<<

Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations

2007 Morphology and plasticity of (Zea mays L.) male development and pollen production Dean Michael Tranel Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation Tranel, Dean Michael, "Morphology and plasticity of maize (Zea mays L.) male inflorescence development and pollen production" (2007). Retrospective Theses and Dissertations. 15900. https://lib.dr.iastate.edu/rtd/15900

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Morphologyandplasticityofmaize( Zea mays L.) maleinflorescencedevelopmentandpollenproduction

by

DeanMichaelTranel

Adissertationsubmittedtothegraduatefaculty inpartialfulfillmentoftherequirementsforthedegreeof DOCTOROFPHILOSOPHY Major:CropProductionandPhysiology ProgramofStudyCommittee: AllenKnapp,MajorProfessor RogerElmore KennethKoehler AntonioPerdomo SteveStrachan MarkWestgate IowaStateUniversity Ames,Iowa 2007 Copyright©DeanMichaelTranel,2007.Allrightsreserved. UMI Number: 3274841

UMI Microform 3274841 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii

TABLE OF CONTENTS

CHAPTER1.GENERALINTRODUCTION 1 DissertationOrganization 1 LiteratureReview 1 References 8 CHAPTER2.ANEWTECHNIQUEFORQUANTIFYING POLLENPRODUCTIONINMAIZE( ZEA MAYS L.) 19 Abstract 19 Introduction 20 MaterialsandMethods 22 ResultsandDiscussion 26 Conclusion 31 Acknowledgements 32 References 32 CHAPTER3.TASSELDEVELOPMENTEVENTSLEADING TOPOLLENPRODUCTION:ATIMELINE 40 Abstract 40 Introduction 41 MaterialsandMethods 43 ResultsandDiscussion 46 Conclusion 53 Acknowledgements 53 References 54 CHAPTER4.CHILLINGEFFECTSDURINGMAIZE( ZEA MAYS L.) TASSELDEVELOPMENTANDCOMPENSATIONALPLASTICITY 65 Abstract 65 Introduction 66 MaterialsandMethods 67 ResultsandDiscussion 71 Conclusion 76 Acknowledgements 77 References 77 CHAPTER5.GENERALCONCLUSIONS 88 APPENDIXA.TASSELDIAGRAM 90 APPENDIXB.RAWDATA 91 ACKNOWLEDGEMENTS 100 iii

ABSTRACT Acopiousquantityofpollenproductionisdesirablefromthemaleparentinhybrid maize( Zea mays L.)seedproduction.Howevertasselsizeandpresumablypollen productionvariesacrossenvironments.Thisresearchwasconductedtobetterunderstandif variationinpollenproductionisduetostressduringinitiationofspecificpollenproduction components.Ifcomponentcompensationforpollenproductionoccurs,thencomponentsthat formlatershouldshowplasticitywithreducedproductionofearlierformedcomponents. Thiswasalsoinvestigated.Toconductsuchstudies,apollenproductionmeasurement techniquewasdevisedsincecurrentmethodsdonotadequatelyquantifytotalpollen producedpertassel.Inaddition,knowledgeofthemorphologicaldevelopmentoftassel componentsthatleadtopollenproductioniscriticalforthesestudies.Thustassel morphologicaldevelopmentwascharacterizedrelativetodevelopmentandheatunits. Todevelopbestmanagementpracticesforhighpollenproduction,areliablepollen productionmeasurementtoolisnecessary.Anewmethodwasdevelopedinvolving extractionofpreshedpollenfromtasselsthroughgrindingtassels,wetsievingtoseparate pollenfromtasseldebris,andcountingpollen.Thistechniquecomparedfavorablywith otherestablishedpollenyieldmeasurementtechniques.Benefitsofthenewtechnique includethequantificationofallpollenproducedbyasingletassel,adirectcountofpollen grains,andacomparativelylowCV.Thistechniqueisresourceintensivecomparedtoother methods. Tasseldevelopmentaleventsleadingtopollenproductionwerecharacterizedin relationtoplantdevelopmentandheatunitaccumulationintwomoderndentinbreds.Tassel initiationoccurredfromfourthleafstage,sixleaftips(V4:T6)toV5:T7.Branchmeristems appearedpromptlyaftertasselinitiation.PollenmothercellsenteredmeiosisfromV9:T14 toV12:T15.Inthisstudytherateoftasseldevelopmentrelativetoleafemergencewasthe samebetweeninbreds,buttherateofplantdevelopmentrelativetoaccumulatedheatunits iv differedbetweeninbreds.Usingtheseinbreds,chillingwasappliedduringtasselandpollen formationevents.Theseeventsincludedbranchinitiation,spikeletpairinitiation,and meiosisofmicrosporogenesis.The113relativematurity(RM)inbredproduced60percent lessbranchesand42percentfewerspikeletsforbranchandspikeletchillingtreatment, respectively.The103RMinbredwasgenerallynotresponsivetochilling.Chillingapplied duringmeiosisdecreasedthepercentageofstarchfilledpollengrainsonlyinthelower floretsonthelowestbranchofthe113RMinbred.The113RMinbredproduced43and29 percentfewerpollengrainspertasselwhenchillingwasappliedduringbranchandspikelet initiation,respectively.Whenbranchorspikeletproductionwasreduced,compensationby laterformingpollenproductioncomponentswasnotidentifiedinthisstudy. Anovelpollenquantificationtechniquewasdevelopedthatcanbeusedbythose characterizingmaleparentsofhybridsforpollenproductionpertassel.Thisnewtechnique nowallowsforinvestigationsofallpreshedpollenproducedpertasselwithoutconfounding effectsofpercentofpollenshed.Thetasselformationeventsallowsseedproducerstobetter understandpotentialstresseffectsonpollenproductionandflowering.Thediameterofthe apicalmeristemattasselinitiationforthemoderninbredsstudiedwassmallerthan previouslyreported.Furtherinvestigationsarerequiredtoelucidateimplicationsfor variationintheapicalmeristemsizeattasselinitiation.Tasseldevelopmentrelativetoleaf emergencecorrespondedfortheseinbredswhichhavearangeinmaturitiesandgrowthrates relativetoheatunits.Theserelationshipsrequireconfirmationthroughtestingundervarious environmentsaswellasacrossawiderrangeofgenotypes.Acoordinatedrateoftassel developmenttoleafemergenceimprovesourunderstandingoffactorsaffectingtimeto flowering.Dentinbredlinesvaryintheirresponsetochillingduringtasselformationfor pollenproduction.Plasticityinpollenproductioncomponentstocompensatefordecreased productionofearlierformedpollenproductioncomponentswasnotidentifiedinthese studies. 1

CHAPTER 1. GENERAL INTRODUCTION

Dissertation Organization

Thisdissertationbeginswithliteraturereviewfollowedbythreechaptersandfinally generalconclusions.Theliteraturereviewcoverstoolstoassesspollenquantityandquality, stresseffectsontasseldevelopment,andmaize( Zea mays L.)tasselmorphology.Thefirst paperpresentsanewanduniquemethodtoquantifypollenproduction.Thesecondpaper characterizesthetimelineoftasseldevelopmentalevents.Thefinalpaperutilizesthenew pollenquantificationmethodandtasseldevelopmenteventstoassesschillingeffectsonkey componentsforpollenproductionandcompensationalplasticityofsubsequenttassel developmenteventsleadingtopollenproduction.Individualpapershavespecific introduction,materialsandmethods,resultsanddiscussion,conclusions,andreference sections.

Literature Review

Hybridseedproductionofmaize( Zea mays L.)involvescontrolledcross pollinationsfromthemaleparenttasseltothefemaleparentsilks.Carefulmanagementis requiredtomaximizefieldareaallocatedtofemalewhileensuringsufficient quantitiesofpollenfromthemaleparentareavailabletofertilizeovulesonfemaleplants.

Severalmethodsofmaleparentmanagementareutilizedincludingmodifyingrowplanting patternssuchas1:4or2:6maletofemalerowratios,usingtwomaleplantingstoaidin achievingpollenshedthroughouttheperiodthatsilksarereceptive,andintimatelyclipping orflamingtoextendsheddurationaswellasothermethods(Wych,1988). Managingtheultimateproductofthemaleparent,pollendeliveredtofemaleovules, requiresmethodsthatproperlyevaluatethis.Onecriteriaofadesirablemaleparentisto produceabundantamountsoffertilepollenoveralongduration.Pollenproductionper 2 tasselhasbeenreportedtorangefromabout0.5to1.9millionpollengrainspertasselfor somemoderninbreds(Fonsecaetal.,2004)to18and25millionpollengrainsforsome olderhybrids(Kiesselbach,1949).Also,smallertasselshavebeeninadvertentlyselected from1930’sto2001atarateofabout2.5branchesperdecadewhilebreedingforhigh yields(Duvick,2005).Thusthereisanincreasedneedformorepreciseandaccuratepollen quantificationmethods.Variousmethodshavebeenimplementedtomeasurepollen production.Halletal.(1982)placedbagsovertasselstocapturepollenwhichwaslater manuallycounted.Theuseofairpermeablebagsreducespossibleenvironmentalstress effectscreatedbyplacingabagoverthetassel(Fonsecaetal.,2003).Alsoimprovedwas themethodofcountingthepollen.Aparticlecounterprovidedhighspeedcountingofa relativelylargesampleofpollen.Theelectricalchargepropertiesofpolleninducedbya heliumneonlasermayprovideanothermeansforpollenquantification(Dukhovnyi,1975). Methodswhichestimatepollenproductionincludetasselmorphologymeasurementsand changeintasselweightfrompreshedtopostshed(Fonsecaelal.,2003).Simplecounting spikeletproductionhasalsobeenimplemented(Bechouxetal.,2000).Capturingpollen fromatasselisdifficultduetotheprolongedmaturationofmicrosporesacrossatassel(Hsu etal.,1988),smalldiametersizeof90to105m(Goss,1968;KumarandSarkar,1980; Baltazaretal.,2005),andpreviouslymentionedabundantproduction.Pollenproductionhas alsobeenquantifiedwithinthecanopyusingflatstickysurfacestobetterassesspollen availableatsilklevel(Sadrasetal.,1985).Toaidcountingofpollenonthesesurfaces, imagecaptureandanalysishasbeendeveloped(BassettiandWestgate,1994).Flottumetal. (1984)capturedpollenwithrotatingrodscoatedwithsilicongrease.Aylor(2005)reported thatabout23percentofdehiscedpollenreachedsilkleveloffemaleparents,butthisvaried basedonwindspeedsandturbulence,canopyarchitecture,andpollensourceheightamong others.Obviouslydistancefromsource,andthusrowpattern,couldalsoaffectthepercent ofpollenproducedbythetasselwhichreachessilks. 3

Inadditiontosufficientquantitiesofpollenproducedoveradesirableperiod,fertile pollenisalsoneededtooptimizeseedproduction.Pollenfertilityhasbeendistinguished frompollenviability(Barrow,1983).Whileviablepollenmaybeliving,itmightnotbe fertile,orabletopassthroughthemicropyleandfertilizeanovule.WaldenandEverett

(1961)presentedan in vivo methodtomeasurepollenfertility.Unfortunatelyin vivo pollen istedious,requirestheapplicationofspecificamountsofpollentospecific silks,andmaynotproducequantitativeresults(Goss,1968).Quantitativein vitro methods usingagarcanseparatetreatmenteffectssuchashightemperature(HerreroandJohnson, 1980).Buttheagarmethodsmaynotprovideaccurateinformationonthepercentofpollen thatwouldfertilizeovulesunderfieldconditions. Theuseofvariousvitalstainsforassessingpollenviabilityhasbeenreviewedby RodriguezRianoandDafni(2000).TheseincludeBaker’s,XGal,MTT,p PhenylenediamineandTTC.Thefirsttwostainednonviablepollen.Otherstainsincluding

Alexander’s,anilineblue,fluoresceindiacetateandI 2KIhavebeenusedtoidentify potentialviabilitybutdonotindicateifallrequirementsaremetforpollentofertilizean ovule(HeslopHarrisonandHeslopHarrison,1970;Zhang,1998;Plineetal.,2002;Vidal Martínezetal.,2004).Starchaccumulationisoneofthelastprocessesinpollen developmentandoccursafewdayspriortoshed(HsuandPeterson,1981;McCormick,

1993).Successfulstarchfillmayindicatelackofabnormalitiesinearlierprocessesthus providingcredencetotheuseofthestarchstainingI 2KI.KumarandSarkar(1980) comparedpollendiametertopollentubegrowthbutfoundnocorrelation.Pollenfertility assessmentremainsproblematic. Whileatasselcanproducehighvolumesofpollenundernormalgrowthconditions, variousstressescandecreaseitsproduction.Severalabioticstresseswereappliedtoflint inbredsduringtasselformationincludinglowlightquantityandquality,lowandhigh moisturestress,mineraldeficiency,andchilling(Bechouxetal.,2000).Lowlightintensity 4

(65Em 2s 1versus600Em 2s 1)andchilling(10°Cversus24/18°Cday/night)resulted inthemostseveredecreasesinbranchandspikeletpairproduction.Loweringlightintensity withchillingprovidedmodestrelieftothechillingeffectswhichledtheauthorstosuggest thatoxidativestresscontributedtoloweraxillarybranchproduction.Tassellengthwas reducedwhengrownundercooler(18/12°Cday/night)thanwarmer(30/24°Cday/night) temperaturesaftertasselinitiation(Struik,1982).Converselyinthesamestudy,thenumber oftasselbranchesproducedwasgreaterunderthecoolerconditions.Alsofromthat research,shorterphotoperioddaysresultedinlowerbranchproductionthanlonger photoperioddays.FurtherworkbyStruiketal.(1986)usingthesametemperatures suggestedthatthelowertemperaturesproducedmorepollenwhilethehighertemperatures shortenedthepollenshedperiod.Waterstressduringtasselinitiationdecreasedtasselsize, butwaterstressduringotherperiodsofdevelopmentdidnotresultinsuchmodifications (DampteyandAspinall,1976). Moreresearchhasfocusedonstressduringmicrosporedevelopmentandpollen germination.ApplicationsofglyphosateattheV8andV10stagestoglyphosateresistant maize(eventsGA21andNK603)resultedinlesspollenproductionandlowerpollen viabilitythenthecontrolorwhenappliedatV4orV6(Thomasetal.,2004).Defoliationat the7and14leafstagesandatanthesisresultedinshortersheddurationsforsomeinbreds (VasilasandSeif,1985).Whenplantsweregrowninsoilwithhighsalinity,pollenproduced hadlowerviabilityandlowerstarchcontent(DhingraandVarghese,1984).Moisturestress atpollenshedwasnotfoundtodecreasepollenviability,butamountofpollenshedwas decreased(Halletal.,1982).Itwassuggestedthatpollenproductionmightnothave decreasedbutratherpollenremainedwithinanthers.WestgateandBoyer(1986)reported thatunderlowwaterpotentialpollencanremainfertile.Schoperetal.(1986)concludedthat increasedheatduringpollenshedandnotincreasedmoisturestresswouldmostaffectseed set.HerreroandJohnson(1981)previouslyhadreportedsimilarresults.Othersalsoreported 5 decreasedpollenviabilityand/orpollentubegrowthduetoheatstress(Lonnquistand Jugenheimer,1943;Binellietal.,1985;Lyakhetal.,1991).Thepresenceofheatshock proteinshavebeeninvestigatedtobetterunderstandtheirroleinprotectingpollen,andin generalhavebeenfoundtodecreaseinpresencefrompollenmitosistopollenshed(Frovaet al.,1989;DupuisandDumas,1990;Hopfetal,1992;Magnardetal.,1996;Youngetal., 2001).

