) is open since g is continuous, and so (g ◦ f)−1(U) is open, since f is continuous. Example 16. Let X and X0 be two topological spaces with the same underlying set. Then id : X ! X0 is continuous if and only if the topology on X is at least as fine as the topology on X0. Example 17. Suppose X has the discrete topology. Then for any space Y , any function f : X ! Y is continuous. This makes intuitive sense if you regard the discrete topology as making X into a bunch of loose points. Example 18. Suppose Y has the indiscrete topology. Then for any space X, any function f : X ! Y is continuous. Example 19. This one isn't quite as immediate as the others, but it's still very easy, and I'll leave the proof as an exercise: if Y has the cofinite topology, then f : X ! Y is continuous if and only if f −1fyg is closed for each y 2 Y . 5.
Recommended publications
  • 3. Closed Sets, Closures, and Density
    3. Closed sets, closures, and density 1 Motivation Up to this point, all we have done is define what topologies are, define a way of comparing two topologies, define a method for more easily specifying a topology (as a collection of sets generated by a basis), and investigated some simple properties of bases. At this point, we will start introducing some more interesting definitions and phenomena one might encounter in a topological space, starting with the notions of closed sets and closures. Thinking back to some of the motivational concepts from the first lecture, this section will start us on the road to exploring what it means for two sets to be \close" to one another, or what it means for a point to be \close" to a set. We will draw heavily on our intuition about n convergent sequences in R when discussing the basic definitions in this section, and so we begin by recalling that definition from calculus/analysis. 1 n Definition 1.1. A sequence fxngn=1 is said to converge to a point x 2 R if for every > 0 there is a number N 2 N such that xn 2 B(x) for all n > N. 1 Remark 1.2. It is common to refer to the portion of a sequence fxngn=1 after some index 1 N|that is, the sequence fxngn=N+1|as a tail of the sequence. In this language, one would phrase the above definition as \for every > 0 there is a tail of the sequence inside B(x)." n Given what we have established about the topological space Rusual and its standard basis of -balls, we can see that this is equivalent to saying that there is a tail of the sequence inside any open set containing x; this is because the collection of -balls forms a basis for the usual topology, and thus given any open set U containing x there is an such that x 2 B(x) ⊆ U.
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6.
    [Show full text]
  • Derived Smooth Manifolds
    DERIVED SMOOTH MANIFOLDS DAVID I. SPIVAK Abstract. We define a simplicial category called the category of derived man- ifolds. It contains the category of smooth manifolds as a full discrete subcat- egory, and it is closed under taking arbitrary intersections in a manifold. A derived manifold is a space together with a sheaf of local C1-rings that is obtained by patching together homotopy zero-sets of smooth functions on Eu- clidean spaces. We show that derived manifolds come equipped with a stable normal bun- dle and can be imbedded into Euclidean space. We define a cohomology theory called derived cobordism, and use a Pontrjagin-Thom argument to show that the derived cobordism theory is isomorphic to the classical cobordism theory. This allows us to define fundamental classes in cobordism for all derived man- ifolds. In particular, the intersection A \ B of submanifolds A; B ⊂ X exists on the categorical level in our theory, and a cup product formula [A] ^ [B] = [A \ B] holds, even if the submanifolds are not transverse. One can thus consider the theory of derived manifolds as a categorification of intersection theory. Contents 1. Introduction 1 2. The axioms 8 3. Main results 14 4. Layout for the construction of dMan 21 5. C1-rings 23 6. Local C1-ringed spaces and derived manifolds 26 7. Cotangent Complexes 32 8. Proofs of technical results 39 9. Derived manifolds are good for doing intersection theory 50 10. Relationship to similar work 52 References 55 1. Introduction Let Ω denote the unoriented cobordism ring (though what we will say applies to other cobordism theories as well, e.g.
    [Show full text]
  • 16. Compactness
    16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.
    [Show full text]
  • Math 396. Interior, Closure, and Boundary We Wish to Develop Some Basic Geometric Concepts in Metric Spaces Which Make Precise C
    Math 396. Interior, closure, and boundary We wish to develop some basic geometric concepts in metric spaces which make precise certain intuitive ideas centered on the themes of \interior" and \boundary" of a subset of a metric space. One warning must be given. Although there are a number of results proven in this handout, none of it is particularly deep. If you carefully study the proofs (which you should!), then you'll see that none of this requires going much beyond the basic definitions. We will certainly encounter some serious ideas and non-trivial proofs in due course, but at this point the central aim is to acquire some linguistic ability when discussing some basic geometric ideas in a metric space. Thus, the main goal is to familiarize ourselves with some very convenient geometric terminology in terms of which we can discuss more sophisticated ideas later on. 1. Interior and closure Let X be a metric space and A X a subset. We define the interior of A to be the set ⊆ int(A) = a A some Br (a) A; ra > 0 f 2 j a ⊆ g consisting of points for which A is a \neighborhood". We define the closure of A to be the set A = x X x = lim an; with an A for all n n f 2 j !1 2 g consisting of limits of sequences in A. In words, the interior consists of points in A for which all nearby points of X are also in A, whereas the closure allows for \points on the edge of A".
