Diversity of the Class Coriobacteriia Within Different Ecosystems Lesley Hoyles

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of the Class Coriobacteriia Within Different Ecosystems Lesley Hoyles Diversity of the class Coriobacteriia within different ecosystems Lesley Hoyles Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom Within the human gut microbiota, the phylum Actinobacteria is represented The Integrated Microbial NGS (IMNGS) platform [12] systematically screens for, by obligate anaerobes belonging to the genus Bifidobacterium and the retrieves, processes and analyses all available prokaryotic 16S rRNA gene class Coriobacteriia. While bifidobacteria have been studied extensively, amplicon datasets and uses them to build sample-specific sequence databases the coriobacteria have received little attention, despite being more and OTU-based profiles. Its first release (June 2016) contained information for abundant than bifidobacteria in the faeces of healthy adults [1]. Collinsella 85,121 samples. Of these, 39,216 contained sequences annotated as belonging aerofaciens is a core member of the human gut microbiota, found in ~90 % to the class Coriobacteriia. 16S rRNA gene V region(s) covered by sequences in IMNGS are not recorded. To allow comparative analyses, V regions of 16S of people [2]. Eggerthella lenta is involved in drug and bile acid metabolism rRNA gene sequences of the Coriobacteriia type strains (Figure 1) were used (10 % of people) [3,4]. In between 30 and 60 % of people, equol (a as BLASTN databases for searches with the Coriobacteriia-positive IMNGS bioactive isoflavone) is produced by one or more Asaccharobacter, samples (Figure 3). In addition, the potential of the different 16S rRNA gene V Paraeggerthella and Slackia spp.; in mice, equol is produced by regions to discriminate members of the Coriobacteriia at different BLASTN Enterorhabdus spp. [5–8]. Gordonibacter and Ellagibacter spp. produce thresholds was determined (Figure 4). urolithin, which has anti-inflammatory activity in vivo [9]. In recent years, 33 novel species and 12 new genera within the class Coriobacteriia have been Figure 3. Breakdown of Coriobacteriia-positive IMNGS samples described (Figure 1). Most of these species have been recovered from based on V region(s) covered in each 16S rRNA gene amplicon sample. 38,874/39,216 of the Coriobacteriia-positive samples human intestinal samples. However, the prevalence of these bacteria in returned BLASTN hits (90 % sequence similarity threshold). mammalian (and environmental) samples is unknown. 17,238/38,874 of samples covered only the V4 region. Samples covering regions V1–V3 (5,400), V2 only (3,996) and V1–V2 (3,383) were also well represented in the dataset. Figure 1. Species of the Figure 4. Variable regions within complete 16S rRNA class Coriobacteriia gene sequences of the Coriobacteriia, based on a 20-bp belong to one of three sliding window. Hypervariable regions of the 16S rRNA families (Atopobiaceae, gene sequences of the Coriobacteriia were defined Coriobacteriaceae, using their flanking conserved sequences [13]. Only the Eggerthellaceae). V4 region and combined V1–V3 regions of the 16S *Type strains of species rRNA gene allow family (F) and genus (G) discrimination isolated from human of taxa within the Coriobacteriia at ≥ 92 % and ≥99 % or intestinal, faecal and ≥97 % sequence similarity, respectively. vaginal samples as a result of ‘culturomics’ studies (e.g. [11]). *Type strains of species Analyses of IMNGS samples covering the 16S rRNA gene V1–V3 and V4 isolated from faeces and regions showed the human gut microbiota to be predominated by taxa of the described outside the work of [11] and family Coriobacteriaceae, while the mouse gut is predominated by taxa of the colleagues. family Eggerthellaceae (and unknown Atopobiaceae, V4 region only) (Figure 5). Given the metabolic differences among the families of the Coriobacteriia, the human and mouse gut microbiotas will make very different contributions to mammalian microbiomes and host–microbiome co-metabolism. It is important to understand the diversity of Coriobacteriia in mammalian microbiotas as the three families currently recognized within the class have different metabolic capabilities (Figure 2). Figure 2. Metabolism of members of the class Coriobacteriia. Taxa of the families Atopobiaceae and Coriobacteriaceae are Figure 5. Summary of saccharolytic, while those IMNGS data based on belonging to family original and updated Eggerthellaceae are taxonomic information. asaccharolytic. proteomes from publicly available whole-genome sequence data were used to generate KEGG functional information for the Coriobacteriia using the online version of eggNOG-mapper v4.5.1. The data were visualized using the online tool FuncTree2. ACKNOWLEDGEMENTS REFERENCES This work used the computing resources of the UK MEDical [1] Thorasin et al. (2015). Microbiology 161, 565–579. [10] Beltrán et al. (2018). Int J Syst Evol Microbiol 68, 1707–1712. BIOinformatics partnership – aggregation, integration, visualisation [2] Qin et al. (2010). Nature 464, 59–65. [11] Lagier et al. (2016). Nat Microbiol 1, 16203. [3] Haiser et al. (2013). Science 341, 295–298. [12] Lagkouvardos et al. (2016). Sci Rep 6, 33721. and analysis of large, complex data (UK MED-BIO), which was [4] Harris et al. (2018). Gut Microbes 9, 523–539. [13] Yang et al. (2016). BMC Bioinformatics 17, 135. supported by the Medical Research Council (grant number [5] Matthies et al. (2008). Appl Environ Microbiol 74, 4847–4852. MR/L01632X/1). [6] Minamida et al. (2008). Int J Syst Evol Microbiol 58, 1238–1240. Contact [7] Tsuji et al. (2010). Arch Microbiol 192, 279–287. [email protected] [8] Abiru et al. (2013). Int J Food Sci Nutr 64, 936–943. @BugsInYourGuts [9] Selma et al. (2014). Food Funct 5, 1779–1884..