Whilehightemperaturestressonpollenreceivedconsiderableattention,chilling effectsduringpollenformationreceivedlessfocus.Brooking(1976)foundtheleptoteneand preleptotenestageofmeiosisofmicrosporogenesistobethemostsensitivestagefor chillingstressin Sorghum bicolor .Similarlychillinginbellpepper( Capsicum annuum ) duringmeiosischangedtheexinepatternofpollenandreducedpollenviability(Mercadoet al.,1997). Culturalpracticescanalsoaffecttasseldevelopmentandpollenproduction negatively.DunganandGausman(1951)reportedthatclippingtodelayfloweringappeared todecreasepollenproduction.Anincreaseinplantdensitycandecreasepollenproduction pertassel(Uribelarreaetal.,2002). Chillingreducesmaizeplantdevelopmentanddrymatteraccumulation(Miedema,

1982).IncreasedlevelsofCa 2+ inmaizecellsduetochillingwererelatedtolipid peroxidation(ChenandLi,2001).Theauthorssuggestedthatincreasedlevelsofcellular Ca 2+ ,andthusincreasedchillingstress,mightbelimitedbyabscisicacid(ABA). ApplicationsofABAveryslightlydecreasedtassellengthwhileaxillarytasselgrowthswere notmeasured(Dampteyetal.,1978).Theaffectsofauxinonaxillarybranchinghasbeen reviewedbyLeyser(2003).Morerecentlyin barren inflorescence2 mutants,suppressionof tasselaxillarybranchingwasrelatedtoalteredexpressionof ZmPIN1 involvedinauxin transport(McSteenandHake,2001;Carraroetal.,2006).AnincreaseinPIN1expression wasfoundina more axillary branching (max )mutant, max1-max4 (Bennettetal.,2006). 6

Whileeffluxofauxinisrelatedtoincreasedbranching,ClineandOh(2006)reportedthat applicationofABAdecreasedbranchproductionintwoofthreeherbaceous.Since the MAX pathwayusesacarotenoidderivedhormone,theysuggestproductionofthis hormonemightberelatedtoproductionofcarotenoidderivedABA.Thusproductionof

ABAmightcorrespondwiththeproductionofthehormoneusedbythe MAX pathway leadingtodecreasedauxineffluxandfewertasselbranchesandspikelets.InadditionABA hasbeenshowntoincreaseinleavesduetochilling(Janowiaketal.,2003,Melkonianetal., 2004).Lejeurneetal.(1998)showedarepressionofchillingeffectsonearplacement throughtheapplicationofcytokinin.Inadditionthecytokininroottoshoottransportation decreasedunderchilling.However,theroleofcytokinininbranchproductionisstillnot clear(Schmülling,2002).Decreasedphotosyntheticratesoccurunderchillingdueto reductioninproductionand/oractivityofseveralkeyphotochemicalcomponents(Kingston Smithetal.,1997;KingstonSmithetal.,1999).Lightenergynotutilizedforphotochemical reactionsmaybequenchedthroughfluorescence,nonphotochemicalquenching,ormaylead toproductionofreactiveoxygenspecies(ROS)(Mülleretal.,2001).Amechanismof nonphotochemicalquenchingincludesthexanthophyllcycle(Demmigetal.,1987). Bechouxetal.(2000)proposedthatdecreasedtasselaxillarybranchingfromchillingstress wasduetoROSdamage.Foyeretal.(2002)suggestedthatsincedownregulationof photosyntheticapparatusesremaintightlycoordinatedduringchilling,theincreased presenceofROSisduetothefailureofantioxidantstoquenchROSasopposedtoincreased production.Inparticularitwassuggestedthatlimitedtransportofreducedglutathionefrom themesophylltothebundlesheathcellsresultsinincreasedROSinthebundlesheathcells. Aplant’sresponsetoabioticstressiscriticaltoitssurvival.Moreoveraplant’s responsetolessthanoptimalculturalpracticesanddeleteriousmorphologicalchanges duringdevelopmentiscriticaltoobtainingtopyields.Whilesoybean( Glycine max )has showntobehighlyresponsivetostandvariability,maizehadcomparativelylow 7 responsivenessowedtoalowervegetativeandreproductiveplasticity(AndradeandAbbate, 2005).TasselcomponentswiththegreatestvariationinproductionwereidentifiedbyVidal

Martínezetal.(2004).Ofthecomponentsquantified,spikeletandbranchproduction explainedmuchofthevariationintheweightofpollendehiscedandcollectedinbags placedontassels.Thepotentialplasticityoftasselcomponents,pollenproduction,and pollensizetocompensateforreducedproductionofearlierproducedtasselcomponentsthat leadtopollenproductionisnotunderstood. Beforetheeffectsofstressonpollenproductioncanbeassessed,themorphologyof thetasselshouldbeunderstood.Specificallyabetterunderstandingisneededininbredsof thetimingoftasselcomponentsthatleadtopollenproductioninrelationshiptoleaf emergenceandheatunits.Severaleventsleadtotheformationofnormaltasselsandpollen grains.Theseeventsbeginwithtransitionoftheapicalmeristemfromtheadultvegetative stagetoareproductivestage(Bonnett,1953).Eventsfollowingincludetheproductionof branchmeristems,spikeletpairprimordia,spikelets,florets,anthers,andfinallypollen. Weatherwax(1916)providedanearlydescriptionwithsomeinsightintodifferentialpollen maturationbetweenfloretswithinaspikelet.Bonnett(1940)presentedadetaileddescription oftasselformationeventsfromtasselinitiationthroughantherformation.SEMandTEM allowedarefinedaccountoftasseldevelopmentthroughantherinitiation(Chengetal., 1983).Stevensetal.(1986)relatedinflorescencedevelopmenttoleafstagesina line,Iopop12,andthehybridB73XMO17.Plantswereviewedfromthethirdtothirteenth leafstage.Formationanddevelopmentoftobaccoanthershasbeendescribedindepthby Goldbergetal.(1993).ChangandNeuffer(1989)andMcCormick(1993)outlinedstagesof microsporogenesisfromtapetalinitialstomaturepollengrainformation.Inadditiontiming ofmicrosporogenesishasbeenrelatedtotimeindaysandrelativetofloretposition(Hsuand Peterson,1981;Hsuetal.,1988). 8

Morerecently,moleculartechniqueshaveaidedindelineatingthedevelopmental patternsoftasselstructures.McSteenandHake(2001)reportedthat barren inflorescence2

(bif2 )mutantspreferentiallyformedpedicellatespikeletscomparedtosessilespikeletsand suggestedthatsince bif2 mutantsinhibitspikeletformation,sessilecellinitialsformafter pedicellatecellinitials.Similarlyin bif2 mutants,thenondefectivefloretwasthelower floretwhichindicatedthattheupperfloretformsafterthelowerfloret.Usingan indeterminate spikelet1 mutant,Chucketal.(1998)alsoconcludedthatthelowerfloretis producedfirstfollowedbyupperfloretformation. Considerableknowledgeispresentonmaizepollenresponsetostresslaterin formation.Howevermuchlessisknownonstresseffectsontasselformationandearly stagesofpollenformation,especiallyforelitedentinbreds.Inaddition,component compensationforpollenproductionhasnotbeenpreviouslyreported.Theseinvestigations requireanintimateknowledgeoftasselmorphologicaldevelopment.Whiletassel morphologyhasbeencharacterizedoften,verylittlehasbeenreportedonthetimingof whentasselcomponentsareinitiatedthroughoutthetasselinmoderninbreds.Suchis necessarytounderstandingstresseffectsduringplantdevelopmentnotonlyinresearch investigationsbutalsoseedfieldproduction.Wheninvestigatingstresseffectsontassel formation,pollenproduction,andpollenproductioncomponentcompensation,areliableand repeatablepollenquantificationmethodisrequired.Whileseveralpollenyieldmeasurement methodsareavailable,nonequantifytotalpollenproducedpersingletassel.This measurementassistsindeterminingifpollenproductioninpollenproductioncomponent compensationstudieswithoutconfoundingeffectsofpercentofpollenshed.

References

Andrade,F.H.,andP.E.Abbate.2005.Responseofmaizeandsoybeantovariabilityin standuniformity.Agron.J.97:12631269. 9

AylorD.E.2005.Quantifyingmaizepollenmovementinamaizecanopy.Agric.For.

Meteorol.131:247256.

BaltazarB.M.,J.D.J.SánchezGonzalez,L.DeLaCruzLarios,andJ.B.Schoper.2005. Pollinationbetweenmaizeandteosinte:Animportantdeterminantofgeneflowin.

Theor.Appl.Genet.110:519526. Barrow,J.R.1983.Comparisonsamongpollenviabilitymeasurementmethodsincotton. CropSci.23:734736. Bassetti,P.,andM.E.Westgate.1994.Floralasynchronyandkernelsetinmaizequantified byimageanalysis.Agron.J.86:699703. Bechoux,N.,G.Bernier,andP.Lejeune.2000.Environmentaleffectsontheearlystagesof tasselmorphogenesisinmaize( Zea mays L.).PlantCellEnviron.23:9198. Binelli,G.,E.VieiradeManincor,andE.Otaviano.1985.Temperatureeffectsonpollen germinationandpollentubegrowthinmaize.GeneticaAgraria39:269281. Bennett,T.,T.Sieberer,B.Willett,J.Booker,C.Luschnig,andO.Leyser.2006.The Arabidopsis MAX pathwaycontrolsshootbranchingbyregulatingauxintransport.Curr. Biol.16:553563. Bonnett,O.T.1940.Developmentofthestaminateandpistillateofsweet corn.J.Agric.Res.60:2537. 10

Bonnett,O.T.1953.Developmentalmorphologyofthevegetativeandfloralshootsof maize.Agric.Exp.Stn.,Bull.No.568.Univ.ofIll.Urbana,IL.

Brooking,I.R.1976.Malesterilityin Sorghum bicolor (L.)Moenchinducedbylownight temperature.I.Timingofthestageofsensitivity.Aust.J.PlantPhysiol.3:589596.

Carraro,N.,C.Forestan,S.Canova,J.Trass,andS.Varotto.2006. ZmPIN1a and ZmPIN1b encodetwonovelputativecandidatesforpolarauxintransportandplantarchitecture determinationofmaize.PlantPhysiol.142:254264. Chang,M.T.,andM.G.Neuffer.1989.Maizemicrosporogenesis.Genome32:232244. Chen,W.P.,andP.H.Li.2001.ChillinginducedCa2+overloadenhancesproductionof activeoxygenspeciesinmaize( Zea mays L.)culturedcells:Theeffectofabscisicacid treatment.PlantCellEnviron.24:791800. Cheng,P.C.,R.I.Greyson,andD.B.Walden.1983.OrganInitiationandthedevelopmentof unisexualflowersinthetasselandearof Zea mays .Am.J.Bot.70:450462. Chuck,G.,R.B.Meeley,andS.Hake.1998.Thecontrolofmaizespikeletmeristemfateby theAPETALA2likegeneindeterminatespikelet1.GenesandDevelopment12:11451154. Cline,M.G.,andC.Oh.2006. Areappraisaloftheroleofabscisicacidanditsinteraction withauxininapicaldominance.Ann.Bot.(Lond.)98:891897. 11

Damptey,H.B.,andD.Aspinall.1976.Waterdeficitandinflorescencedevelopmentin Zea mays L.Ann.Bot.(Lond.)40:2335.

Damptey,H.B,B.G.Coombe,andD.Aspinall.1978.Apicaldominance,waterdeficitand axillaryinflorescencegrowthin Zea mays :Theroleofabscisicacid.Ann.Bot.(Lond.) 42:14471458.

DemmigB,K.Winter,A.Kruger,andF.C.Czygan.1987.Photoinhibitionandzeaxanthin formationinintactleaves.Apossibleroleofthexanthophyllcycleinthedissipationof excesslightenergy.PlantPhysiol.84:218224. Dhingra,H.R.,andT.M.Varghese.1985.Effectofsaltstressonviability,germinationand endogenouslevelsofsomemetabolitesandionsinmaize( Zea mays L.)pollen.Ann.Bot. (Lond.)55:415420. Dukhovnyi,A.I.1975.Theelectricchargeofmaizepollenasaquantitativecharacter.(In Russian.)Kolichestven.priznakimutantovkukuruzyKishinev:Stiinca.p.2124. Dungan,G.H.,andH.W.Gausman.1951.Clippingcornplantstodelaytheirdevelopment. Agron.J.43:90–93. DupuisI.,andC.Dumas.1990.Influenceoftemperaturestresson in vitro fertilizationand heatshockproteinsynthesisinmaize( Zea mays L.)reproductivetissues.PlantPhysiol. 94:665–670. 12

Duvick,D.N.2005.Thecontributionofbreedingtoyieldadvancesinmaize( Zea mays L.). Adv.Agron.86:83–145.

Flottum,P.K.,D.C.Robacker,andE.H.Erickson.1984.Aquantitativesamplingmethodfor airbornesweetcornpollenunderfieldconditions.CropSci.24:375–377.

Fonseca,A.E.,J.I.Lizaso,M.E.Westgate,L.Grass,andD.L.Dornbos,Jr.2004.Simulating potentialkernelproductioninmaizehybridseedfields.CropSci.44:16961709. Fonseca,A.E.,M.E.Westgate,L.Grass,andD.L.Dornbos.2003.Tasselmorphologyasan indicatorofpotentialpollenproductioninmaize[Online].Availableat: www.plantmanagementnetwork.org/pub/cm/research/2003/tassel/(accessed23September 2003;verified6June2007)CropManage.DOI10.1094/cm2003–0804–01RS. Foyer,C.H.,H.Vanacker,L.D.Gomez,andJ.Harbinson.2002.Regulationof photosynthesisandantioxidantmetabolisminmaizeleavesatoptimalandchilling temperatures:Review.PlantPhysiologyandBiochemistry40:659668. FrovaC.,G.Taramino,andG.Binelli.1989.Heatshockproteinsduringpollen developmentinmaize.DevelopmentalGenetics10:324332. Goldberg,R.B.,T.P.Beals,andS.M.Sanders.1993.Antherdevelopment:Basicprinciples andpracticalapplications.PlantCell5:12171229. Goss,J.A.1968.Development,physiology,andbiochemistryofcornandwheatpollen.Bot. Rev.34:333–358. 13

Hall,A.J.,F.Villela,N.Trapani,andC.Chimenti.1982.Theeffectofwaterstressand genotypeonthedynamicsofpollensheddingandsilkinginmaize.FieldCropsRes.5:349 363.

Herrero,M.P.,andR.R.Johnson.1980.Hightemperaturestressandpollenviabilityof maize.CropSci.20:796800. Herrero,M.P.,andR.R.Johnson.1981.Droughtstressanditseffectsonmaizereproductive systems.CropSci.21:105109. HeslopHarrison,J.,andY.HeslopHarrison.1970.Evaluationofpollenviabilityby enzymaticallyinducedfluorescence;intracellularhydrolysisoffluoresceindiacetate.Stain Technology45:115120. Hopf,N.,N.PlesofskyVig,andR.Brambl.1992.Theheatshockresponseofpollenand othertissuesofmaize.PlantMol.Biol.19:623–630. Hsu,S.Y.,andP.A.Peterson.1981.Relativestagedurationofmicrosporogenesisinmaize. IowaStateJ.Res.55:351373. Hsu,S.Y.,Y.C.Huang,andP.A.Peterson.1988.Developmentpatternofmicrosporesin Zea mays L.Thematurationofupperandlowerfloretsofspikeletsamonganassortmentof genotypes.Maydica33:7798. 14

Janowiak,F.,E.Luck,andK.Dorffling.2003. Chillingtoleranceofmaizeseedlingsinthe fieldduringcoldperiodsinspringisrelatedtochillinginducedincreaseinabscisicacid level.J.Agron.CropSci.189:156161.

Kiesselbach,T.A.1949.Thestructureandreproductionofcorn.Agric.Exp.Stn.,Res.Bull. No.161.Univ.ofNebr.Collegeof,Lincoln,NE.

KingstonSmith,A.H.,J.Harbinson,andC.H.Foyer.1999.Acclimationofphotosynthesis,

H2O2contentandantioxidantsinmaize( Zea mays )grownatsuboptimaltemperatures. PlantCellEnviron.22:10711083. KingstonSmith,A.H.,J.Harbinson,J.Williams,andC.H.Foyer.1997.Effectofchillingon carbonassimilation,enzymeactivation,andphotosyntheticelectrontransportintheabsence ofphotoinhibitioninmaizeleaves.PlantPhysiol.114:10391046. Kumar,D.,andK.R.Sarkar.1980.Correlationbetweenpollendiameterandrateofpollen tubegrowthinmaize( Zea maysL.).IndianJ.Exp.Bot.18:12421244.

Lejeune,P.,E.Prinsen,H.VanOnckelen,andG.Bernier.1998.Hormonalcontrolofear abortioninastresssensitivemaize( Zea mays )inbred.Aust.J.PlantPhysiol.25:481488. Leyser,O.2003.Regulationofshootbranchingbyauxin.TrendsPlantSci.8:541545. Lonnquist,J.H.,andR.W.Jugenheimer.1943.Factorsaffectingthesuccessofpollinationin corn.J.Am.Soc.Agron.35:923933. 15

Lyakh,V.A.,A.N.Kravchenko,A.I.Soroka,andE.N.Dryuchina.1991.Effectsofhigh temperaturesonmaturepollengrainsinwildandcultivatedmaizeaccessions.Euphytica

55:203207.

Magnard,J.L.,V.Philippe,andC.Dumas.1996.Complexityandgeneticvariabilityof heatshockproteinexpressioninisolatedmaizemicrospores.PlantPhysiol.111:10851096.

McCormick,S.1993.Malegametophytedevelopment.PlantCell5:12651275. McSteenP.,andS.Hake.2001. barren inflorescence2 regulatesaxillarymeristem developmentinthemaizeinflorescence.Development128:28812891. Melkonian,J.,L.X.Yu,andT.L.Setter.2004.Chillingresponsesofmaize( Zea mays L.) seedlings:Roothydraulicconductance,abscisicacid,andstomatalconductance.J.Exp.Bot. 55:17511760. Mercado,J.A.,M.MarTrigo,M.S.Reid,V.Valpuesta,andM.A.Quesada.1997.Effectsof lowtemperatureonpepperpollenmorphologyandfertility:Evidenceofcoldinducedexine alterations.J.Hortic.Sci.72:317326. Miedema,P.1982.Theeffectsoflowtemperatureon Zea mays .Adv.Agron.35:93128. Müller,P.,L.XiaoPing,andN.K.Krishna.2001. Nonphotochemicalquenching.A responsetoexcesslightenergy.PlantPhysiol.125:15581566. 16

Pline,W.A.,K.L.Edmisten,T.Oliver,J.W.Wilcut,R.Wells,andN.S.Allen.2002.Useof digitalimageanalysis,viabilitystains,andgerminationassaystoestimateconventionaland glyphosateresistantcottonpollenviability.CropSci.42:21932200.