    [Show full text]
  • Topological Dynamics: a Survey
    Topological Dynamics: A Survey Ethan Akin Mathematics Department The City College 137 Street and Convent Avenue New York City, NY 10031, USA September, 2007 Topological Dynamics: Outline of Article Glossary I Introduction and History II Dynamic Relations, Invariant Sets and Lyapunov Functions III Attractors and Chain Recurrence IV Chaos and Equicontinuity V Minimality and Multiple Recurrence VI Additional Reading VII Bibliography 1 Glossary Attractor An invariant subset for a dynamical system such that points su±ciently close to the set remain close and approach the set in the limit as time tends to in¯nity. Dynamical System A model for the motion of a system through time. The time variable is either discrete, varying over the integers, or continuous, taking real values. Our systems are deterministic, rather than stochastic, so the the future states of the system are functions of the past. Equilibrium An equilibrium, or a ¯xed point, is a point which remains at rest for all time. Invariant Set A subset is invariant if the orbit of each point of the set remains in the set at all times, both positive and negative. The set is + invariant, or forward invariant, if the forward orbit of each such point remains in the set. Lyapunov Function A continuous, real-valued function on the state space is a Lyapunov function when it is non-decreasing on each orbit as time moves forward. Orbit The orbit of an initial position is the set of points through which the system moves as time varies positively and negatively through all values. The forward orbit is the subset associated with positive times.
    [Show full text]
  • Gineering and Technology
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 4, Issue 6, June 2015 훙g** - Closed Sets In Topological Spaces N. Balamani1, A.Parvathi 2 Assistant Professor of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India1 Professor of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India2 ABSTRACT: In this paper we introduce and study a new class of generalized closed sets called ψg**-closed sets in topological spaces and investigate some of the basic properties. We analyse the relation between ψg**- closed sets with already existing closed sets. The class of ψg**- closed sets is properly placed between the classes of ψ- closed sets and the class of ψg- closed sets. KEYWORDS: g-closed sets, g** - closed sets, 훙g - closed sets and 훙g**- closed sets I. INTRODUCTION Levine [6] introduced generalized closed sets (briefly g-closed sets) in topological spaces and studied their basic properties. Veerakumar [15] introduced and studied ψ- closed sets. Veerakumar [16] introduced g*-closed sets in topological spaces and studied their properties. Pauline Mary Helan et.al [11] introduced and studied g**- closed sets in topological spaces. The aim of this paper is to introduce a new class of generalized closed sets called ψg**- closed sets. II. PRELIMINARIES Definition 2.1 A subset A of a topological space (X,τ) is called (i) Regular open set [14] if A = int(cl A ) (ii) Semi-open set [5] if A ⊆ cl(int A ) (iii) -open set [10] if A ⊆ int(cl int (A )) (iv) Pre-open set [9] if A ⊆ int(cl A ) (v) semi pre-open set [1] if A ⊆ cl(int(cl(A))) The complements of the above mentioned sets are called regular closed, semi-closed, α -closed, pre-closed and semi pre-closed sets respectively.
    [Show full text]
  • FINITE TOPOLOGICAL SPACES 1. Introduction: Finite Spaces And
    FINITE TOPOLOGICAL SPACES NOTES FOR REU BY J.P. MAY 1. Introduction: finite spaces and partial orders Standard saying: One picture is worth a thousand words. In mathematics: One good definition is worth a thousand calculations. But, to quote a slogan from a T-shirt worn by one of my students: Calculation is the way to the truth. The intuitive notion of a set in which there is a prescribed description of nearness of points is obvious. Formulating the “right” general abstract notion of what a “topology” on a set should be is not. Distance functions lead to metric spaces, which is how we usually think of spaces. Hausdorff came up with a much more abstract and general notion that is now universally accepted. Definition 1.1. A topology on a set X consists of a set U of subsets of X, called the “open sets of X in the topology U ”, with the following properties. (i) ∅ and X are in U . (ii) A finite intersection of sets in U is in U . (iii) An arbitrary union of sets in U is in U . A complement of an open set is called a closed set. The closed sets include ∅ and X and are closed under finite unions and arbitrary intersections. It is very often interesting to see what happens when one takes a standard definition and tweaks it a bit. The following tweaking of the notion of a topology is due to Alexandroff [1], except that he used a different name for the notion. Definition 1.2. A topological space is an A-space if the set U is closed under arbitrary intersections.
