Metalogic, Qualia, and Identity on Neptune's Great Moon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
``Mathematics'' and ``Physics'' in the Science of Harmonics
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems STEFANO ISOLA “MATHEMATICS” AND “PHYSICS” IN THE SCIENCE OF HARMONICS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.213 ∩ MM “MATHEMATICS” AND “PHYSICS” IN THE SCIENCE OF HARMONICS STEFANO ISOLA Some aspects of the role that the science of harmonics has played in the history of science are discussed in light of Russo’s investigation of the history of the concepts of “mathematics” and “physics”. 1. The rambling route of the ancient scientific method In several places in Russo’s writings on the history of science, one can find en- lightening discussions about the meanings of the concepts of “physics” and “math- ematics”, along with the particular notions of truth involved in them; see, e.g., [58, Chapter 6.6; 60, Chapter 15; 56; 57]. Both terms derive from the Greek: the original meaning of the former was the investigation of everything that lives, grows or, more generally, comes into existence, whereas the latter referred to all that is studied, thus deriving its meaning not from its content but from its method. In the Hellenistic period, the term “physics” continued to be used to indicate that sector of philosophy that addressed nature (the other sectors being ethics and logic), thus corresponding to what came to be called “natural philosophy” in modern times. On the other hand, the term “mathematics” was used to indicate all the disciplines (including geometry, arithmetic, harmonics, astronomy, optics, mechanics, hydro- statics, pneumatics, geodesy and mathematical geography) that shared the same method of investigation, based on the construction of theories by which “theorems” are proved, leaning on explicitly stated initial assumptions. -
PHIL 677 Lec 01 Metalogic Fall Term 2019 MW 14:00–15:15, Math Sciences 319
PHIL 677 Lec 01 Metalogic Fall Term 2019 MW 14:00–15:15, Math Sciences 319 Course Outline Instructor: Richard Zach (he/him) Email: [email protected] Oce: Social Sciences 1230 Oce Hours: MW 13:00–13:50, or by appointment Phone: (403) 220–3170 Teaching Assistant: Weidong Sun (he/him) Email: [email protected] Oce: Social Sciences 1242 Oce Hours: T 15:40-16:40, R 10:00–11:00 Phone: (403) 220–6464 Email is preferred over phone. However please keep the following in mind: 1. Please ensure that “Phil 677” or some other clearly identifying term occurs in the subject line. Otherwise there is a strong possibility that your message will be deleted unread as spam. 2. If you email to make an appointment please indicate the times when you are available. 3. Please make sure your first and last names are clearly included in the body of any email message. 4. We will not respond to email after 7pm or on weekends. 1 Course Information Formal logic has many applications both within philosophy and outside (espe- cially in mathematics, computer science, and linguistics). This second course will introduce you to the concepts, results, and methods of formal logic neces- sary to understand and appreciate these applications as well as the limitations of formal logic. It will be mathematical in that you will be required to master abstract formal concepts and to prove theorems about logic; but it does not presuppose any (advanced) knowledge of mathematics. We will start from the basics. We will begin by studying some basic formal concepts: sets, relations, and functions, and the sizes of infinite sets. -
New Zealand Number 114 Summer 2014 Skeptic
New Zealand Number 114 Summer 2014 Skeptic Mathematics and Pseudoscience A mathematician’s experiences with mathematical cranks The TPP and its Impact on the NZ Health Sector ACC and Acupuncture Mark Hanna investigates skeptics.nz New Zealand Skeptics CONTENTS ABOUT US 3 Editorial The New Zealand Skeptics form a network of New Zealanders including 4 Newsfront scientists, health professionals, teachers, magicians and many others from all walks of life. Members have 6 Letters a variety of religious faiths, economic beliefs and political leanings, but are all 7 Mathematics and Pseudoscience interested in examining what objective Steven Galbraith writes about his experiences scientific support there is for claims with mathematical cranks of such things as psychic abilities, alternative health practices, creationism and other areas where science, pseudo- 12 The Trans-Pacific Partnership and science and shonky science interact. its Impact on the NZ Health Sector 14 A tribute to Warwick Don CONTRIBUTIONS Contributions are welcome and should be 15 BioBlog by Alison Campbell sent to: P.O. Box 30501 17 Science-Based Healthcare Lower Hutt Mark Hanna investigates the ACC and 5040 acupuncture email: [email protected] Deadline for next issue: 21 Complaining Cheat Sheet 10 April 2015 23 Science-Based Medicine Letters for the Forum may be edited Steven Novella talks about the latest bogeyman as space requires – up to 250 words is preferred. 