RodriguezRiano,T.,andA.Dafni.2000.Anewproceduretoassesspollenviability.Sexual PlantReproduction12:241244.

Sadras,V.O.,A.J.Hall,andT.M.Schlichter.1985.Kernelsetoftheuppermostearin maize:I.Quantificationofsameaspectsoffloralbiology.Maydica30:37–47. Schmülling,T.2002.Newinsightsintothefunctionsofcytokininsinplantdevelopment.J. PlantGrowthRegul.21:4049. Schoper,J.B.,R.L.Lambert,andB.L.Vasilas.1986.Maizepollenviabilityandear receptivityunderwaterandhightemperaturestress.CropSci.26:10291033. Stevens,S.J.,E.J.Stevens,K.W.Lee,A.D.Flowerday,andC.O.Gardner.1986. Organogenesisofthestaminateandpistillateinflorescencesofpopanddentcorns: Relationshiptoleafstages.CropSci.26:712718. Struik,P.C.1982.Effectofaswitchinphotoperiodonthereproductivedevelopmentof temperatehybridsofmaize.Neth.J.Agric.Sci.30:6983. Struik,P.C.,M.Doorgeest,andJ.G.Boonman.1986.Environmentaleffectsonflowering characteristicsandkernelsetofmaize.Neth.J.Agric.Sci.34:469484. 17

ThomasW.E.,W.A.PlineSrnic,J.F.Thomas,K.L.Edmisten,R.Wells,andJ.W.Wilcut. 2004.Glyphosatenegativelyaffectspollenviabilitybutnotpollinationandseedsetin glyphosateresistantcorn.WeedSci.52:725734.

Uribelarrea,M.,J.Cárcova,M.E.Otegui,andM.E.Westgate.2002.Pollenproduction, pollinationdynamics,andkernelsetinmaize.CropSci.42:19101918.

Vasilas,B.,andR.D.Seif.1985.Effectofdefoliationonthetimingofanthesisandsilking ofmaizeinbredlines.Maydica30:427435. VidalMartínez,V.,M.D.Clegg,B.E.Johnson,J.A.OsunaGarcía,andB.CoutiñoEstrada. 2004.Phenotypicplasticityandpollenproductioncomponentsinmaize|Plasticidad fenotípicaycomponentesdelaproduccióndepolenenmaíz. Agrociencia.38:273284. Walden,D.B.,andH.L.Everett.1961.Aquantitativemethodforthe in vivo measurementof theviabilityofcornpollen.CropSci.1:2125. Weatherwax,P.1916.Morphologyofflowersof Zea mays .TorreyBotanicalClubBulletin 43:127144. Westgate,M.E.,andJ.S.Boyer.1986.Silkandpollenwaterpotentialsinmaize.CropSci. 26:947951. Wych,R.D.1988.Productionofhybridseedcorn.p.565607. In G.G.SpragueandJ.W. Dudley(ed.)Cornandcornimprovement.Agron.Monogr.18,3rded.ASA,CSSA,and SSSA,Madison,WI. 18

Young,T.E.,J.Ling,C.J.GeislerLee,R.L.Tanguay,C.Caldwell,andD.R.Gallie.2001

Developmentalandthermalregulationofthemaizeheatshockprotein,HSP101.Plant Physiol.127:777791.

Zhang,T.1998.Theestimationofmaize( Zea mays L.)pollenviabilityanddeterminationof itsgeneticeffects.M.S.thesis.Univ.ofNebraska,Lincoln. 19

CHAPTER 2. A NEW TECHNIQUE FOR QUANTIFYING POLLEN PRODUCTION IN MAIZE ( ZEA MAYS L.)

ApaperforthesubmissiontothejournalCropScience

DeanTranel 1,AllenKnapp 2,AddaSayers 3,StephenD.Strachan 4,KennethKoehler 5

Abstract

Becauseofitshighnumbers,smallsizeandvariablematurationwithinatassel, quantifyingmaize( Zea mays L.)pollenproductionpertasselisinherentlychallenging.No methodisavailabletoquantifytotalpollenproducedpertassel.Anoveltechniqueis presentedthatinvolvesextractionofpreshedpollenfromdriedtassels,separationofpollen fromtasseldebris,andcountingofpollen.Theaccuracyofthismethodwasevaluated againstestablishedmethodsandbyquantifyingknownquantitiesofpollensamples. Benefitsofthenewtechniqueincludethequantificationofallpollenproducedbyatassel, theabilitytomeasurepollenproductiononasingletassel,adirectcountofpollengrainsand acomparativelylowCV.Howeveritisrelativelyresourceintensive.Inaddition,this techniqueallowsquantifyingtotalpollenproducedwithoutconfoundingeffectsfrompollen shedpercentageandameanstoquicklyandeasilyobtaintasselsamplesduringflowering whentimemaybelimiting.

1GraduateStudent,AgronomyDepartment,IowaStateUniversity;andcorrespondingauthor 2AssociateProfessor,AgronomyDepartment,IowaStateUniversity 3ResearchScientist,PioneerHiBred,aDuPontCompany 4ResearchAssociate,DuPontCropProtection 5Professor,StatisticsDepartment,IowaStateUniversity 20

Introduction

Whileassessingmanagementpracticesforhybridseedmaizeproduction,Dungan andGausman(1951,p.92)candidlystated,“Itisnoteasytodetermineyieldofpollen…”. Quantifyingthepollenavailableforreceptivesilks,however,isakeyseedproduction variablesinceamplepollenproductionfromthemaleparentmaximizesseedsetand minimizesoutcrosses.Thetasselsizeandpollenquantityproduceddependsoncultural practices,environmentalconditions,geneticmaterial,andtheirinteractions(Dunganand Gausman,1951;Struik,1982;Bechouxetal.,2000;Uribelarreaetal.,2002).Accurately quantifyinghowpollenproductionisaffectedbysuchfactorsresultsinbestmanagement practicesforpollenproductionandsubsequenthybridseedproduction. Variousmethodshavebeenemployedtoquantifypollen.Onemethodcaptures pollenusingrotatingrodscoatedwithsilicongreasefollowedbyavisualcountofpollen (Flottumetal.,1984).Anothermethodutilizesflatstickysurfacesusuallyplacedatsilk leveltocapturepollen(Sadrasetal.,1985).Thesemethodsprovideestimatesofpollen availabletosilkswhichisreportedtobeabout23percentofshedpollen(Aylor,2005).In additionthesemethodsarenotconducivetosmallplotorsingleplantresearchdueto dispersalpropertiesofpollenandthepotentialofnearbypollensourcescontaminating samples.Yetsmallplotorsingleplantresearchmaybeidealforhighthroughput phenotypingorinvestigatingtheeffectsofvariouscropmanagementpractices.Forthistype ofresearch,pollenwascapturedbyplacingbagsovertassels(Halletal.,1982)ormore recentlyconductedbyplacingovertasselsclearbagswhichareairpermeablebutdonot allowpollenescape(Fonsecaetal.,2003).Placingbagsovertasselsraisesconcernsabout environmentaleffectsonthetassels.Oneofthegreatestconcernsiselevatedtemperatures withinthebagwhichmightaffectpollenyielddifferentiallyacrossgenotypes.Fonsecaetal. (2003)utilizedtwoadditionalmethods,oneinvolvingmeasurementsoftasselmorphology 21 andtheotherusingthechangeinweightofpreshedtopostshedtassels.Unfortunatelythe firstmethoddoesnotaccountforvariationinspikeletdensityorpollenperspikelet.The accuracyofthelattermethodwasdeemedunsatisfactory.Althoughallofthesemethods havedesirableattributes,theirshortcomingsmayhavelimitedresearchersfromquantifying pollenproductiondespitethepotentialvalueofthesedataintheirstudies(Green,1949; DunganandGausman,1951;DhingraandVarghese,1985;VasilasandSeif,1985;Sharma etal.,1990;Bechouxetal.,2000;Mangenetal.,2005). Inherentdifficultiesinquantifyingpollenproductionincludecapture,isolation,and countingofpollengrains.Pollenmicrosporogenesisoccursfirstnearthemiddleofthe rachisandlateratthebaseofthetassel(Hsuetal.,1988).Thisspatialpatterncorrespondsto thespatialpatternofshedacrossatasselindicatingthatwhilesomepollenwithinatasselis sheddingotherpollenisstillmaturing.Thusitispossiblethatnotallpolleninatasselis availableforcaptureatonetimetherebylimitingattemptstocollectpollenpriorto dehiscence.Thesmallsizeofmaizepollen,90to105mindiameter(KumarandSarkar, 1980;Baltazaretal.,2005),andprolificproduction(millionsofpollenpertassel)havealso hinderedeffortstoefficientlycountpollen.Thesmallsizeoftenrequiresspecial instrumentationwhilethelargenumbersrequireconsiderablesubsampling.Several methodshavebeenutilizedincludingvisualcounts(Halletal.,1982),theuseofthe electricalchargepropertiesofpolleninducedbyaheliumneonlaser(Dukhovnyi,1975), andtheuseofimagecaptureofpollenandsubsequentanalyses(BassettiandWestgate, 1994).Recentlyaparticlecounterhasbeenutilizedtoquicklycountarelativelylarge sampleofparticleswithdiameterssimilartopollen(Fonsecaetal.,2003). Whileseveralmethodsareavailabletoassesspollenproduction,nonequantifytotal pollenproducedonasingletassel.Suchmeasurementsarerequiredwhenevaluatingtotal pollenproducedwithoutconfoundingeffectsfrompercentofpollenshed.Thispaper presentsanoveltechniqueforquantifyingtotalpollenproductionpertassel(PPT).The 22 objectiveofthisstudywastodetermineifthetechniqueaccuratelyandpreciselymeasured pollenproduced.Sincepolleniscollectedpreshed,itwascharacterizedforproperties necessaryforbeingprocessedbythistechniqueincludingsizeandresistancetobursting. Finally,thePPTmethodiscomparedandcontrastedtootherestablishedpollenyield methodstoidentifyifreasonableandexpectvaluesareproduced.

Methods and Materials

Accuracy and precision study Thenewpollenproductionmethod’saccuracyandprecisionwereassessedby evaluatingpollencountsobtainedwhenprocessingknownamountsofpollenandtassel material.Treatmentsincludedthreelevelsofpollenandtasselmaterialeachcombinedina factorialRCBdesignwith4replicationsblockedintime.Maizepollenwithapollen diameterof80to100mwascollectedatshedandairdried.Approximatelyone,two,and fourgramsofpollenwereweighedandrecordedtothenearestmg.Thenumberofpollen grainspermgwasdeterminedbyweighingandcountingadditionalpollenamountsusinga particlecounter,CoulterMultisizerII(BeckmanCoulter,Fullerton,California).TheCoulter MultisizerIIwascalibratedforpollencountstoensureaccuracyofcounts.Thethreelevels oftasselmaterialincludedrachisonly,wholetassel,andwholetasselplusbranchesfrom anothertassel.Thetasselmaterialwasfromnearlysteriletasselswhichproducedrelatively lowamountsofpollenoflessthan150,000pollengrainspertasselbasedonpollencounting methodsdescribedbelow.Thetreatmentsofpollenandtasselamountswereprocessedusing thePPTmethodasfollows.Tasselsweredriedat60ºCinanairflowdrierandthenground inacoffeegrinder(Mr.Coffeecoffeegrinder,IDS57,JardenCorporation,Rye,NewYork). Grindingoftasselsisneededtobreakopenanthers.Dryingtasselscreatesbrittleanthers conducivetobreakingthusallowingpollenremoval.Thedebriswasrinsedwithwateronto a120mnylonscreen.Pollenwaswashedthroughthe120mscreentoa53mnylon 23 screen.Pollenfromthe53mscreenwasrinsedthroughasecond120mscreentoa second53mscreentofurtherremovenonpollenmaterial.Thepollenwasrinsedwith

Diluent2(NerlDiagnostics, EastProvidence ,RhodeIsland)intoa50mLFalcontubeand broughtupto50mL.Two1mLsubsampleswereobtained,broughtupto150mLin

Diluent2,and10mLwasanalyzedwithaCoulterMultisizerII.Twotothreecountswere recordedofparticlesbetween53and120mindiameter.Thepercentofpollengrains recoveredwascalculatedasfollows: percentrecovered= . 100%×CP×750 gramsofpollenadded×pollengrainspergram whereCPisthenumberofcountedpollengrainsand750accountsforsubsampling. PrecisionofpollenestimatesareprovidedasthestandarderroraroundPPTasdescribed below.

Pre-shed pollen characterization study

Todeterminepollendiameter,whichisnecessarytodeterminescreensizeduringsieving andrangestouseonaparticlecounter,diametersofpollencollectedfromfiveinbredswere quantified.Thesameinbredswereusedasinthecomparisonofpollenquantification methodsstudydescribedbelow.Twoinbredswereflints,Flint1AandFlint2A (approximately77relativematurity(RM))andthreeinbredscontainedIodentbackground, Dent1A,Dent2AandDent3A(approximately106RM).FieldplotswereaRCBdesign grownatJohnston,IowaandViluco,Chilewiththreereplicationsperlocation.Fivetassels perplotwerecollectedatanthesiswhenthefirstantherswereextrudedfromfloretsand driedinairflowchambers.Sixspikeletpairswerecollectedatthemiddleoftherachis belowextrudedanthers,andanothersixspikeletpairswerecollectednearthemiddleofthe 24 lowestbranch.Sincethesearethefirstandlastlocationsonthetasselfromwhichpollen sheds,thissamplingshouldprovidethelargestrangeinpollendiameter.Threespikeletpairs wereprocessedinwaterandthreeinDiluent2toassesseffectsonpollendiameterand pollenbursting.Spikeletpairsfromeachtassellocationweregroundandthenwashed througha120mnylonscreenandontoa30mnylonscreen.Asubsampleofpollen collectedonthe30mscreenwasimaged.Pollendiametersweremeasuredusing

MetamorphImagingSystem(UniversalImagingCorporation,WestChester,PA).Percentof pollengrainsburstwasdeterminedbyvisuallyreviewing100pollengrainspersubsample. Afterimagecapture,pollensamplesinwaterweretransferredtoDiluent2.Pollendiameters wererecordedonaCoulterMultisizerIIvisuallybyestimatingthehistogram’speak.The diameteratthehistogram’s5%and95%tailswerealsorecordedfromeachsample.

Comparison of pollen quantification methods study

Threemethodstoquantifypollenproductionpertasselwerecomparedand contrastedforamountofpollenproductionmeasurement,correlationinpollenproduction, andresultsusingknowninbredcharacteristics.Fiveinbredsweregrownasthemainplotin asplitplotRCBdesignwithpollenquantificationmethodasthesubplot.Subplots consistedofonerowplotswithonerowofborderbetweenmainplots.Theexperimentwas conductedattwolocations(Johnston,IowaandAussonne,France)withthreereplications perlocation.Genotypesincludedthesameinbredsasinthepreshedpollencharacterization study,Flint1A,Flint2A,Dent1A,Dent2AandDent3A.Geneticmaterialselectionwasbased onvariationsinRM,adaptationtoenvironment,expectedtolerancetoheatstress,andpollen production.Themethodstoquantifypollenincluded1)thePPTmethodaspreviously described,2)measuringchangeintasselweight(∆TW)(Fonsecaetal.,2003),and3) measuringpollencollectedinclearairpermeablebags(Pantek,Montesson,France)which arecapableofgasexchangebutdonotallowpollenescape(PB)(Fonsecaetal.,2003). 25

MeasurementsforthePPTmethodwereconductedaspreviouslydescribedusingwaterto sievepollen.Countedpollen(CP)valuesfromtheCoulterMultisizerIIwereconvertedto

PPTaspreviouslydescribed.Pollencountsweretheaverageoffiverepresentativetassels collectedperplot.Measurementsforthe∆TWmethodweremadebyselectingfive representativetasselsperplotatanthesiswhenthefirstanthersareextrudedfromfloretsand anotherfiverepresentativetasselsafterthecompletionofpollenshed.Tasselsweredriedin anairflowdrierat60ºCandweigheduponremovalfromdrier.Toconvertpollenweightto pollennumber,pollenfrom∆TWplotswascollectedbyplacingairpermeablebagsontwo tasselspermainplotandreplacingeverythreedays.Pollenfromallbagswithinamainplot werecombined,drysievedtoremovenonpollendebris,driedinanairflowdrierat60ºC, weigheduponremovalfromdrier,andcountedwithaCoulterMultisizerIIusingDiluent2. Valuesfor∆TWaretheweightdifferencebetweenthetwocohortsoffivetasselsmultiplied bythenumberofpollengrainsperunitweight.MeasurementsforthePMmethodwere madebyenclosingfiverepresentativetasselsperplotwithairpermeablebagsatanthesis whenthefirstanthersareextruded.Twoadditionaltasselswerebaggedandusedifdamage occurredtoanyoftheoriginalfivetassels.Bagswerereplacedeverythreedaysuntiltheend ofpollenshed.Threedayintervalswereusedtominimizepollenlossandtasseldamage possiblewithbagexchange.PollenwaswashedfromthebagusingDiluent2andsieved througha120mscreentoa53mscreen.Pollenonthe53mscreenwascountedwitha CoulterMultisizerIIsimilartothePPTmethod. Additionaldatacollectedincludedthefollowing.Sheddurationwasrecordedfor tasselswithairpermeablebagsandadjacenttasselswithoutairpermeablebags. Temperatureswererecordedhourlyinsideairpermeablebagsandonadjacenttassels withoutairpermeablebags.Timerequiredtoconducteachpollenmeasurementmethodwas determinedandincludedfieldandlabworkforfivetassels. 26

Results and Discussion

Accuracy and precision study

Onlyamountofpollenproducedasignificant( P<0.05)effectonpercentofcounted pollen(Table1).Lesspollenwasrecoveredwhengreateramountsofpollenwereadded

(Table2).ThefollowingequationcalculatesPPT,orinthiscasethenumberofpollengrains added,basedonCP.