Recommended publications
  • Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia Equolifaciens DSM19450T
    Article Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens DSM19450T Ana Belén Flórez 1,*, Lucía Vázquez 1, Javier Rodríguez 1, Begoña Redruello 2 and Baltasar Mayo 1 1 Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; [email protected] (L.V.); [email protected] (J.R.); [email protected] (B.M.) 2 Servicios Científico-Técnicos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-89-21-31 Received: 25 February 2019; Accepted: 30 April 2019; Published: 30 April 2019 Abstract: Given the emerging evidence of equol’s benefit to human health, understanding its synthesis and regulation in equol-producing bacteria is of paramount importance. Adlercreutzia equolifaciens DSM19450T is a human intestinal bacterium —for which the whole genome sequence is publicly available— that produces equol from the daidzein isoflavone. In the present work, daidzein (between 50 to 200 μM) was completely metabolized by cultures of A. equolifaciens DSM19450T after 10 h of incubation. However, only about one third of the added isoflavone was transformed into dihydrodaidzein and then into equol. Transcriptional analysis of the ORFs and intergenic regions of the bacterium’s equol gene cluster was therefore undertaken using RT-PCR and RT-qPCR techniques with the aim of identifying the genetic elements of equol biosynthesis and its regulation mechanisms. Compared to controls cultured without daidzein, the expression of all 13 contiguous genes in the equol cluster was enhanced in the presence of the isoflavone.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Hawai'i's First Published Case of Eggerthella Lenta Sepsis
    Hawai‘i’s First Published Case of Eggerthella lenta Sepsis Taylor K. Peter-Bibb BA and Jinichi Tokeshi MD Abstract other medical issues include diverticulitis, diabetes mellitus type II, essential hypertension, stage 3 chronic kidney disease, Human bacteremia with Eggerthella lenta is rare. Upon review of the literature, hyperlipidemia, benign prostatic hyperplasia, chronic gout, the largest case series includes only about 100 cases, and optimal manage- and bilateral hearing loss. He was brought to his primary care ment of the condition is still unclear. This case report describes a patient physician (PCP) by his son and certified nurse assistant due diagnosed with E. lenta septicemia due to acute diverticulitis in 2019. This is the first published report of sepsis caused byE. lenta in the state of Hawai‘i. to rigors, cough productive of scant clear sputum, rhinorrhea, and 3 episodes of non-bilious, non-bloody emesis. In his PCP’s Abbreviations and Acronyms office, he had a temperature of 102˚F, heart rate of 103 beats per minute, respiratory rate of 22 breaths per minute, and right GI = gastrointestinal abdominal tenderness without rebound or guarding on exam. PCP = primary care physician His PCP recommended further workup in the emergency depart- MRSA = methicillin-resistant Staphylococcus aureus ment, which included a complete blood count significant for 14 500 white blood count cells/µL (normal range: 4000–11 000 Introduction cells/µL). Abdominal computed tomography without contrast revealed numerous colonic diverticula with pericecal inflam- Eggerthella lenta is a gram-positive, non-motile, non-spore- matory change. The patient was admitted for sepsis secondary forming, obligate anaerobic bacillus that was first isolated from to presumed acute diverticulitis.