26 Infectious Thoughts by Siouxsie Wiles Please indicate the publication and date of all clippings for Newsfront. 27 The Humanist Material supplied by email or CD is 28 The Loose Change Range appreciated. Luke Oldfield discusses the art of engaging with a ‘Non-Opinion’ Permission is given to other non-profit skeptical organisations to reprint material from this publication, provided the author 30 Skeptacular! by Mark Maultby and NZ Skeptic Inc. -
Notes on Incompleteness Theorems
The Incompleteness Theorems ● Here are some fundamental philosophical questions with mathematical answers: ○ (1) Is there a (recursive) algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is true? ○ (2) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of Peano or Robinson Arithmetic? ○ (3) Is there an algorithm for deciding whether an arbitrary sentence in the language of first-order arithmetic is a theorem of pure (first-order) logic? ○ (4) Is there a complete (even if not recursive) recursively axiomatizable theory in the language of first-order arithmetic? ○ (5) Is there a recursively axiomatizable sub-theory of Peano Arithmetic that proves the consistency of Peano Arithmetic (even if it leaves other questions undecided)? ○ (6) Is there a formula of arithmetic that defines arithmetic truth in the standard model, N (even if it does not represent it)? ○ (7) Is the (non-recursively enumerable) set of truths in the language of first-order arithmetic categorical? If not, is it ω-categorical (i.e., categorical in models of cardinality ω)? ● Questions (1) -- (7) turn out to be linked. Their philosophical interest depends partly on the following philosophical thesis, of which we will make frequent, but inessential, use. ○ Church-Turing Thesis:A function is (intuitively) computable if/f it is recursive. ■ Church: “[T]he notion of an effectively calculable function of positive integers should be identified with that of recursive function (quoted in Epstein & Carnielli, 223).” ○ Note: Since a function is recursive if/f it is Turing computable, the Church-Turing Thesis also implies that a function is computable if/f it is Turing computable. -
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem Yannick Forster Dominik Kirst Gert Smolka Saarland University Saarland University Saarland University Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] [email protected] Abstract like decidability, enumerability, and reductions are avail- We formalise the computational undecidability of validity, able without reference to a concrete model of computation satisfiability, and provability of first-order formulas follow- such as Turing machines, general recursive functions, or ing a synthetic approach based on the computation native the λ-calculus. For instance, representing a given decision to Coq’s constructive type theory. Concretely, we consider problem by a predicate p on a type X, a function f : X ! B Tarski and Kripke semantics as well as classical and intu- with 8x: p x $ f x = tt is a decision procedure, a function itionistic natural deduction systems and provide compact д : N ! X with 8x: p x $ ¹9n: д n = xº is an enumer- many-one reductions from the Post correspondence prob- ation, and a function h : X ! Y with 8x: p x $ q ¹h xº lem (PCP). Moreover, developing a basic framework for syn- for a predicate q on a type Y is a many-one reduction from thetic computability theory in Coq, we formalise standard p to q. Working formally with concrete models instead is results concerning decidability, enumerability, and reducibil- cumbersome, given that every defined procedure needs to ity without reference to a concrete model of computation. be shown representable by a concrete entity of the model. -
Classical Metalogic an Introduction to Classical Model Theory & Computability