PPT= CP (99.3–7.19X10 7×CP)/100 Thedenominatorfiguresthepercentoftotalpollenthatwascountedinagivensample.The coefficientsweredeterminedusingdatainthisstudybyregressingthepercentcountedon CP. PrecisionisgivenasthestandarderrorofthePPTwhichwasderivedfrom regressionresultsusingtheDeltamethod.ThestandarderrorofPPT(SE)is

2 2 2 1/2 SE= CP ×(var(β 0)+CP ×var(β 1)+2×CP×cov(β 0,β 1)+(CP/(CP/PPT)) ×(β 0) ×MSE)

(CP/PPT) 2

wherevar(β 0)isthevarianceoftheinterceptcoefficient,var(β 1)isthevarianceoftheslope coefficient,cov(β 0,β 1)isthecovarianceoftheinterceptandslopecoefficients,β 0isthe intercept,andMSEisthemeansquareerror.Thesewerecalculatedfromtheregressionof percentcountedonCP.Thisstandarderrorprovidesanestimateofprecisionforasingle tassel(Table3).Thestandarderrorisaboutfivepercentofthepollencounted.Ofcoursethe useofadditionaltasselsassubsampleswouldincreasetheconfidenceofthePPTvalue. 27

Pre-shed pollen characterization study

TheCoulterMultisizerIIproducesanonscreendisplayofahistogramofdiameters forobjectsthatitcounts.DiametersobtainedfromthepeakofthehistogramontheCoulter MultisizerIIaveragedonly4mlessthantheaveragepollendiameterobtainedfrom images.Thedifferencewasfairlyconsistentwiththegreatestdiscrepancybeingbetween locationswherethedifferenceaveraged5mforsamplesfromChileand2mforsamples fromIowa;therefore,themoreprecisevaluesfromimageswereused.Theminimum openingonscreenswhichwouldcapture95%ofpollengrainswhilestillallowingadequate liquidflowwasdetermined.Whenfiguredacrosscombinationsoflocation,genotype,and tassellocation,53mand56mweretheminimumdiameterswhenprocessingwithwater andDiluent2,respectively.Althoughsievingremovesmostnonpollenmaterial,some tasseldebriswhichisoftensmallerthanpollenremains.Settingalowerthresholdonscreen sizeandparticlecounteralsoaidsineliminatingsuchdebrisfromcounts.Whilesomepollen isnotcounted,somedebrislargerthantheminimumthresholdiscounted.Other environmentsandgeneticsmayrequireotherthresholds.Thelargestpollendiametersacross combinationsoflocation,genotype,andtassellocationwere99mand100mforwater andDiluent2,respectively. Theaveragediametersofpollengrainsobtainedfromimageswereanalyzedacross treatments.PollendiametersobtainedfromChile(80m)werelargerthanfromIowa(74 m)( P<0.01).Aninteractionofinbredandtassellocationwaspresent( P<0.01)inwhich pollenonthelowestbranchwassmallerthanorequaltopollenfromtherachisacross inbreds.Pollenonthelowestbranchmaystillbeaccumulatingstarchandenlargingwhile pollenontherachisismature.WhenpollenwasprocessedinDiluent2,theaveragepollen diameter(78m)wasgreaterthanwhenprocessedinwater(76m)( P<0.01).Acrossall location,genotype,tassellocation,andliquidtypecombinations,averagepollendiameters 28 rangedfrom66to87m.Thisissmallerthanpreviouslyreportedforinbreds(Kumarand Sarkar,1980).Thismaybepartiallyduetotheharvestofpollengrainspreshedthatmaybe stillenlarginguptoshed.Alsothedatacollectedinthisstudyaccountsforallpollengrains includingsmaller,lessdevelopedpollengrainsthatmaynotshedorshedlater.

Diluent2hasbeenusedwhenhandlingpollentominimizeosmoticpressureandthus pollengrainbursting.Howeverwaterisacheaperandcanbemoreeasilyusedinsieving.

TobetterunderstandtheimplicationsofusingwaterinplaceofDiluent2,sampleswere processedusingbothliquids.Aninteractionamonglocation,genotype,andliquidtypewas present( P<0.01).Burstingdidnotdifferbetweenliquidsforeachinbredfromsamples collectedinChile( P>0.10).ForsamplescollectedinIowa,morepollenburstingwaspresent fortwoinbredswheninwater,lessinoneinbredwheninwater,anddidnotdifferfortwo inbreds( P=0.05).Thepercentofpollenburstingforfreshlyshedpollenwhenplacedin waterisconsiderablymorethanwhenplacedinDiluent2orwhendriedathigh temperaturesandplacedineitherwaterorDiluent2(Tranel,unpublisheddata,2007).Burst pollenmayormaynotbecountedbytheparticlecounter. Thesedatashowthatpreshedpollencanbecollectedandprocessedusingthenew pollenproductiontechnique.Sincepollendiametercanvaryacrossgenotypesand environments,smallerorlargerscreensizesandparticlecountersettingsmightbemore appropriateforotherstudies.PollenburstingwassometimeslesswhenprocessinginDiluent 2comparedwithwater;howevervariationexisted.Useofeitherliquidisexpectedto producereliableresults.

Comparison of pollen quantification study

PoorstandestablishmentofDent3AplotsinIowaresultedininsufficienttassels availablefor∆TWdata.Aninteractionforlocation,genotype,andmethodwaspresent (P<0.01)forpollenproduction(Fig.1).Acrossmethods,flintlinesproducedmoreorsimilar 29 amountsofpolleninFrancethaninIowawhilethedentlinesproducedmoreorsimilar amountsofpolleninIowathaninFrance.ThetemperateenvironmentintheFrancelocation ismoreconducivefortheseflintinbredswheretheyareadapted.ThePBmethodalways producedlesserpollencountsthanothermethodswithinalocationforthedentlinesbutnot alwaysfortheflintlines.Severalfactorsmayhavecontributedtothelowerpollen production.ThePBmethodmeasurestheamountofpollenshedfromantherswhilethe othermethodsmorecloselyquantifytotalpollenproduced.Thisdifferenceisobservedin Dent3AwherehighvolumesofpollenwereproducedbasedonthePPTand∆TWmethods butarelativelylowpercentofpollenwasobtainedfromthePBmethod.Thisinbredis knownforpoorpollensheddespitehighpollenproduction.Additionallytheairpermeable bagmaycreateaheatstressenvironmentaroundthetassel.Thelowerpollenproductionof Dent3AfromthePBmethodmaybeduetohighresponsivenesstoheatstressfromthe breathablebag.Hourlytemperatureswererecordedinsidetheairpermeablebagandonan adjacenttasselwithoutanairpermeablebag.Dailytrendswereverysimilaracrosstassels anddays;therefore,averagehourlytemperaturesacrossonedayareprovidedforeach location(Fig.2).Temperaturesinsidetheairpermeablebagreachedashighas7ºCabove temperaturesoutsidethebag.HoweverthehighesttemperaturesinsidethebaginFrance wereonlyslightlyhigherthanthehighesttemperaturesoutsidethebaginIowa.Higher temperaturesshortlypriortopollenshedhavebeenreportedtodecreasepollenviability (Herreroetal.,1980;Schoperetal.,1987;Royetal.,1995).Lessinformationonpollen productionorshedisavailable;howeverSchoperetal.,(1987)reportedfeweranthers emergedathighertemperaturesleadingtolowerpollenshed.Pollenviabilityandanther emergencewerenotrecordedinthisstudy.Althoughthehighertemperaturesmightdecrease pollenquantityorquality,inthisstudytherewasnotalowerpollenyield( P>0.10) measuredbythePBmethodinthewarmerlocation(Iowa)comparedtothemoretemperate 30 location(France)foreachinbred.Sheddurationsdidnotdifferbetweentasselscoveredby thepermeablebagandthosewithout.

PollenproductionfromPPTand∆TWdiffered( P<0.10)whencomparingwithina locationonlyforFlint1AandforDent3A.VisualobservationindicatesthatFlint1A maintainedtightglumesaroundantherslimitingantherexertionandlossofanthersthatdo nottypicallyshedpollen.Pollennotshedwouldnotbeaccountedbythe∆TWwhichwould underestimatepollenproduction.PPTrelatedwellwith∆TW(r=0.88, P<0.01),butPBdid notrelatewellwith∆TW(r=0.45, P=0.02)orPPT(r=0.11, P=0.55).Thelowpercentageof pollenshedofDent3acontributestothelowcorrelationsbetweenPBandothermethods. UsingdatafromallinbredsotherthanDent3a,PBcorrelationsimprovedwith∆TW(r=0.81, P<0.01)andPPT(r=0.80, P<0.01).Thecorrelationbetween∆TWandPPTindicatesa greateraccuracyinpollenquantificationwhenusing∆TWthenpreviouslysuggestedby Fonsecaetal.(2003).Since∆TWisbasedonweightmeasurement,severalfactorscan loweraccuracyofdata.Thisincludescontinuedweightgainbythetasselforsome genotypesafterthestartofpollenshed(PioneerHiBred,unpublisheddata,1985)andloss oftasselmaterialotherthanpollen.Ifpollendiameter,andthereforepollenweight,varies amonggenotypesandisnotaccounted,theaccuracyof∆TWdecreases. Thecoefficientofvariation(CV)wascalculatedacrossreplicationsforeach combinationoflocation,genotype,andmethodandthenaveragedacrossinbreds(Table4). TheCVforPPTwaslowestfollowedby∆TWandPB.Thetimerequiredtoquantifypollen productionfromfivetassels,oronereplication,differedgreatlyamongmethods.ThePPT methodrequiredthelongesttimeof127minutesfollowedbyPBwhichrequired94minutes andfinally∆TWrequiringonly14minuteswhichincludesproceduresforconvertingweight topollen.Ashortamountoftimeisrequiredtocollecttasselsamplesfromthefieldforthe PPTmethodwhichmaybecriticalwhenothertimeconsumingfieldactivitiessuchas 31 pollinationoccur.Obviouslythechoiceofpollenquantificationmethodisstrongly influencedbyresourceandprecisionrequirements.

ThisstudyevaluatedPPTforlevelsfrom4.0to15.0millionpollengrainspertassel. Pollenpertasselhasbeenreportedtorangefrom0.5to25milliondependingupongenetic materialandmethodsofmeasurement(Kiesselbach,1949;Hsuetal.,1988;Uribelarreaet al.,2002;Fonsecaetal.,2004).Thesmalleramountsareformoderninbredsbasedonthe amountofpollenshed.Thelevelsevaluatedarenearthelevelsmeasuredonthefiveinbreds testedinthisstudy.PPTprovidesmeasurementsoftotalpollenproducedbythetassel,or potentialpollenavailable.Thismethoddoesnotaccountforsuchfactorsaspollenreleased fromanthers,pollenmovementtosilklevel,andabilitytofertilizeovules.Thisinformation isdesirableineffortstomovefrompotentialpollentopollenavailabletofertilizeanovule, orrealizedpollen.However,notconfoundingpollenproductiondatawiththesefactorsmay bedesirablewhenresearchobjectsaretoestablishingtotalpollenproducedpertassel.

Conclusion

Thecollectionofatasselatanthesisfollowedbydrying,grinding,andwetsievingto separatepollenfromtasseldebrisforquantifyingpollenproductionhasnotbeenpreviously reported.Thisnoveltechniqueaccuratelyandpreciselymeasurespollenproducedpertassel withoutconfoundingeffectsfrompollennotshedfromanthers.Appropriateequipmentand settingsarerequiredforseparatingpollenfromnonpollendebrisandmayvaryacross environmentsandgenetics.EitherwaterorDiluent2canbeusedinthistechniquefor separatingpollenfromnonpollendebris.Whencomparedagainstestablishedmethodsfor measuringpollenproduction,thisnewtechniqueproducedresultsasexpectedbasedon knowledgeoftheenvironmentsandgeneticmaterialtowhichtheyweresubjected.Those evaluatingpollenproductionshouldconsiderthistechniquewhenassessingtotalpollen productionpertassel. 32

Acknowledgements

TheauthorswishtothankGatienArnault,MarceloGiagnoni,WillyGyre,Jacquin

Maëliss,ChristianPintoandJuanPabloSanMartinfortheiradviceandassistanceinsample collectionandprocessing.

References

AylorD.E.2005.Quantifyingmaizepollenmovementinamaizecanopy.Agric.For.

Meteorol.131:247256. BaltazarB.M.,J.D.J.SánchezGonzalez,L.DeLaCruzLarios,andJ.B.Schoper.2005. Pollinationbetweenmaizeandteosinte:AnimportantdeterminantofgeneflowinMexico. Theor.Appl.Genet.110:519526. Bassetti,P.,andM.E.Westgate.1994.Floralasynchronyandkernelsetinmaizequantified byimageanalysis.Agron.J.86:699703. Bechoux,N.,G.Bernier,andP.Lejeune.2000.Environmentaleffectsontheearlystagesof tasselmorphogenesisinmaize( Zea mays L.).PlantCellEnviron.23:9198. Dhingra,H.R.,andT.M.Varghese.1985.Effectofsaltstressonviability,germinationand endogenouslevelsofsomemetabolitesandionsinmaize( Zea mays L.)pollen.Ann.Bot. (Lond.)55:415420. Dukhovnyi,A.I.1975.Theelectricchargeofmaizepollenasaquantitativecharacter.(In Russian.)Kolichestven.priznakimutantovkukuruzyKishinev:Stiinca.p.2124. 33

Dungan,G.H.,andH.W.Gausman.1951.Clippingcornplantstodelaytheirdevelopment. Agron.J.43:9093.

Flottum,P.K.,D.C.Robacker,andE.H.Erickson.1984.Aquantitativesamplingmethodfor airbornesweetcornpollenunderfieldconditions.CropSci.24:375377.

Fonseca,A.E.,J.I.Lizaso,M.E.Westgate,LGrass,andD.L.Dornbos,Jr.2004.Simulating potentialkernelproductioninmaizehybridseedfields.CropSci.44:16961709. Fonseca,A.E.,M.E.Westgate,L.Grass,andD.L.Dornbos.2003.Tasselmorphologyasan indicatorofpotentialpollenproductioninmaize[Online].Availableat: www.plantmanagementnetwork.org/pub/cm/research/2003/tassel/(accessed23September 2003;verified6June2007).CropManage.DOI10.1094/cm2003–0804–01RS. Green,J.M.1949.Effectofflamingonthegrowthofinbredlinesofcorn.Agron.J.41:144 146. Hall,A.J.,F.Villela,N.Trapani,andC.Chimenti.1982.Theeffectofwaterstressand genotypeonthedynamicsofpollensheddingandsilkinginmaize.FieldCropsRes.5:349 363. Herrero,M.P.,andR.R.Johnson.1980.Hightemperaturestressandpollenviabilityof maize.CropSci.20:796800. 34

Hsu,S.Y.,Y.C.Huang,andP.A.Peterson.1988.Developmentpatternofmicrosporesin Zea mays L.Thematurationofupperandlowerfloretsofspikeletsamonganassortmentof genotypes.Maydica33:7798.

Kiesselbach,T.A.1949.TheStructureandReproductionofCorn.Agric.Exp.Stn.,Res. Bull.No.161.Univ.ofNebr.CollegeofAgriculture,Lincoln,NE.

Kumar,D.,andK.R.Sarkar.1980.Correlationbetweenpollendiameterandrateofpollen tubegrowthinmaize( Zea mays L.).IndianJ.Exp.Bot.18:12421244. Mangen,T.F.,P.R.Thomison,andS.D.Strachan.2005.Earlyseasondefoliationeffectson TopCrosshighoilcornproduction.Agron.J.97:823831. Roy,S.K.,S.M.L.Rahaman,andA.B.M.Salahuddin.1995.Pollinationcontrolinrelation toseedyieldandeffectoftemperatureonpollenviabilityofmaize( Zea mays ). IndianJ. Agric.Sci. 65:785788. Sadras,V.O.,A.J.Hall,andT.M.Schlichter.1985.Kernelsetoftheuppermostearin maize:I.Quantificationofsameaspectsoffloralbiology.Maydica30:3747. Schoper,J.B.,R.J.Lambert,andB.L.Vasilas.1987.Maizepollenviabilityandear receptivityunderwaterandhightemperaturestress.CropSci.26:10291033. Sharma,P.N.,C.Chatterjee,S.C.Agarwala,andC.P.Sharma.1990.Zincdeficiencyand pollenfertilityinmaize( Zea mays ).PlantSoil124:221225. 35

Struik,P.C.1982.Effectofaswitchinphotoperiodonthereproductivedevelopmentof temperatehybridsofmaize.Neth.J.Agric.Sci.30:6983.