    [Show full text]
  • Senegalemassilia Anaerobia Gen. Nov., Sp. Nov
    Standards in Genomic Sciences (2013) 7:343-356 DOI:10.4056/sigs.3246665 Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Jean-Christophe Lagier1, Khalid Elkarkouri1, Romain Rivet1, Carine Couderc1, Didier Raoult1 and Pierre-Edouard Fournier1* 1 Aix-Marseille Université, URMITE, Faculté de médecine, Marseille, France *Corresponding author: Pierre-Edouard Fournier ([email protected]) Keywords: Senegalemassilia anaerobia, genome Senegalemassilia anaerobia strain JC110T sp.nov. is the type strain of Senegalemassilia anaer- obia gen. nov., sp. nov., the type species of a new genus within the Coriobacteriaceae family, Senegalemassilia gen. nov. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. S. anaerobia is a Gram-positive anaerobic coccobacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,383,131 bp long genome contains 1,932 protein- coding and 58 RNA genes. Introduction Classification and features Senegalemassilia anaerobia strain JC110T (= CSUR A stool sample was collected from a healthy 16- P147 = DSMZ 25959) is the type strain of S. anaer- year-old male Senegalese volunteer patient living obia gen. nov., sp. nov. This bacterium was isolat- in Dielmo (rural village in the Guinean-Sudanian ed from the feces of a healthy Senegalese patient. zone in Senegal), who was included in a research It is a Gram-positive, anaerobic, indole-negative protocol. Written assent was obtained from this coccobacillus. Classically, the polyphasic taxono- individual. No written consent was needed from his my is used to classify the prokaryotes by associat- guardians for this study because he was older than ing phenotypic and genotypic characteristics [1].
    [Show full text]
  • Human Gut Microbiome Changes During a 10 Week Randomised
    www.nature.com/scientificreports Corrected: Author Correction OPEN Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient Received: 19 July 2018 Accepted: 20 June 2019 supplementation in children with Published online: 12 July 2019 attention defcit hyperactivity disorder Aaron J. Stevens1, Rachel V. Purcell 2, Kathryn A. Darling3, Matthew J. F. Eggleston4, Martin A. Kennedy 1 & Julia J. Rucklidge3 It has been widely hypothesized that both diet and the microbiome play a role in the regulation of attention-defcit/hyperactivity disorder (ADHD) behaviour. However, there has been very limited scientifc investigation into the potential biological connection. We performed a 10-week pilot study investigating the efects of a broad spectrum micronutrient administration on faecal microbiome content, using 16S rRNA gene sequencing. The study consisted of 17 children (seven in the placebo and ten in the treatment group) between the ages of seven and 12 years, who were diagnosed with ADHD. We found that micronutrient treatment did not drive large-scale changes in composition or structure of the microbiome. However, observed OTUs signifcantly increased in the treatment group, and showed no mean change in the placebo group. The diferential abundance and relative frequency of Actinobacteria signifcantly decreased post- micronutrient treatment, and this was largely attributed to species from the genus Bifdobacterium. This was compensated by an increase in the relative frequency of species from the genus Collinsella. Further research is required to establish the role that Bifdobacterium contribute towards neuropsychiatric disorders; however, these fndings suggest that micronutrient administration could be used as a safe, therapeutic method to modulate Bifdobacterium abundance, which could have potential implications for modulating and regulating ADHD behaviour.
    [Show full text]
  • Bacterial Diversity in the Surface Sediments of the Hypoxic Zone Near
    ORIGINAL RESEARCH Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea Qi Ye, Ying Wu, Zhuoyi Zhu, Xiaona Wang, Zhongqiao Li & Jing Zhang State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China Keywords Abstract Bacteria, Changjiang Estuary, hypoxia, Miseq Illumina sequencing, sediment Changjiang (Yangtze River) Estuary has experienced severe hypoxia since the 1950s. In order to investigate potential ecological functions of key microorgan- Correspondence isms in relation to hypoxia, we performed 16S rRNA-­based Illumina Miseq Qi Ye, East China Normal University, State Key sequencing to explore the bacterial diversity in the surface sediments of the Laboratory of Estuarine and Coastal Research, hypoxic zone near the Changjiang Estuary and in the East China Sea (ECS). 3663 North Zhongshan Road, SKLEC Building, Room 419, Shanghai 200062, China. The results showed that numerous Proteobacteria-­affiliated sequences in the sedi- Tel: 86-021-52124974; ments of the inner continental shelf were related to both sulfate-­reducing and Fax: 86-021- 62546441; sulfur-­oxidizing bacteria, suggesting an active sulfur cycle in this area. Many E-mail: [email protected] sequences retrieved from the hypoxic zone were also related to Planctomycetes from two marine upwelling systems, which may be involved in the initial break- Funding Information down of sulfated heteropolysaccharides. Bacteroidetes, which is expected to degrade This study was funded by the Shanghai Pujiang high-­molecular-­weight organic matter, was abundant in all the studied stations Talent Program (12PJ1403100), the National except for station A8, which was the deepest and possessed the largest grain Natural Science Foundation of China (41276081), the Key Project of Chinese size.