Classical Metalogic An Introduction to Classical Model Theory & Computability Notes by R.J. Buehler January 5, 2015 2 Preface What follows are my personal notes created in preparation for the UC-Berkeley Group in Logic preliminary exam. I am not a computability theorist, nor a model theorist; I am a graduate student with some knowledge who is–alas–quite fallible. Accordingly, this text is made available as a convenient reference, set of notes, and summary, but without even the slight hint of a guarantee that everything contained within is factual and correct (indeed, some areas are entirely unchanged from the moment I copied them off the blackboard). This said, if you find a serious error, I would greatly appreciate it if you would let me know so that it can be corrected. The material for these notes derives from a wide variety of sources: Lectures by Wes Holliday Lectures by Antonio Montalban Lectures by John Steel Kevin Kelly’s computability theory notes David Marker’s “Model Theory: An Introduction” Wilfrid Hodge’s “A Shorter Model Theory” Robert Soare’s “Recursively Enumerable Sets and Degrees" Richard Kaye’s “Models of Peano Arithmetic” Chang and Keisler’s “Model Theory" While I certainly hope my notes are beneficial, if you’re attempting to learn the contained material for the first time, I would highly suggest picking up (at least) a copy of Marker and Soare’s texts in addition. To those Group in Logic students who may be using these notes to help themselves prepare for their preliminary exam, chapters 1-5, 7, and 9-18 contain relevant material, as well as chapter 8, section 3. -
METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence. -
MAT 440: Mathematical Logic
Program Cover Sheet --- MAT 440: Mathematical Logic I. Basic Course Information MAT 440: Mathematical Logic is an upper level course scheduled for two 80-minute lecture periods. Sophomore standing or above is a prerequisite. Every upper level math course is designed in part to increase a student’s ability to reason logically, and this 400-level Mathematical Logic course is no different. Despite its name, however, it is not particularly designed for this goal. Instead, this course is designed to take a mathematical and philosophical view at the mechanisms of logical reasoning. There will be three major themes: the process, characteristics and limits of logical reasoning. Much of the mathematical content and processes that will be used in this course will already have been introduced somewhere else in the curriculum, most directly in our Discrete Mathematics which serves as an introduction to techniques of proof. The most notable exception to this is that we will require some knowledge of set theory, in particular, infinite sets and cardinalities. II. Learning Goals The learning goals of this course reflect its major themes. Students will learn the process of logic by exploring propositional and first-order logic languages. Students will learn how to work inside these languages to derive proofs of statements. Secondly, students will study these languages from outside, in the language of metalogic. Here, students will learn the characteristics of these languages. For example, the different notions of ‘truth’ and ‘proof’ will be compared and contrasted. Lastly, students will learn the limits of mathematics in the context of completeness and consistency. -
To Be a Scientist*
TO BE A SCIENTIST1 Victor H. Yngve University of Chicago One of the things that attracted me to linguistics thirty-five years ago was the realization that it dealt with a large area of natural phenomena not yet well understood that could be approached scientifically. It was a frontier with the challenge of the unknown. Linguists advertised their discipline as a science, and it did seem reasonable that there could be a linguistic science, for there were complex phenomena that could be observed, and the observations could be replicated. It reminded me of the complex phenomena in cosmic-ray physics that I had been working on, but it seemed more important and more interesting. Then as I got into the discipline and started doing research, it came over me that linguistics had serious problems in regard to its scientific status. One of the first things I noticed was that much of the writing in linguistics was polemical. This was in stark contrast with the well-mannered writing that I had become accustomed to in physics. Furthermore, it developed that there were many different theories and points of view in linguistics, and the criteria for choosing among them were not clear. At first I thought it was simply because the discipline was not yet very highly developed, for physics, too, had been polemical in earlier centuries. The thing to do was to try to develop linguistics further as a science. So when I put forth a scientific hypothesis about the relation of phrase structure to temporary memory, I expected that linguists working on different languages would test it on the languages they studied, and some did and found that the hypothesis held. -
Mental Metalogic: a New Paradigm in Psychology of Reasoning