Uribelarrea,M.,J.Cárcova,M.E.Otegui,andM.E.Westgate.2002.Pollenproduction, pollinationdynamics,andkernelsetinmaize.CropSci.42:19101918.

Vasilas,B.,andR.D.Seif.1985.Effectofdefoliationonthetimingofanthesisandsilking ofmaizeinbredlines.Maydica30:427435. 36

Table1.ANOVAforpercentpollenrecovered. Source df F Replication 3 2.4 Pollen 2 12.5* Tassel 2 0.2 Pollen×Tassel 4 0.4 *Significantatthe0.01probabilitylevel.

Table2.Percentofpollenrecoveredandcountedatvariouslevelsofpollen.

Pollen Percent Pollengrains level counted counted g % ×10 6† 1 97.3a‡ 4.05 2 92.9b 7.73 4 88.7c 14.75 †Multiplythereportednumbersbythistoobtaintheactual numbers. ‡Differentlettersindicatesignificantdifferencesinpercent recoveryatthe0.05probabilitylevel. 37

Table3.Standarderror(SE)ofpotentialpollencounts(CP)andcorrespondingcalculated pollenproductionpertassel(PPT). CP PPT SEofPPT ×10 6† ×10 6 ×10 6 4.00 4.15 0.19 8.00 8.55 0.42 16.00 18.21 1.05 †Multiplythereportednumbersbythisto obtaintheactualnumbers.

Table4.Coefficientofvariationvaluesformeasuredpollenproductionfromeachmethod andlocationcombinationaveragedacrossinbreds. Method FR† IA Average PB‡ 45 23 34 PPT 10 19 15 ∆TW 18 31 25 †FR=France,IA=Iowa ‡PB=permeablebagmethod,PPT=pollen productionpertasselmethod,∆TW=totalweight method. 38

Fig.1.Pollenproductionpertasseldeterminedbythreemethods(PB=permeablebag,PPT =pollenproductionpertassel,∆TW=totalweight)attwolocations(France–FR,Iowa–

IA)forfiveinbreds.Differentletterswithinaninbredindicatesignificantdifferencesin pollenproductionatthe0.05probabilitylevel.

16 FRPB IAPB a

) 14 b 6 12 FRPPT IAPPT c 10 FR∆TW IA∆TW a 8 a a a a a 6 b b b a a 4 ab c ab c

Pollenpertassel(×10 c 2 bc bc c bc bc d c c c d n/d 0 Flint1A Flint2B Dent1A Dent2A Dent3A Inbred 39

Fig.2.Temperaturesrecordedwithinairpermeablebags,onadjacenttasselswithoutair permeablebags,andtheirdifferencethroughoutadayattwolocations(France–FR,Iowa–

IA).

FRoutsidebag FRinsidebag FRdifference IAoutsidebag IAinsidebag IAdifference 40 35 30 25 20 15 10

Temperature(ºC) 5 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 :0 :0 :3 0 0 1:3 3 4:3 6:00 7:3 9:0 5:0 8:0 10 12:0 13:30 1 16:30 1 19:3 21: 22:3 DailyTime

40

CHAPTER 3. TASSEL DEVELOPMENT EVENTS LEADING TO POLLEN PRODUCTION: A TIMELINE

ApaperforthesubmissiontothejournalMaydica

DeanTranel 1,AntonioPerdomo 2,AllenKnapp 3

Abstract

Establishingthetimingofmaize( Zea mays L.)maleinflorescencedevelopmental eventsisfundamentaltopredictingfloweringtimeandunderstandingtheaffectsofstresson tasseldevelopmentandpollenproduction.Therefore,criticaleventsoftasselandpollen formationwerecharacterizedinrelationtoplantdevelopmentandheatunitaccumulation. Twoinbreds,Dent12(103drelativematurity(RM))andDent11(113RM)weregrown undercontrolledgreenhouseconditions.Abouteverytwodays,threeplantsperinbredwere dissectedtorelateeventsleadingtopollenproductiontoplantdevelopment.Ittooklonger forDent11toreachmeiosisfollowingtasselinitiationthanforDent12.Tasselinitiation occurredfromfourthleafstage,sixleaftips(V4:T6)toV5:T7.Branchmeristemsappeared fromV4:T7toV6:T9.Spikeletpairprimordia(SPP)appearedfromV5:T7toV7:T10,while spikeletsdifferentiatedfromV5:T9toV8:T12.Lowerfloretinitiationoccurredfrom V6:T11toV8:T13.However,mostlowerfloretswereinitiatedwithina60heatunitperiod acrossthetassel.Foragivenspikeletpair,floretsformedinthepedicellatespikeletonly slightlypriortothesessilespikelet.Antherswerevisiblewithin30heatunitsoffloret development.Afterantherformation,pollenmothercellsareproducedwhichthenenter meiosis.Pollenmothercellsenteredmeiosisapproximately90heatunitsafteranther

1GraduateStudent,AgronomyDepartment,IowaStateUniversity;correspondingauthor 2ResearchScientist,PioneerHiBred,aDuPontCompany 3AssociateProfessor,AgronomyDepartment,IowaStateUniversity 41 initiation,andmeiosisoccurredfromV9:T14toV12:T15.Therateoftasseldevelopment relativetoleafemergencewasthesameforbothinbredsdespitetheirdifferentratesof developmentrelativetoheatunitaccumulation.Thedurationsandratesofwhenthesetassel developmentaleventsoccurrelativetoleafemergenceandheatunitshavenotbeen previouslyreportedformoderndentinbreds.

Introduction

Althoughpollenisplentifulinmostgrainfields,itcanbealimitingfactorinhybrid maizeseedproduction.Thisispartiallyaresultofmaximizingfieldareaallocatedtothe femaleparent.Thismaximizesthesaleableseedbutminimizesfieldproportionsallocatedto themaleparent.Limitedpollenproductionisemphasizedformalesthatmayhavefavorable combiningabilitybutproducelowamountsofpollen.Inaddition,notonlyaresufficient pollenamountsrequired,pollenmustalsobedeliveredtothefemalesilkswhentheyare receptive. Optimizingmanagementpracticessuchasmaleplantingrate,plantingpatternand timingofplantingmaleparentsrelativetofemaleparentsisinherentlycomplex.Decisions tooptimizemanagementpracticesarebasedonmanyfactorsincludingbutnotlimitedto pollenproducedperplant,pollenshedduration,pollenmovementtosilksandqualityof pollenproduced.Improvedtoolsandmethodsarebeingdevelopedtoquantifythesefactors. Inhybrids,pollenproductionperplantdecreasedasplantpopulationincreased(Uribelarrea etal.,2002).Howevertotalpollenavailableperareaatsilklevelincreasedorremainedthe samewithincreasingplantpopulationdependingupongenetics.Increasedplantpopulation decreasedsheddurationaswell.Aylor(2005)modeledpollenmovement inthecanopyto estimatewhatpercentofshedpollenreachedsilklevel.Whileroughly23percentofshed pollenreachedsilklevel,thiscanvarydependinguponwindspeed,uppercanopy turbulence,canopyarchitecture,andheightofthetassel.Pollenmovementtosilksmayalso 42 beaffectedbyfemaletomalerowpattern.Effectivepollenmustalsobefertile.Most methodstomeasurepollenfertilityhavefocusedonpollenviability(Zhang,1998;

RodriguezRianoandDafni,2000;Plineetal.,2002).Unfortunatelypollenviabilityassays donotfullyaccountforallrequirementsnecessaryforapollengraintogerminateanddo notincorporatepollenpistilcompatibilityissues(Stoneetal.1995;RodriguezRianoand Dafni,2000).Althoughmanyfactorsarenecessaryforagenotypetoperformasan acceptablemale,aprerequisiteistoproduceawellformedtasselcapableofproducing amplepollen.Inaddition,awellformedtasselproducinghighvolumesofpollenmay alleviateinadequaciesinsuchfactorsaspollenfertilityorpollenmovementtosilks. Severaleventsleadtotheformationofnormaltasselsandpollengrains.These eventsbeginwithtransitionoftheapicalmeristemfromtheadultvegetativestagetoa reproductivestage(IrishandNelson,1991).Eventsfollowingthetransitionincludethe productionofbranches,spikeletpairs,spikelets,florets,anthers,andfinallypollen. Combined,theseeventsdeterminethequantityofpollenproduced.Tasselandpollen formationhasbeendescribedpreviously.Weatherwax(1916)providedadescriptionwith someinsightintodifferentialpollenmaturationbetweenfloretswithinaspikelet.Bonnett (1940)presentedadetaileddescriptionoftasselformationeventsfromtasselinitiation throughantherformation.Scanningelectronmicroscopyandtransmissionelectron microscopyallowedarefinedaccountoftasseldevelopmentthroughantherinitiation (Chengetal.,1983).Formationanddevelopmentofanthershasbeendescribedindepthby Goldbergetal.(1993).ChangandNeuffer(1989)andMcCormick(1993)reviewedstages ofmicrosporogenesisfromtapetalinitialstomaturepollengrainformation.Inaddition, timingofmicrosporogenesishasbeenrelatedtotimeindaysaswellasacrossflorets(Hsu andPeterson,1981;Hsuetal.,1988).Morerecently,moleculartechniqueshaveaidedin delineatingthedevelopmentalpatternsoftasselparts.McSteenandHake(2001)reported that barren inflorescence2 ( bif2 )mutantspreferentiallyformedpedicellatespikelets 43 comparedtosessilespikeletsandsuggestedthatsince bif2 mutantsinhibitspikelet formation,sessilecellinitialsformafterpedicellatecellinitials.Similarlyin bif2 mutants, thenondefectivefloretwasthelowerfloretwhichindicatedthattheupperfloretformsafter thelowerfloret.Usingan indeterminate spikelet1 mutant,Chucketal.(1998)also concludedthatthelowerfloretisproducedfirstfollowedbyupperfloretformation. Bonnett(1953,p.44)discussedtheimportanceofunderstanding“thedevelopmental patternandthetimesequenceofthispattern”oftheplantforcropproduction.Tobestutilize knowledgeofeventskeyforpollenproduction,thesetasseldevelopmentalpatternsneedto berelatedtoatimesequencesuchaswholeplantdevelopment.Thisaidsresearchersand seedproducersinascertainingwhenparticularstressesmayaffectpollenproductionandin thepredictionofflowering.Stevensetal.(1986)relatedinflorescencedevelopmenttoleaf stagesinapopcornline,Iopop12,andthehybridB73xMO17.Theleafstagingsystem countedleaveswhen“theligulewasvisibleabovetheauriclesofthepreviousleaf”.Plants wereviewedfromthethirdtothirteenthleafstage.Todatetherearenoreportsrelating tasseldevelopmenttoheatunitaccumulation.Theobjectivesofthisstudyweretorelate eventsfromtasselinitiationthroughmicrosporeformationtoleafemergenceandtogrowing degreedaysininbredmaizelines.Thesemeasurementsweremadeondifferentpartsofthe tasseltoquantifythedurationofeventsthroughoutthetassel.Thisinformationindicates whenkeyeventsleadingtopollenproductionmightbeaffectedbyexperimentaltreatments andenvironmentalstressesinseedproductionfields.Inaddition,quantifyingthetassel developmentrelationshipwithleafemergenceandthermalunitsprovidesinsightto phenologicaldevelopmentleadingtoflowering.

Materials and Methods

Plant Material 44

Twoelitedentinbredlineswereselectedtoprovidearangeintasseldevelopmental eventsrelativetoheatunitaccumulationandleafemergence.Theywerealsoselectedfor useinsubsequentresearchbecauseoftheyhavepreviouslyexhibitedvariationintassel morphologyacrossenvironments(PioneerHiBred,unpublisheddata).InbredDent11hasa relativematurity(RM)of113days,shedspollenatapproximately880heatunits(C),and produces20leavesonaverage.InbredDent12hasaRMof103days,shedspollenat approximately770heatunits(C),andproduces17leavesonaverage.Foreachinbred,four seedswereplantedper9inchdiameterpotonMay4,2005.Plantswerethinnedtothreeper potatV3,twoperpotatV4,andoneperpotattasselinitiationtoobtainuniformplants. PlantsweregrownundercontrolledconditionsingreenhousesinJohnston,Iowa.Lowand hightemperaturesweremaintainednear19and29ºC,respectively.Heatunitsaccumulated atarateofabout14.5(C)upuntilmeiosiswhenheatunitaccumulationwasabout19(C) heatunitsperday.Supplementallightingfromhighpressuresodiumandmetalhalidelights wasprovidedfrom4AMto7PM.Relativehumidityaveraged75%.Fivegramsof osmocotewasappliedatV3andagainatsixweeksafterplanting,and0.5gof201020 fertilizerperliterofwaterwasappliedduringwatering.Potswerepreassignedoneof15 collectiontimes.Therewerethreereplicationsforeachcollectiontimeforatotalof45 plantsperinbred.Thereforethreeplantsperinbredwereevaluatedpercollectiontime.Pots werearrangedinaRCBandblockedbyreplication.Potswererearrangedaftereach collectiontomaintaina37,000plantha 1spacing.

Specimen Preparation

Plantswerecollectedgenerallyeverytwodaysandstaged(Ritchieetal.,1996). Visibleleaftipswerealsorecordedwhenleaftipswerefirstvisibleinthewhorl.Growing degreeunits(GDU)wererecordedindegreesC(Shaw,1988).Priortomeiosis,tasselswere fixedinFAA(45%ethanol,5%aceticacid,5%formaldehyde).Aftermeiosis,tasselswere 45 fixedina3:1ratioof95%ethanoltoaceticacid.After24hoursineitherfixative,tassels weretransferredandstoredin70%ethanol.Imagesweretakenofalltasselsusingan

OlympusSZX12microscopeandOlympusUCMAD3digitalcamera.Scanningelectron microscopymicrographsofselectedtasselsweretaken.Theseselectedtasselswere dehydratedinagradedethanolseriesupto100%ultrapureethanolanddriedusinga DentonDCP2criticalpointdryer(DentonVacuum,LLC,Moorestown,NJ).Whendried, thesampleswereplacedontocarbonadhesivecoatedaluminumstubs,sputtercoated (DentonDeskIIsputtercoater,DentonVacuum,LLC,Moorestown,NJ)withpalladium goldalloy,andimagedusingaJEOL5800LVSEM(JapanElectronOpticsLaboratory, Peabody,MA)at10kVwithaSISADDAIIfordigitalimagecapture(SoftImaging SystemsInc.,Lakewood,CO).Microsporedevelopmentwasdeterminedbysquashing anthersandstainingmicrosporesinacetocarmine.Microsporedevelopmentalstagesfrom pollenmothercellstotheuninucleatestagewererecordedbasedonstagesprovidedby ChangandNeuffer(1989).

Developmental Assessments

Thevegetativegrowthstageisfollowedbyanintermediatestagepriortothestartof reproductivegrowth(IrishandNelson,1991).Duringtheintermediatestage,theapical meristemelongates.Elongationoftheapicalmeristemhasbeenusedtoidentifytassel initiation(WarringtonandKanemasu,1983;Stevensetal.,1986;Birchetal.,2003)using Plate2BofBonnett(1940)orrating2ofMoncur(1981).Inthisstudytasselinitiationis quantifiedbythemomentwhentheapicalmeristemelongatedtosothatitsheightequaled itswidth.ThismeasurementisverysimilartoPlate2BofBonnett(1940)andrating2of Moncur(1981).Branchprimordiawereidentifiedasgrowthslargerthannearbyspikeletpair primordiaorgrowthsnotinspikeletpairrows.Initiationofspikeletpairprimordiawas quantifiedbycountingthenumberofprimordiumgrowthsalongtworowsofspikeletpair 46 primordia.Assessmentswereperformedalongtheentirerachisandlowestbranchsince thesearethefirstandlastlocationsonthetasselfromwherepollensheds.Spikeletand floretprimordiawerealsoquantifiedbyassessingthenumberofspikeletorfloretprimordia alongtworowsofspikeletpairprimordiaalongtherachisandlowestbranch.Anther initiationwasrecordedforupperandlowerfloretswithineachofthepedicellateandsessile spikeletsatthemidpointsoftherachisandlowestbranch.Antherinitiationwasrecorded whenatleasttwoantherswerevisiblewithinafloretatthemidpointsoftherachisand lowestbranch.Pollenmothercellswerecollectedfromantherscollectedfromthesimilar locationsofantherinitiationrecordings.