    [Show full text]
  • Daidzein Intake Is Associated with Equol Producing Status Through an Increase in the Intestinal Bacteria Responsible for Equol Production
    Article Daidzein Intake Is Associated with Equol Producing Status through an Increase in the Intestinal Bacteria Responsible for Equol Production Chikara Iino 1, Tadashi Shimoyama 2,*, Kaori Iino 3, Yoshihito Yokoyama 3, Daisuke Chinda 1, Hirotake Sakuraba 1, Shinsaku Fukuda 1 and Shigeyuki Nakaji 4 1 Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] (C.I.); [email protected] (D.C.); [email protected] (H.S.); [email protected] (S.F.) 2 Aomori General Health Examination Center, Aomori 030-0962, Japan 3 Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] (K.I.); [email protected] (Y.Y.) 4 Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-017-741-2336 Received: 9 January 2019; Accepted: 7 February 2019; Published: 19 February 2019 Abstracts: Equol is a metabolite of isoflavone daidzein and has an affinity to estrogen receptors. Although equol is produced by intestinal bacteria, the association between the status of equol production and the gut microbiota has not been fully investigated. The aim of this study was to compare the intestinal bacteria responsible for equol production in gut microbiota between equol producer and non-producer subjects regarding the intake of daidzein. A total of 1044 adult subjects who participated in a health survey in Hirosaki city were examined. The concentration of equol in urine was measured by high-performance liquid chromatography.
    [Show full text]
  • Enterorhabdus Caecimuris Sp. Nov., a Member of the Family
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central International Journal of Systematic and Evolutionary Microbiology (2010), 60, 1527–1531 DOI 10.1099/ijs.0.015016-0 Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009 Thomas Clavel,1 Wayne Duck,2 Ce´dric Charrier,3 Mareike Wenning,4 Charles Elson2 and Dirk Haller1 Correspondence 1Biofunctionality, ZIEL – Research Center for Nutrition and Food Science, Technische Universita¨t Thomas Clavel Mu¨nchen (TUM), 85350 Freising Weihenstephan, Germany [email protected] 2Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 3NovaBiotics Ltd, Aberdeen, AB21 9TR, UK 4Microbiology, ZIEL – Research Center for Nutrition and Food Science, TUM, 85350 Freising Weihenstephan, Germany The C3H/HeJBir mouse model of intestinal inflammation was used for isolation of a Gram- positive, rod-shaped, non-spore-forming bacterium (B7T) from caecal suspensions. On the basis of partial 16S rRNA gene sequence analysis, strain B7T was a member of the class Actinobacteria, family Coriobacteriaceae, and was related closely to Enterorhabdus mucosicola T T Mt1B8 (97.6 %). The major fatty acid of strain B7 was C16 : 0 (19.1 %) and the respiratory quinones were mono- and dimethylated. Cells were aerotolerant, but grew only under anoxic conditions. Strain B7T did not convert the isoflavone daidzein and was resistant to cefotaxime. The results of DNA–DNA hybridization experiments and additional physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain B7T from the type strain of E.
    [Show full text]
  • Expanding Diversity of Asgard Archaea and the Elusive Ancestry of Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.343400; this version posted October 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Expanding diversity of Asgard archaea and the elusive ancestry of eukaryotes 2 3 Yang Liu1†, Kira S. Makarova2†, Wen-Cong Huang1†, Yuri I. Wolf2, Anastasia Nikolskaya2, Xinxu 4 Zhang1, Mingwei Cai1, Cui-Jing Zhang1, Wei Xu3, Zhuhua Luo3, Lei Cheng4, Eugene V. Koonin2*, Meng 5 Li1* 6 1 Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen 7 University, Shenzhen, Guangdong, 518060, P. R. China 8 2 National Center for Biotechnology Information, National Library of Medicine, National Institutes of 9 Health, Bethesda, Maryland 20894, USA 10 3 State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic 11 Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State 12 Oceanic Administration, Xiamen 361005, P. R. China 13 4 Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of 14 Ministry of Agriculture, Chengdu 610041, P.R. China 15 † These authors contributed equally to this work. 16 *Authors for correspondence: [email protected] or [email protected] 17 18 19 Running title: Asgard archaea genomics 20 Keywords: 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.343400; this version posted October 20, 2020.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes.
    [Show full text]