Mental MetaLogic: A New Paradigm in Psychology of Reasoning Yingrui Yang & Selmer Bringsjord [email protected] [email protected] Dept. of Philosophy, Psychology &• Cognitive Science (S.B. & Y.Y.) The Minds & Machines Laboratory (S.B. & Y.Y.) Department of Computer Science (S.B.) Rensselaer Polytechnic Institute Troy NY USA Abstract mental logic theory claims that logically untrained hu- mans reason using domain-independent inference rules We introduce a new theory of reasoning, Mental Meta- or schemas (e.g., that from p q and p one can infer to q; Logic (MML), which uni®es the mental logic and men- proponents of mental logic would_ say: that something like tal models theories currently deadlocked in opposition to each other. MML, as we explain, is based on the ªpsychol- this particular rule is operative in the case of our hypo- ogizingº of all of symbolic logic Ð which includes a syn- thetical Smith). On the other hand, mental model theory tactic component (proof theory) with which mental logic holds that ordinary humans reason using not abstract syn- is associated, a semantic component (model theory and tactic rules, but semantic possibilities they in some sense its relatives) with which mental models is associated, and a ªmetaº component (metatheory or metalogic), hitherto imagine. Scientists on both sides are incontestably sem- largely ignored in the psychology of reasoning. We set inal and proli®c, and the content offered by each is pow- out the seven research questions that MML is designed to erful. But the two sides stand vehemently apart, and as a enable answers to, present the research agenda that arises result the science of reasoning is, in a real sense, funda- from the goal of answering three of these questions, and mentally paralyzed.2 MML will end this paralysis. -
Hypernumbers and Other Exotic Stuff
HYPERNUMBERS AND OTHER EXOTIC STUFF Photo by Mateusz Dach (1) MORE ON THE "ARITHMETICAL" SIDE Tropical Arithmetics Introduction to Tropical Geometry - Diane Maclagan and Bernd Sturmfels http://www.cs.technion.ac.il/~janos/COURSES/238900-13/Tropical/MaclaganSturmfels.pdf https://en.wikipedia.org/wiki/Min-plus_matrix_multiplication https://en.m.wikipedia.org/wiki/Tropical_geometry#Algebra_background https://en.wikipedia.org/wiki/Amoeba_%28mathematics%29 https://www.youtube.com/watch?v=1_ZfvQ3o1Ac (friendly introduction) https://en.wikipedia.org/wiki/Log_semiring https://en.wikipedia.org/wiki/LogSumExp Tight spans, Isbell completions and semi-tropical modules - Simon Willerton https://arxiv.org/pdf/1302.4370.pdf (one half of the tropical semiring) Hyperfields for Tropical Geometry I. Hyperfields and dequantization - Oleg Viro https://arxiv.org/pdf/1006.3034.pdf (see section "6. Tropical addition of complex numbers") Supertropical quadratic forms II: Tropical trigonometry and applications - Zur Izhakian, Manfred Knebusch and Louis Rowen - https://www.researchgate.net/publication/ 326630264_Supertropical_Quadratic_forms_II_Tropical_Trigonometry_and_Applications Tropical geometry to analyse demand - Elizabeth Baldwin and Paul Klemperer http://elizabeth-baldwin.me.uk/papers/baldwin_klemperer_2014_tropical.pdf International Trade Theory and Exotic Algebras - Yoshinori Shiozawa https://link.springer.com/article/10.1007/s40844-015-0012-3 Arborescent numbers: higher arithmetic operations and division trees - Henryk Trappmann http://eretrandre.org/rb/files/Trappmann2007_81.pdf -
On the Principle Qf Excluded Middle U* I-Lro 6*
ON THE PRINCIPLE 011' EXCLUDED MIDDLE 415 trans~ prove that classical mathemati('J3 is ~..IV, g, with rules ofinfemnce) of qnanti latahle into intuitionistic mathematics. ficatwn theory and extend his iHustra_ For this purpose, with each formula €> of tim.l to cover also the rule P and the mathemat,ics there is associated a trans remaining axioms, and if we let .t>:O be lat~on <0* in a perfectly general manner JEO plus Axiom 6) t,hen we have also: ,~, (IIi, § 2). If (a), and (Ea) are the Theorem III. If U f--I\£' \15, then only symbols we use for forming new On the principle qf excluded middle u* I-lRO 6*. formulas from given formulas, the defini. In that case, all the derivatioIh9 in V 6~ ANDREI NIKOLAEVICH KOLMOGOROV tion amounts to: for atomic e* is its § 4, can be dispensed with because the; donble negation is, or n@5; (B)* is n( B*); would follow from Theorem III. (1925) (A -'>- B)* is n(A* -'>- B*); ((a)A(a))* is A very suggestive remark (beginning n(a)(A(a»*; «(Ea)A(a)* is n(Ea)(A(a»*. of IV, § 5, and last two paragraphs of The following T'C'suHs are proved ex~ IV, § 6) is that every axiom A of matbe To " I"rge extent, this paper antici foundation since it asserts something ""tly (III, § 3) : matics is of type .!(., that is, A. is (intni p"ted not only Heytiog's form"liz"tion of about the consequences of something im~ Lemma 1. 1-i8 nA" ~ ir.