Results and Discussion

Seveneventsleadingtopollenformationarediscussed.EventsgiveninFigure1are combinedacrossinbredsandtasselcomponents.Plantdevelopmentalstages,daysafter planting(DAP)andaccumulatedGDUafterplantingareprovidedforthroughoutthe durationofwhentasselformationeventsoccur.Selectinguniformlydevelopedplantsduring thinningandthecontrolledgrowthconditionsresultedinhighlyuniformleafstagesthat differedatmostbyonlyoneleafstagewithinaninbred.

Tassel initiation

TasselinitiationoccurredatV4sixleaftipsstage(V4:T6)forDent11andV5:T7for Dent12.Stevensetal.(1986)reportedthattasselinitiationoccurredatsimilarplantstagesof fourleaveswithvisibleligulesforB73xMo17andfiveleaveswithvisibleligulesforIopop 12.Tasselinitiationoccurredafter323GDU.Timefromplantingtotasselinitiationis dependentontemperatureandphotoperiod(RussellandStuber,1985).Theheatunitvalue givenfortasselinitiationisexpectedtovaryacrossgenotypesandenvironments.Theheight atwhichtheapicalmeristemequaleditswidthwas0.20to0.30mm.Thisissmallerthanthe 47

0.4mmcriteriausedfortasselinitiationacrossseveralinbredsandhybrids(Siemeretal., 1969;Stevensetal.,1986).Thediscrepanciesmightbeexplainedbyslightdifferencesin criteriausedtoidentifytasselinitiation.Howeverwhenoutgrowthsofbrancheswerevisible forinbredsinthisstudy,theapicalmeristemheightwasgenerallylessthan0.38mm.

Anotherexplanationcouldbethatthesegeneticsproducedsmallerapicalmeristems.For Dent12plantsplantedinanearbyfield,theapicalmeristemattasselinitiationwasofsimilar sizeasthoseplantsinthegreenhouseindicatingthesmallersizemaynotbeduetothe greenhouseenvironment.Meristemsizedirectlyrelatestotasselandearsize;althoughear formationhasbeenmoreresponsivetomeristemsizethantasselformation(Vollbrechtet al.,2000;TaguchiShiobaraetal.,2001;Bommertetal.,2005).Asmallerapicalmeristem ofthesemoderngeneticsrelatestosmallertasselsofmoderngenetics(Duvick,2005).If breedingpracticesleadtosmallertasselsizesduetoselectionofsmallerapicalmeristems, thenfurtherinvestigationsarewarrantedtounderstandpossiblebenefitsrelatedtoasmaller apicalmeristemaswellaspossiblechangesoftheaxillarymeristemthatproducestheear.

Branch Primordium Initiation

BranchprimordiawereinitiatedfromV4:T7toV5:T8forDent11andV5:T7to V6:T9forDent12.Branchprimordiuminitiationslastedforabout87heatunitsorfrom26 to32DAP.Withintwodaysaftertasselinitiationthefirstbranchprimordiawerevisible. Thissuggeststhatthebranchcellinitialsbegindifferentiatingverysoonaftertheendofthe adultvegetativestagefortheseinbreds.AlthoughStevensetal.(1986)reportedthatbranch primordiawerenotvisibleuntilafterfourorfivedaysaftertasselinitiation.

Spikelet Pair Primordium Initiation

Spikeletpairprimordia(SPP)initiatedthroughoutDent11’stasselfromV5:T7to V6:T11(440to558GDU);thoughSPPinitiationonbranchesdidnotbeginuntilV5:T9 48

(Table1).ForDent1280percentoftheSPPinitiatedfromV5:T8toV6:T9(410to469 GDU).SPPinitiationcontinueduntilV7:T10(529GDU)onboththerachisandlowest branch.SPPinitiationfirstoccurredonDent1129to58heatunitsafterthefirstbranch primordiawereobserved.SPPfirstwerevisibleonDent12onthesamedayto29heatunits afterthefirstbranchprimordiawereobserved.InitiallySPParevisuallyverysimilarto branchprimordia.Whilespikeletpairprimordiagenerallyformalongcolumns,branch primordiaappearatirregularpositionsontherachis.Spikeletpairprimordiacanbegrouped asatypeofbranchprimordia(McSteenandLeyser,2005).In ramosa1 ( ra1 )mutants, spikeletpairsareindeterminateandarevisuallysimilartobranches(Vollbrechtetal.,2005). The liguleless2 ( lg2 )mutantproducesatasselwiththebranchesreplacedbynodes.Using thedoublemutantof ra1 and lg2 ,Vollbrechtetal.(2005)producedatasselwith indeterminatespikeletpairsandonlynodesinplaceofbranchessuggestingtherequirement of lg2 forindeterminatebranchgrowthbutnotforindeterminatespikeletpairgrowth.These studiesaidincategorizingcomponentsthatleadtopollenproductionandexplaininghow stressesatvarioustimesmaydifferentiallyaffecteachcomponent.

Spikelet Primordium Initiation

Onboththerachisandlowestbranch,pedicellateandsessilespikeletprimordiawere firstvisible29heatunitsafterSPPwerefirstvisible.MostspikeletsinitiatedfromV5:T9to V7:T11(499to587GDU)onDent11andfromV6:T9toV8:T12(440to558GDU)on Dent12(Table2).Appearanceonthelowestbranchwasdelayedbyabout29to58heat unitscomparedtotherachis.Whilespikeletpairprimordiaformacropetally,thefirst spikeletsformedapproximatelyonethirdtohalfwayupfromthelowestspikelet.Spikelets continuedtobeformedacropetallyandbasipetallyfromthispositionontherachis.This closelyrelatestothepollenshedpatternacrossthetassel.B73xMo17andIopop12first initiatedsessilespikeletswithsixandsevenleaveswithvisibleligulespresent,respectively 49

(Stevensetal.,1986).McSteenandHake(2001)produceda bif2mutantwhich preferentiallyproducedthepedicellatespikeletandsuggestedthatthepedicellatespikelets formaheadofsessilespikelets.Thisagreeswithnotonlyourvisualobservationsbutalso thatlaterdevelopmentaleventsinthepedicellatespikeletareslightlyaheadofthoseinthe sessilespikelet.

Floret Initiation

Floretsinitiatedwithin58to87heatunitsaftertheirspikeletprimordiawerefirst visible.FloretinitiationbeganatV6:T11andwascompleteatV8:T13onDent11(Table3). ForDent12,floretswerevisiblebeginningatV7:T10andfloretinitiationceasedbyV8:T12. ForbothDent11andDent12,floretinitiationonthelowestbranchwasdelayedbyabout28 heatunitscomparedtothatontherachis.Mostfloretsinitiatedwithin58heatunits throughoutthetassel.Forboththerachisandlowestbranch,thefloretswerevisibleinthe sessilespikeletonlyslightlyaftertheywerevisibleinthepedicellatespikelet.Sinceonlya smallnumber,threeorless,ofspikeletpairsontherachishadapedicellatespikeletwith floretsinitiatedwhilethesessilespikeletdidnot,thetimebetweenfloretinitiationsfor spikeletswithinaspikeletpairisveryshort.McSteenandHake(2001)andChucketal. (1998)suggestthatthelowerfloretinitiatespriortotheupperfloret.Previouslytheupper floretwasthoughttoformaheadofthelowerfloret(Bonnett,1940).Thismaybepartially duetothefactthatsubsequentdevelopmentaleventswithintheupperfloretareaheadofthe lowerfloret.Thereforeiftheupperfloretinitiatesafterthelowerfloret,itmustdevelopata fasterrate.Theupperfloretformsadjacenttotheinnerglume.

Anther Initiation

Antherinitiationoccurredwithin28heatunitsoffloretinitiation.ForDent11and Dent12,anthersfirstappearedat587GDUand558GDU,respectively(Table4).Initiation 50 inDent11occurredfromV7:T11toV8:T13andinDent12fromV8:T12toV9:T14.Anthers initiatedatthemiddleofthelowestbranchwithin28heatunitsafterinitiationatthemiddle oftherachis.Antherinitiationinthesessilespikeletwasfirstobservedonthesamedayor within28heatunitsofthepedicellatespikelet.Thedifferenceintimingofantherinitiation betweentheupperandlowerfloretwithinaspikeletwasgreaterthanbetweenspikelets withinaspikeletpair.Howeverwhenantherswerepresentintheupperfloret,theywerealso presentinthelowerfloretwithin28heatunits.Ofthethreeantherswithinafloret,the antheroppositethepaleainitiatesslightlylaterthantheothertwoanthers(Stevensetal., 1986).Anthersinitiatedwhenapproximatelysevenandeightleaveswithvisibleligules werepresentinB73xMo17andIopop12,respectively(Stevensetal.,1986).

Microspore Development

Manyeventsleadtotheproductionofmaturepollengrains.Theproductionof tapetalinitialswhichbecomepollenmothercellsarethefirstmajorevents(McCormick, 1993).Afterpassingthroughmeiosisandtetradrelease,microsporesareproduced. Followingmitosiswhichinvolvestwoasymmetricdivisionstoproduceonevegetative nucleiandtworeproductivenuclei,pollengrainsareproduced.Inthisstudy,eventswere recordedfrompollenmothercellsuntiltheuninucleatestage.Previousresearchhasfound stressduringthisperiodcandetrimentallyaffectpollenformation(NamucoandO’Toole, 1986;Mercadoetal.,1997;PorchandJahn,2001).Microsporemothercellsenteredmeiosis 100to120heatunitsafterantherswereinitiated.MeiosisoccurredfromV9:T14toV11:T15 (708to782GDU)inDent11andV10:T15toV12:T15(660to746GDU)inDent12(Table 5).Therelativetimingofmeiosisinthemiddleoftherachisandthemiddleofthelowest branch,thepedicellateandsessilespikelets,andtheupperandlowerfloretswasverysimilar tothetimingofwhenantherinitiationoccurred.Thedifferenceintimeofmeiosisbetween upperandlowerfloretswasabout40heatunitsortwodaysonthemiddleoftherachis 51 whilethisdifferenceonthelowestbranchwasless.PreviousresearchbyHsuetal.(1988) reportedthedifferencebetweentheupperandlowerfloretwas4.6daysnearthemiddleof therachis(tasselmaturityposition2)and1.8daysnearthelowerpartofthetassel(tassel maturityposition4).Alsoreportedwasthatmodernmaizegeneticshadlessdifferences.

Thisresearchusesmoremoderninbredsandshowsashorterintervalbetweenmeiosisin upperandlowerfloretsthenpreviouslyreported.

Practical application

Understandingtherelationshipamongheatunitaccumulation,leafemergenceand tasseldevelopmentprovidesseveralimmediatepracticalbenefits.Inseedproduction, practicestodelayfloweringofthemaleparentrelativetothefemaleparentarefrequently imposedtoimprovethenickand/orlengthenpollenshedduration.Unfortunatelysome delaytechniquessuchasflamingandcuttingcanadverselyaffectgrainandpollen production(Green,1949;DunganandGausman,1951).Variousproceduresareusedto identifypropertimingofsuchapplications(Shoultz,1985).Thebestprocedurestodelay floweringincludeknowledgeofreproductivecomponentspotentiallyaffectedand knowledgeofagenotype’sresponsivenesstosuchpractices.Sinceearlyorganinitiationcan beacriticalperiodwhenstressesmayterminatedevelopment(BjörkmanandPearson,1998;

Bechouxetal.,2000),genotypesdisplayinghighplasticitytoaspecifictasselcomponent maybepoorercandidatesforapplyingstressfuldelaytreatmentsduringthatcomponent’s initiation.Anotherpracticalbenefitinvolvespredictionofseedfieldfailuredueto deleteriousenvironmentalconditionsduringtasselformation.Earlypredictionofpotential seedfieldfailuresmayresultinadjustmentsinmanagementpracticesinsuchafield, additionalproductionofthatfield’sproduct,and/orimprovedestimationofsaleableseed. Finallyimproved a posteriori deductionofproductionissuesoccurwhenpollenproduction componentscanberelatedtootherobservedormeasuredevents. 52

Theratesoftasseldevelopment,leafdevelopment,andheatunitaccumulation relativetoeachothercanbecompared.Fromtasselinitiationtomeiosis,Dent11required moreheatunits(356)thanDent12(308).Similarly,Dent11comparedtoDent12requiredan equalamountormoreheatunitstoachieveleafemergenceevents.Theslowerleaf emergenceratecorrespondstothelaterRMinbred,howeverthistrendhasnotbeen establishedacrossseveralgenotypeswithvariousphyllochronvalues(PadillaandOtegui,

2005). Floweringpredictiondependsuponknowledgeoffactorsaffectingthedurationsof vegetativeandreproductivegrowth.Adefiningeventisthetransitionoftheapicalmeristem fromavegetativetoareproductivestage(IrishandNelson,1991).Inthisstudy,this transitionoccurredatV4:T6toV5:T8whentheapicalmeristemwas0.20to0.30mmin height.Thedurationofgrowthduringthereproductivestagehasbeenmeasuredusingthe rateofleafemergenceandthenumberofleaves(Tollenaaretal.,1979).Therateoftassel developmentrelativetoleafemergence,whenviewedfromtasselinitiationtomeiosis, correspondedforthesetwomoderninbredsofvaryingmaturities.Iftherateoftassel developmentrelativetoleafemergenceholdsconstantacrossgenotypes,thenknowledgeof theleafstageallowsforpredictionoftasselstageandimprovedunderstandingofflowering time.ThetimefromtasselinitiationuntilantherformationrequiredthreeVstagesforthe twoinbredsinthisstudyand,similarly,theappearanceofthreeligulesforB73xMO17and Iopop12(Stevensetal.,1986).Howwellthesedevelopmentalrelationshipsholdacross environmentsisalsoofinterest.ForDent12,therateoftasseldevelopmentfromtassel initiationtomeiosisrelativetoleafemergencecorrespondedbetweenplantsinthe greenhouseandthosefromnearbyfieldplotsplantedonedayafterthegreenhousestudies (datanotshown).TheGDUduringthistimewerealsosimilarbetweengreenhouseandfield plants.Stoneetal.(1999)andVinocurandRitchie(2001)havefoundleafemergencerates relativetoheatunitswereconsistentacrosstemperatures.Likewiseitispossiblethatacross 53 certaintemperaturerangestherelationshipbetweentasseldevelopmentandleafemergence ratesismaintained.Photoperiodandirradiancemayslightlyalterthesedevelopmentrates aftertasselinitiation,butphotoperiodeffectswereleastlikelyfortemperategenotypes(Ellis etal.,1992;Tollenaar,1999).Ellisetal.,(1992)suggestedthatphotoperiod,andthuslight interceptionandsubsequentassimilateproduction,priortotasselinitiationaffectedtherate ofdevelopmentaftertasselinitiation.Furtherresearchisrequiredtoverifytasseldevelop andleafemergencerelationshipsacrossvariousgenotypesandenvironments.

Conclusion

Severaloftheseveneventsthatleadtopollenproductiondocumentedinthisstudy occuronoverlappingtimelines.Stressesoccurringatanyonetimemayaffectoneormore oftheseevents.Thestartofthistimelinerelativetoheatunitswilllikelyvaryacross environmentsandgenotypes.Thediameteroftheapicalmeristemattasselinitiationfor thesegeneticswassmallerthanpreviouslyreported.Furtherinvestigationsarerequiredto elucidateimplicationsforvariationintheapicalmeristemsizeattasselinitiation.Tassel developmentrelativetoleafemergencecorrespondedforthesetwomoderninbredswhich havearangeinmaturitiesandgrowthratesrelativetoheatunits.Theserelationshipsrequire confirmationthroughtestingundervariousenvironmentsaswellasacrossawiderrangeof genotypes.Acoordinatedrateoftasseldevelopmenttoleafemergenceimprovesour understandingoffactorsaffectingtimetoflowering.Thisprovidesseedproducersatimeline astowhatkeytasselcomponentsleadingtopollenproductionpotentiallymaybeaffected bystresses.

Acknowledgements 54

TheauthorswishtothankPioneerHiBred,aDuPontCompany,foruseof greenhouseandmicroscopyfacilities.TheauthorsalsowishtothankTracyPepperandthe

IowaStateUniversityBesseyMicroscopyFacilitiesforaidincapturingSEMmicrographs.

References

AylorD.E.2005.Quantifyingmaizepollenmovementinamaizecanopy.Agric.For. Meteorol.131:247256.

Birch,C.J.,J.Vos,andP.E.L.VanDerPutten.2003.Plantdevelopmentandleafarea productionincontrastingcultivarsofmaizegrowninacooltemperateenvironmentinthe field.EuropeanJournalofAgronomy19:173188. Björkman,T.,andK.J.Pearson.1998.Hightemperaturearrestofinflorescencedevelopment inbroccoli( Brassica oleracea var. italica L.).J.Exp.Bot.49:101106. BommertP.B.,C.Lunde,J.Nardmann,E.Vollbrecht,M.P.Running,D.Jackson,S.Hake, andW.Werr.2005. thick tassel dwarf1 encodesaputativemaizeorthologueofthe Arabidopsis CLAVATA1 leucinerichreceptorlikekinase.Development132:12351245. Bonnett,O.T.1940.Developmentofthestaminateandpistillateinflorescencesofsweet corn.J.Agric.Res.60:2537. Bonnett,O.T.1953.Developmentalmorphologyofthevegetativeandfloralshootsof maize.Agric.Exp.Stn.,Bull.No.568.Univ.ofIll.Urbana,IL. 55

Chang,M.T.,andM.G.Neuffer.1989.Maizemicrosporogenesis.Genome32:232244.