    [Show full text]
  • Chapter 3. Topology of the Real Numbers. 3.1
    3.1. Topology of the Real Numbers 1 Chapter 3. Topology of the Real Numbers. 3.1. Topology of the Real Numbers. Note. In this section we “topological” properties of sets of real numbers such as open, closed, and compact. In particular, we will classify open sets of real numbers in terms of open intervals. Definition. A set U of real numbers is said to be open if for all x ∈ U there exists δ(x) > 0 such that (x − δ(x), x + δ(x)) ⊂ U. Note. It is trivial that R is open. It is vacuously true that ∅ is open. Theorem 3-1. The intervals (a,b), (a, ∞), and (−∞,a) are open sets. (Notice that the choice of δ depends on the value of x in showing that these are open.) Definition. A set A is closed if Ac is open. Note. The sets R and ∅ are both closed. Some sets are neither open nor closed. Corollary 3-1. The intervals (−∞,a], [a,b], and [b, ∞) are closed sets. 3.1. Topology of the Real Numbers 2 Theorem 3-2. The open sets satisfy: n (a) If {U1,U2,...,Un} is a finite collection of open sets, then ∩k=1Uk is an open set. (b) If {Uα} is any collection (finite, infinite, countable, or uncountable) of open sets, then ∪αUα is an open set. Note. An infinite intersection of open sets can be closed. Consider, for example, ∞ ∩i=1(−1/i, 1 + 1/i) = [0, 1]. Theorem 3-3. The closed sets satisfy: (a) ∅ and R are closed. (b) If {Aα} is any collection of closed sets, then ∩αAα is closed.
    [Show full text]
  • Big Homotopy Theory
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Big Homotopy Theory Keith Gordon Penrod [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Penrod, Keith Gordon, "Big Homotopy Theory. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1768 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Keith Gordon Penrod entitled "Big Homotopy Theory." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Jurek Dydak, Major Professor We have read this dissertation and recommend its acceptance: Jim Conant, Nikolay Brodskiy, Morwen Thistletwaite, Delton Gerloff Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Big Homotopy Theory A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Keith Gordon Penrod May 2013 c by Keith Gordon Penrod, 2013 All Rights Reserved. ii This dissertation is dedicated to Archimedes, who was my inspiration for becoming a mathematician.
    [Show full text]
  • Math 131: Introduction to Topology 1
    Math 131: Introduction to Topology 1 Professor Denis Auroux Fall, 2019 Contents 9/4/2019 - Introduction, Metric Spaces, Basic Notions3 9/9/2019 - Topological Spaces, Bases9 9/11/2019 - Subspaces, Products, Continuity 15 9/16/2019 - Continuity, Homeomorphisms, Limit Points 21 9/18/2019 - Sequences, Limits, Products 26 9/23/2019 - More Product Topologies, Connectedness 32 9/25/2019 - Connectedness, Path Connectedness 37 9/30/2019 - Compactness 42 10/2/2019 - Compactness, Uncountability, Metric Spaces 45 10/7/2019 - Compactness, Limit Points, Sequences 49 10/9/2019 - Compactifications and Local Compactness 53 10/16/2019 - Countability, Separability, and Normal Spaces 57 10/21/2019 - Urysohn's Lemma and the Metrization Theorem 61 1 Please email Beckham Myers at [email protected] with any corrections, questions, or comments. Any mistakes or errors are mine. 10/23/2019 - Category Theory, Paths, Homotopy 64 10/28/2019 - The Fundamental Group(oid) 70 10/30/2019 - Covering Spaces, Path Lifting 75 11/4/2019 - Fundamental Group of the Circle, Quotients and Gluing 80 11/6/2019 - The Brouwer Fixed Point Theorem 85 11/11/2019 - Antipodes and the Borsuk-Ulam Theorem 88 11/13/2019 - Deformation Retracts and Homotopy Equivalence 91 11/18/2019 - Computing the Fundamental Group 95 11/20/2019 - Equivalence of Covering Spaces and the Universal Cover 99 11/25/2019 - Universal Covering Spaces, Free Groups 104 12/2/2019 - Seifert-Van Kampen Theorem, Final Examples 109 2 9/4/2019 - Introduction, Metric Spaces, Basic Notions The instructor for this course is Professor Denis Auroux. His email is [email protected] and his office is SC539.
    [Show full text]