Cheng,P.C.,R.I.Greyson,andD.B.Walden.1983.Organinitiationandthedevelopmentof unisexualflowersinthetasselandearof Zea mays .Am.J.Bot.70:450462.

Chuck,G.,R.B.Meeley,andS.Hake.1998.Thecontrolofmaizespikeletmeristemfateby theAPETALA2likegeneindeterminatespikelet1.GenesandDevelopment12:11451154. Dungan,G.H.,andH.W.Gausman.1951.Clippingcornplantstodelaytheirdevelopment. Agron.J.43:9093. Duvick,D.N.2005.Thecontributionofbreedingtoyieldadvancesinmaize( Zea mays L.). Adv.Agron.86:83145. EllisR.H.,R.J.Summerfield,G.O.Edmeades,andE.H.Roberts.1992.Photoperiod,leaf number,andintervalfromtasselinitiationtoemergenceindiversecultivarsofmaize.Crop Sci.32:398403. Goldberg,R.B.,T.P.Beals,andS.M.Sanders.1993.Antherdevelopment:Basicprinciples andpracticalapplications.PlantCell5:12171229. Green,J.M.1949.Effectofflamingonthegrowthofinbredlinesofcorn.Agron.J.41:144 146. Hsu,S.Y.,andP.A.Peterson.1981.Relativestagedurationofmicrosporogenesisinmaize. IowaStateJ.Res.55:351373. 56

Hsu,S.Y.,Y.C.Huang,andP.A.Peterson.1988.Developmentpatternofmicrosporesin

Zea mays L.Thematurationofupperandlowerfloretsofspikeletsamonganassortmentof genotypes.Maydica33:7798.

Irish,E.E.,andT.M.Nelson.1991.Identificationofmultiplestagesintheconversionof maizemeristemsfromvegetativetofloraldevelopment.Development112:891898. McCormick,S.1993.Malegametophytedevelopment.PlantCell5:12651275. McSteenP.,andS.Hake.2001. barren inflorescence2 regulatesaxillarymeristem developmentinthemaizeinflorescence.Development128:28812891. McSteen,P.,andO.Leyser.2005.Shootbranching.AnnualReviewofPlantBiology 56:353374. Mercado,J.A.,M.MarTrigo,M.S.Reid,V.Valpuesta,andM.A.Quesada.1997.Effectsof lowtemperatureonpepperpollenmorphologyandfertility:Evidenceofcoldinducedexine alterations.J.Hortic.Sci.72:317326. Moncur,M.W.1981. Maizep.2627. In Floralinitiationinfieldcrops:Anatlasofscanning electronmicrographs.CommonwealthScientificandIndustrialResearchOrganisation, Melbourne,Australia. Namuco,O.S.,andJ.C.O'Toole.1986.Reproductivestagewaterstressandsterility.I. Effectofstressduringmeiosis.CropSci.26:317321. 57

Padilla,J.M.,andM.E.Otegui.2005.Coordinationbetweenleafinitiationandleaf appearanceinfieldgrownmaize( Zea mays ):Genotypicdifferencesinresponseofratesto temperature.Ann.Bot.(Lond.)96:9971007.

Pline,W.A.,K.L.Edmisten,T.Oliver,J.W.Wilcut,R.Wells,andN.S.Allen.2002.Useof digitalimageanalysis,viabilitystains,andgerminationassaystoestimateconventionaland glyphosateresistantcottonpollenviability.CropSci.42:21932200. Porch,T.G.,andM.Jahn.2001.Effectofhightemperaturestressonmicrosporgeneisin heatsensititveandheattolerantgenotypesof Phasolus vulgaris .PlantCellEnviron.24:723 731. Ritchie,S.W.,J.J.Hanway,H.E.Thompson,andG.O.Benson.1996.Howacornplant develops.Spec.Rep.48.Rev.ed.IowaStateUniv.Coop.Ext.Serv.,Ames. RodriguezRiano,T.,andA.Dafni.2000.Anewproceduretoassesspollenviability.Sexual PlantReproduction12:241244. Russell,W.K.,andC.W.Stuber.1985.GenotypeXphotoperiodandgenotypeX temperatureinteractionsformaturityinmaize.CropSci.25:152158. Shaw,R.H.1988.Climaterequirement.p.609–638. In G.F.SpragueandJ.W.Dudley(ed.) Cornandcornimprovement.Agron.Monogr.18.ASA,CSSA,andSSSA,Madison,WI. 58

Shoultz,D.1985.Anevaluationofparentdelaytechniques.p.151160 InD. Wilkinson (ed.)Proceedingsofthe40thAnnu.CornandSorghumInd.Res.Conf.1112Dec.1985.

Am.SeedTradeAssoc.,Washington,DC.

Siemer,E.G.,E.R.Leng,andO.T.Bonnett.1969.Timingandcorrelationofmajor developmentaleventsinmaize, Zea mays L.Agron.J.61:1417.

Stevens,S.J.,E.J.Stevens,K.W.Lee,A.D.Flowerday,andC.O.Gardner.1986. Organogenesisofthestaminateandpistillateinflorescencesofpopanddentcorns: Relationshiptoleafstages.CropSci.26:712718. Stone,J.L.,J.D.Thomson,andS.J.DentAcosta.1995.Assessmentofpollenviabilityin handpollinationexperiments:Areview.Am.J.Bot.82:11861197. Stone,P.J.,I.B.Sorensen,andP.D.Jamieson.1999.Effectofsoiltemperatureon phenology,canopydevelopment,biomassandyieldofmaizeinacooltemperatureclimate. FieldCropsRes.63:169178. TaguchiShiobaraF,Z.Yuan,S.Hake,andD.Jackson.2001.The fasciated ear2 gene encodesaleucinerichrepeatreceptorlikeproteinthatregulatesshootmeristem proliferationinmaize.GenesandDevelopment15:2755–2766. Tollenaar,M.,T.B.Daynard,andR.B.Hunter.1979.Effectoftemperatureandrateofleaf appearanceandfloweringdateinmaize.CropSci.19:363366. 59

Tollenaar,M.1999.Durationofthegrainfillingperiodinmaizeisnotaffectedby photoperiodandincidentPPFDduringthevegetativephase.FieldCropsRes.62:1521.

Uribelarrea,M.,J.Cárcova,M.E.Otegui,andM.E.Westgate.2002.Pollenproduction, pollinationdynamics,andkernelsetinmaize.CropSci.42:19101918.

Vinocur,M.G.,andJ.T.Ritchie.2001.Maizeleafdevelopmentbiasescausedbyairapex temperaturedifferences.Agron.J.93:767772. Vollbrecht,E.,L.Reiser,andS.Hake.2000.Shootmeristemsizeisdependentoninbred backgroundandpresenceofthemaizehomeoboxgene, knotted1 .Development127:3161 3172. Vollbrecht,E.,P.S.Springer,L.Goh,E.S.BucklerIV,andR.Martienssen.2005. Architectureoffloralbranchsystemsinmaizeandrelatedgrasses.Nature436:11191126. WarringtonI.J.,andE.T.Kanemasu.1983.Corngrowthresponsetotemperatureand photoperiodI.Seedlingemergence,tasselinitiation,andanthesis.Agron.J.75:749754. Weatherwax,P.1916.Morphologyofflowersof Zea mays .TorreyBotanicalClubBulletin 43:127144. Zhang,T.1998.Theestimationofmaize( Zea mays L.)pollenviabilityanddeterminationof itsgeneticeffects.M.S.thesis.Univ.ofNebraska,Lincoln.

Fig.1.Relationshipoftasseldevelopmenttoheatunitaccumulationfromplantingandplantdevelopmentacrosstwoinbreds. Colorcodingrelatesheatunitaccumulationperiodstodevelopmentalprocesses.DAPisdaysafterplantingandGDUisgrowing degreeunits.PlantstagesaregivenasThenumberofvisiblecollars(V)followedbythenumberofvisibleleaftips(T). 60

Table1.Timeindaysafterplanting(DAP),growingdegreeunits(GDU)fromplanting,andplantdevelopmentwhenspikeletpair primordiainitiatedattwotassellocationsforinbredsDent11andDent12. Dent11 Dent12 Tassellocation DAP GDU(C) Plantstage DAP GDU(C) Plantstage Rachis 3038 440558 V5:T7V6:T11 2836 410529 V5:T8V7:T10 Lowestbranch 3438 499558 V5:T9V6:T11 3036 440529 V6:T9V7:T10

Table2.Timeindaysafterplanting(DAP),growingdegreeunits(GDU)fromplanting,andplantdevelopmentwhenspikelets initiatedattwotassellocationsforinbredsDent11andDent12.

61 Dent11 Dent12 Tassellocation DAP GDU(C) Plantstage DAP GDU(C) Plantstage Rachis 3440 499587 V5:T9V7:T11 3036 440529 V6:T9V7:T10 Lowestbranch 3643 529587 V6:T10V7:T11 3438 499558 V7:T10V8:T12

Table3.Timeindaysafterplanting(DAP),growingdegreeunits(GDU)fromplanting,andplantdevelopmentwhenflorets initiatedatvarioustasselpositionsforinbredsDent11andDent12. Dent11 Dent12 Tassellocation Spikelet DAP GDU(C) Plantstage DAP GDU(C) Plantstage Rachis Pedicellate 3840 558587 V6:T11V7:T11 3638 529558 V7:T10V8:T12 Sessile 3840 558587 V6:T11V7:T11 38 558 V8:T12 Lowestbranch Pedicellate 4043 587631 V7:T11V8:T13 3840 558587 V8:T12 Sessile 4043 587631 V7:T11V8:T13 3840 558587 V8:T12 6 2

Table4.Timeindaysafterplanting(DAP),growingdegreeunits(GDU)fromplanting,andplantdevelopmentwhenanthers initiatedatvarioustasselpositionsforinbredsDent11andDent12. Dent11 Dent12 Tassellocation Spikelet Floret DAP GDU(C) Plantstage DAP GDU(C) Plantstage Rachis Pedicellate Upper 4043 587631 V7:T11V8:T13 38 558 V8:T12 Lower 43 631 V8:T13 40 587 V8:T12 Sessile Upper 4043 587631 V7:T11V8:T13 38 558 V8:T12 Lower 43 631 V8:T13 40 587 V8:T12 Lowestbranch Pedicellate Upper 4043 587631 V7:T11V8:T13 40 587 V8:T12 Lower 43 631 V8:T13 4042 587616 V8:T12V9:T14 Sessile Upper 43 631 V8:T13 40 587 V8:T12

Lower 43 631 V8:T13 4042 587616 V8:T12V9:T14 63

Table5.Timeindaysafterplanting(DAP),GDU,andplantdevelopmentwhenmicrosporemeiosisoccurredatvarioustassel positionsforinbredsDent11andDent12.

Dent11 Dent12 Tassel GDU location Spikelet Floret DAP GDU(C) Plantstage DAP (C) Plantstage Rachis Pedicellate Upper 47 708 V9:T14 45 660 V10:T15 Lower 49 746 V10:T15 47 708 V11:T15 Sessile Upper 47 708 V9:T14 45 660 V10:T15 Lower 49 746 V10:T15 47 708 V11:T15 Lowest

branch Pedicellate Upper 49 746 V10:T15 47 708 V11:T15 64 Lower 4951 746782 V10:T15V11:T15 47 708 V11:T15 Sessile Upper 49 746 V10:T15 47 708 V11:T15 Lower 4951 746782 V10:T15V11:T15 4749 708746 V11:T15V12:T15 65

CHAPTER 4. CHILLING EFFECTS DURING MAIZE ( ZEA MAYS L.) TASSEL DEVELOPMENT AND COMPENSATIONAL PLASTICITY

ApaperforthesubmissiontothejournalCropScience

DeanTranel 1,AllenKnapp 2,AntonioPerdomo 3

Abstract

Stressduringtasselformationcanresultinreducedtasselsizeandinadequatepollen productioninseedproduction.Whenstresseseffectplantdevelopment,component compensationcanoccurforgrainyieldbuthasnotbeenpreviouslyreportedforpollen production.Chillingeffectswereappliedtotwodentinbredsattheinitiationoftassel formationeventsimportantforobtainingmaximumpollenproduction.The103RMinbred wasgenerallynotresponsivetochilling.The113relativematurity(RM)inbredproduced60 percentfewerbranchesresultingin45percentfewerspikeletswhenchillingwasapplied duringbranchmeristeminitiation.Forthesameinbred42percentfewerspikeletswhere producedwhenchillingwasappliedduringspikeletmeristeminitiation.Applicationsof chillingduringmeiosisofmicrosporogenesisdidnotdecreasepollenproductionperanther.

Adecreaseinpercentofpollengrainsstarchedfilledwasfoundonlyinthelowerfloretson thelowestbranch.Thisinbredproduced43and29percentfewerpollengrainspertassel whenchillingwasappliedduringbranchandspikeletmeristemformation,respectively. Whenbranchorspikeletproductionwasdecreased,latertasselandpollendevelopmental eventsdidnotcompensateforpollenproduction.Pollenproductionofmoderndentinbreds variesduetochillingstressduringtasselformation.Pollenproductioncomponents

1GraduateStudent,AgronomyDepartment,IowaStateUniversity 2AssociateProfessor,AgronomyDepartment,IowaStateUniversity 3ResearchScientist,PioneerHiBred,aDuPontCompany 66 developedpoststressarenotexpecttocompensateforreducedtasselformationfromthe stress.

Introduction

Aplant’sresponsetoabioticstressiscriticaltoitssurvival.Furthermore,aplant’s responsetolessthanoptimalculturalpracticesanddeleteriousmorphologicalchanges duringdevelopmentiscriticaltoobtainingtopyields.Whilesoybean( Glycine max L.)yield wasshowntobehighlyresponsivetostandvariation,maizehadcomparativelylow responsiveness(AndradeandAbbate,2005).Theplasticityoftasselcomponentsandpollen productionduetoreducedproductionofearlierformedtasselcomponentsisnotwell understood.Diminishedtasselsizesofmoderninbreds(Duvick,2005)requireanincreasing understandingofatassel’spollenproductionpotentialandplasticityinseedproduction. Chillingstresscancreateabnormalmorphologythroughoutplantdevelopment.For example,stressduringearlygrowthhasbeenshowntoresultinmoretillersandcan contributetolowerleafproduction(StevensonandGoodman,1972).Chillingslightlybefore initiationoftheaxillarymeristemwhichwouldhavebecometheprimaryearresultedinits abortion(LejeuneandBernier,1996).Similarly,Bechouxetal.(2000)reportedthatchilling duringtasselinitiationdecreasedtasselbranchesandtasselspikeletsinflintinbreds.Plants aremoreoftenfreefromchillingstressduringpollenformationincentralNorthAmerica; howeverchillingconditionscanoccur.SeedproductioninnorthwesternMexico(Dietz, W.F.personnelcommunications.2007)andwinterproductionoftropicalhybridsin Argentina(Mihura,E.personnelcommunications.2006)haveencounteredchilling temperaturesduringpollenformation.Lowtemperaturesduringmeiosisofsorghum (Sorghum bicolor ,L.)andbellpepper( Capsicum annuum ,L.)adverselyaffectedpollen formationandviability(Brooking,1979;Mercadoetal.,1997). 67

Chillingtemperaturescaninduceseveralphysiologicalchangesinmaize( Zea mays L.)leadingtoreduceddevelopment(Miedeman,1982).Decreasedphotosyntheticrates occurduetoreductioninproductionand/oractivityofseveralkeyphotosynthetic components(KingstonSmithetal.,1997;KingstonSmithetal.,1999).Lightenergynot utilizedforphotochemicalreactionsmaybequenchedthroughfluorescence, nonphotochemicalquenching,ormayleadtoproductionofreactiveoxygenspecies(ROS)

(Mülleretal.,2001).Bechouxetal.(2000)proposedthatdecreasedtasselaxillarybranching fromchillingstresswasduetoROSdamage.Foyeretal.(2002)suggestedthatsincedown regulationofphotosyntheticapparatusesremaintightlycoordinatedduringchilling,the increasedpresenceofROSisduetothefailureofantioxidantstoquenchROSasopposedto increasedproductionofROS. Thetimingofkeytasseldevelopmentaleventsinmoderninbredsleadingtopollen formationhaspreviouslybeenoutlined(Traneletal.,inreview).Stressthatdetrimentally affectsanyoftheseeventscansignificantlydecreasepollenproduction.Thisstudy investigatesiftasselformationandpollenproductioninmoderndentinbredsisaffectedby chillingstress.Weappliedchillingtreatmentsattheinitiationofspecifictasselcomponents. Ithasnotbeenpreviouslyreportedifpollenproductioncomponentsthatdeveloppoststress cancompensateforreducedtasselformationfromthestress.Thusasecondgoalwasto identifyifcomponentcompensationforpollenproductionoccursbyquantifyingvariationin tasselcomponentsandpollenproductionafterinducingmorphologicalmodificationsby chillingstress.

Methods and Materials

Twomoderndentmaizeinbredsweregrowningrowthchambers.InbredsDent11 andDent12withrelativematurities(RM)of113and103,respectively,havepreviously exhibitedchangesintasselmorphologyacrossenvironments(PioneerHiBred,unpublished 68 data).Theyhavealsobeencharacterizedindepthfortasselandplantdevelopment(Tranelet al.,inreview).Fourseedswereplantedinnineinchdiameterpotsforeachreplication exceptforreplication2whichwereplantedineightinchdiameterpots.Plantswerethinned totwoatV1(Richieetal.,1996)andoneatV2toobtainuniformityinplantdevelopmental stage.Plantswerefertilizedwith5gofosmocoteatV3andagainatsixweeksafterplanting. BeginningatV4plantsreceived0.5gof15515fertilizerperliterofwaterduringwatering.

MarathonandGnattrolwereappliedatV3.ThePARaveraged650Em 1s1atplantcanopy withfluorescentandincandescentlightsmaintainedat30to45cmaboveplantcanopy. Photoperiodandtemperaturesweresettomimichistoricaldailyaveragesexperienced duringthegrowingseasoninJohnston,Iowa.Thusdevelopmentalresponsesrelatedto photoperiodandtemperaturewouldmorecloselyrelatetofieldconditions.Dailyhigh temperaturesbeganatsunriseanddailylowtemperaturesbeganatsunsetwith30minute transitionperiodsforlightintensityandtemperature.Plantpopulationwithequidistant spacingwas117,000plantsperhectareuptotasselbranchformationwhenitwas94,000 plantsperhectare.Thehigherinitialplantpopulationallowedsufficientplantsforstaging tasselsasoutlinedbelow. Whilegrowthchamberconditionswerechosentomimicfieldconditionstypical duringthemaizelifecycle,fieldconditionscouldnotbecompletelyduplicated.Thiswas evidentduetosomeatypicalplantcharacteristics.TotalleafproductionforDent11(21)and Dent12(20)inthisstudywasgreaterthanistypicallyproducedunderfieldconditionsof20 and17leaves,respectively.Whileincreasedleafproductionisexpectedunderlonger photoperiodsandpossiblyhighertemperaturepriortotasselinitiation(Hunteretal.,1974), itispossibleotherfactorsmaycontributetoleafinitiation.Silkingwasdelayedrelativeto sheddingforbothinbreds,andseveralDent11plantsacrosstreatmentsdidnotexertsilks. Normalsizedearswereproduced,silkswerepresentwithinearhusks,andleafrollingwas notobservedindicatingalackofseveremoisturestress.Pollenproductionperantherfor 69

Dent12wasslightlylowerthanexpectedbasedonpreviousfieldstudies.Otherirregularities inplantdevelopmentwerenotdetected.

Threechillingtreatmentswereapplied.Treatmentapplicationsatbranch(B)and spikelet(S)initiationwereselectedbasedonpreviouslyobservedvariationofthesetraits acrossenvironments.Atreatmentatmeiosisofmicrosporogenesis(M)wasselectedbased onknowledgeofchillingsusceptibilityinothercropsatthisstage(Brooking,1979;

Mercadoetal.,1997).Treatmentsoccurredwhentwotothreebranchprimordiaridgeswere present(B),whenspikeletpairridgesinitiallyappearedwhichcommencedaboutthreedays afterthefirstchillingtreatmentbegan(S),andduringearlyprophaseIofmeiosisof microsporesobtainedfromnearthemiddleoftherachis(M).Eachtreatmentaswellasthe control(C)consistedofthreeplantsperreplication.Chillingtreatmentslastedforseven days.Forchillingtreatments,plantsweremovedtoanothergrowthchamberwiththesame settingsexceptfortemperature.Thesegrowthchambersweresetto17/6°Cday/nightforB andStreatmentsand20/8°Cday/nightforMtreatments.Thechillingtemperatureswere basedonlowesttemperaturesexperiencedduringthetypicaltimeofthesecomponents’ formationincentralIowabetween1977and2003.Temperaturesweremeasuredwithin growthchambersandnearthedevelopingtasselusingthermocouples(5TCTTT3636, OMEGAEngineeringInc.,Stamford,Conneticut).Temperatureswereusuallyabout1°C abovethesetnighttemperatureand1to3°Cabovethesetdaytemperature.Plantpopulation effectsweremaintainedinallchambersusingfillerplants.Toensuretreatmentswere appliedatdesiredtimes,fivefillerplantsweredissectedtoidentifybranchinitiationand threefillerplantsweredissectedtoidentifyinitialspikeletpairinitiation.Toidentifyearly pollenformation,spikeletpairswereextractedfromthemiddleoftherachisandanther squashingwasconductedwithacetocarmineusingpreviouslyoutlinedstages(Changand Neuffer,1989).Extractionofspikeletpairsconsistedofcreatingaslitthroughleaves 70 surroundingthetassel,removingspikeletpairs,andlooselywrappingtapearoundtheleaves toenablenormaltasselemergence(Fox,T.personnelcommunications.2006).

PlantswerearrangedinasplitplotofaRCBdesignwithgenotypesasthemainplot andchillingtreatmentsasthesubplot.Fourreplicationswereblockedbygrowthchambers andtime.Replicationsoneandtwowererunconcurrentlyintworandomlyselectedgrowth chamberswithathirdgrowthchambersettochillingconditions.Replicationsthreeandfour wererunsubsequently. Datacollectedincludedplantstage(Ritchieetal.,1996)andnumberofleaftips visibleeverytwotothreedays,finalleafnumber,plantheightandthermalheatunits accumulatedfromplantinguntilflowering(Shaw,1988).Whenthefirstanthersonthe rachiswereextruded,tasselswereharvested.Tasselswerecharacterizedbybranchnumber, lengthoftherachisandbranchescontainingspikelets,numberofspikeletsoneachbranch andrachis,andtiplengthsofeachbranchandrachisvoidofspikelets.Spikeletdensitywas calculatedasthenumberofspikeletsdividedbylengthofrachisorbranchstructure containingthosespikelets.Threespikeletpairsweresampledfromtwotassellocations,the middleoftherachisandthemiddleofthelowestbranch.Thesetassellocationswerechosen toobtainarangeinpollenmaturitiesandtemporaleffects.Tasselsandsampledspikelets weredriedinanairflowdrierat60°C.Spikeletswerethendissectedtoobtainthenumberof floretsperspikelet,anthersperfloret,pollenperantherandpollenqualityforeach combinationoftassellocations(rachisandlowestbranch),spikelets(pedicellateandsessile) andflorets(upperandlower).Thisresultedineightsamplespertasselwitheachsample containingnineanthers.Pollenwasseparatedfromanthersusingapestleandmortarand

Diluent2(NerlDiagnostics, EastProvidence ,RhodeIsland)toextractpollenand120m and30mnylonscreenstoseparatepollenfromdebrisusingDiluent2.Pollengrainsonthe 30mscreenwerecountedusingaCoulterMultisizerII(BeckmanCoulter,Fullerton, California).Pollenqualitywasassessedbyquantifyingpercentofpollengrainsstarchfilled 71

andpollengraindiameters.PollengrainswerestainedwithI2KI(0.15%I2,0.5%KI,33.5% isopropanol,16.5%aceticacid)andimaged.Aminimumof50pollengrainswereassessed anddeterminedvoidofstarchiftheydidnotstaindarkred.Diametersofatleast50pollen grainspersampleweredeterminedusingMetamorphImagingSystem(UniversalImaging

Corporation,WestChester,PA).Therangeindiametersfromthe5percentsmallesttothe 95percentlargestpersamplewascalculated.Tasselswereprocessedtoassesspollen productionpertassel(PT)(Traneletal.,inreviewb).Brieflytasselsweregroundusinga coffeegrinder(Mr.Coffeecoffeegrinder,IDS57,JardenCorporation,Rye,NewYork)and debrisweresievedtoisolatepollenusingDiluent2.Basedonpollendiameterdata,120m upperand37mlowerscreensizeswereutilizedforsieving.TheCoulterMultisizerIIwas calibratedtocountparticlesbetweenalowerthresholdbasedon5percentsmallestpollen diameterdataobtainedforeachtasselandtheupperthresholdsetto120m.Thesecounts wereadjustedtopollenproductionpertasselaspreviouslydescribed(Traneletal.,inreview b).Calculatedpollengrainspertassel(CPT)wascalculatedusingspikeletspertassel, floretsperspikelet,anthersperspikelet,andpollenperantherdata. DataweresubjectedtoanalysisofvarianceusingPROCMIXEDofSAS(SAS Institute,Cary,NC).Allfactorswereconsideredfixedexceptreplicationandreplication interactions.TheLSMEANSprocedurewiththePDIFFoptionwasusedtotestfor differencesofmeansusing P=0.05asthelevelofsignificanceunlessotherwisestated.

Results and Discussion

Plantdevelopmentslowedduringchillingtreatment(Table1).Whileplants receivingchillingtreatmentswereatsimilarstagespriortotreatmentasthecontrol,they laggedthecontrolsbyaboutonetotwoVstagesaftertreatment.Thedifferenceappearedto beslightlygreaterforDent11thanforDent12possiblyindicatinggreaterchillingtolerance forDent12.Despitesloweddevelopmentduringchilling,finalplantheightsdidnotdiffer 72 acrosstreatments( P>0.10).Timetopollenshedwasaffected(Table2),buttherewereno genotypeorgenotypebytreatmenteffectforeitherheatunitsaccumulatedordaysuntilshed

(P>0.10).AccumulatedheatunitstosheddidnotdifferamongtheC,B,andStreatments. Fewerheatunitswererequiredtoreachshedwhenchillingwasappliedatmeiosis.

Temperaturesmeasurednearthetasselduringmeiosiswereabout22/8°Cday/nightforM treatmentsand30/18°Cday/nightforcontroltassels.Thisresultedinabout63lessheatunits accumulatedduringthosesevendaysforplantsreceivingMtreatments.Thiswouldequate toaboutafourdaydelayinsheddingforMtreatmentsrelativetoCtreatments;however onlyatwodaydelaywasmeasured.Therecorded20heatunitdifferencebetweenMandC treatmentseffectivelyaccountsforthisdifferenceindays.Althoughthisdifferencemightbe minorforobtainingagoodnickinseedproduction,especiallyiftimetosilkingismodified tothesameextent,detasselingeffortsbecomeeasiertomanageacrossmanyfieldswhenthe timetoshedismostaccuratelypredicted. Tasselbranchnumberdecreasedwhenchillingtreatmentswereappliedatbranchand spikeletpairinitiationforDent11butnotforDent12(Table3).Chillingstresscommenced whenabouttwotothreebranchprimordiawerevisible.Additionalbranchcellinitialsmay havealreadybeenformedatthistime.Previousresearchindicatedthatbranchinitiationon theseinbredsoccurredinaboutsixdays(Traneletal.,inreview).Thereforeveryfewifany branchprimordialikelyformedafterchillingstress.AlthoughDent12hasbeenknownto respondtovariousculturalpracticesthatcanmodifytasselformation(PioneerHiBred, unpublisheddata,2004),branchproductiondidnotdecreaseduetochilling.Itsgreater tolerancetochillingstresscomparedtoDent11mayberelatedtotheirzoneofadaptation sinceDent12isa103RMinbredandDent11isa113RMinbred. Spikeletproductionrespondedsimilarlytobranchproduction.Tolimitconfounding effectsofchangesinbranchproductiononspikeletproduction,spikeletproductiononthe rachiswasrecorded.TheStreatmentsproducedthefewestspikeletsperrachisforDent11 73 whiletherewasnodifferenceacrosstreatmentsforDent12.Thispercentdecreaseinspikelet productionontherachiscomparedtothecontrolwasnotasgreatastherelativedecreasein branchproductionforBtreatments.Thismightbeduetoaslightlylongerdurationover whichspikeletproductionoccursrelativetobranchproduction(Traneletal.,inreview).

Also,theprocessesthatleadtothegrowthofthebranchmeristemsandspikeletpair meristemsdifferandthereforemaydifferintheirresponsivenesstostresses(Vollbrechtet al.,2005).Acrosstreatmentstotallengthsoftherachisplusbranchesrelatedwelltototal spikeletproduction.Ontheotherhandrachislengthdidnotrelatewelltospikeletsproduced ontherachisforDent11whileitdidrelatewellforDent12.Thiscanbeexplainedbythe spikeletdensityontherachis.ForDent11spikeletdensityontherachiswaslowestfortheS treatment.ForDent12spikeletdensityontherachisdidnotchangeacrosstreatments. SpikeletdensityonbranchesdidnotchangeacrosstreatmentsforbothDent11(4 spikelets/cm)andDent12(3spikelets/cm).Beyondlimitingtasselelongation,stressmight affectthetasselbyhaltingdevelopmentand/orabortingspikeletswhiletherachisor branchescontinuetoelongate.Dent11didnotshowapropensityforthistrait.Lessthantwo centimetersoftherachiswasdevoidofspikeletsineitherinbreds.AllDent12treatments includingthecontrolshowedsubstantialbranchlengthsvoidofspikelets.TheSandM treatmentsaffectedthistraitthemost. Floretswerecollectedfromtherachisandlowestbranchtocovertheentirerangeof maturitiesonatassel.Theywerealsocollectedfrompedicellateandsessilespikeletsaswell asupperandlowerflorets.Theonlysignificantdifferences( P<0.05)infloretproductionper spikeletwasforagenotypebyspikeletinteractionwheretherewasnodifferencebetween spikeletsforDent11buttheDent12pedicellatespikeletsaveragedslightlymore(1.99) floretsthanthesessilespikelets(1.95).Floretsconsistentlyproducedthreeanthers throughoutthetasselacrosstreatmentsandinbreds( P>0.10). 74

FactorsaffectingtheamountofpollenproducedperantherareprovidedinTable4. Aninteractionamonggenotypes,treatments,tassellocation,andfloretpositionwaspresent andvaluesofthiscombinationoffactorsaregiveninFigures1aand1b.Pollenperantherin theupperfloretwasalwaysgreaterthanorequaltothelowerfloret.PollenperantherforM treatmentswasneverlessthanCtreatmentsforagivenfloretpositioninDent11.For Dent12,pollenperanthervariedwidelybetweentheupperandlowerfloretsonthelowest branch.Althoughchillingduringearlymicrosporogenesismightbeexpectedtohinder pollenformationandultimatelypollenproduction,decreasedpollenproductionperanther duetochillingwasnotdetected. Sincepollenwasharvestedpreshed,pollengerminationtestswerenotattempted.To assesspollenquality,thepercentofstarchfilledpollengrainsandpollendiameterswere quantified.Aninteractionamonggenotypes,treatments,tassellocation,andfloretposition wassignificant( P<0.01)forpercentofstarchfilledpollenwhichincludesallmaineffects andtheirinteractionseffectingpercentofpollenfilled( P<0.05)(Fig.2aand2b).The percentofstarchfilledpolleninDent11rangedfrom82to96forallofthesecombinations exceptforpollenfromlowerfloretsfromthelowestbranchofMtreatmenttassels.This pollenwaslessthanallothercombinationswith59percentofpollengrainsfilled.Brooking (1979)reportedthatinasensitivesorghumlinestarchfillinpollendecreasedwith decreasingnighttemperaturesifappliedduringtheleptotenestageofmeiosis.Inaprevious report,Brooking(1976)alsoidentifiedadecreaseinsensitivitytonightchillingafterthe leptotenestage.Itislikelythatsincepollenfromthemiddleoftherachiswasintheearly prophaseIofmeiosiswhenplacedinchillingconditionsthatitwaspastasensitiveperiod whileyoungestmicrosporesinthelowerfloretofthelowestbranchwereinasensitive stage.Thelargesteffectonpollendiameterwasfloretposition(Table5).Pollendiameters werelargerintheupperfloret(72m)thanthelowerfloret(67m).Pollendiameters measuredonthelowestbranch(67m)weresmallerthanthosemeasuredontherachis(71 75

m).Pollenstarchaccumulationoccursjustafewdaysbeforeshed(HsuandPeterson, 1981);thereforethelessmaturepollenonthelowestbranchmaystillbeaddingstarchand enlargingwhentasselswereharvested.PollendiametersweresmallerforBtreatments(67 m)thenfortheothertreatmentsofC(69m),S(70m),andM(71m).Differencesin pollendiameterbetweenthepedicellateandsessilespikeletswerelessthan1minboth Dent11andDent12.

ThedifferentialresponsivenessofDent11andDent12chillingstressshowsthat geneticvariationexistswithinelitegermplasmforchillingresistance.Thedecreasein branchandspikeletproductioninDent11duetochillingstressenabledustoconsiderif componentcompensationoccursforpollenproduction.Tasselschilledduringbranch initiationcontained60percentfewerbranchesthanthecontroltassels.However,these tasselsdidnotshowcompensationthroughlongerrachisorbranches,increasedspikelet density,lesssteriletips,increasedfloretsperspikeletsoranthersperfloret,morepollenper antherorimprovedpollenquality.Similarly,tasselsreceivingchillingduringspikelet initiationproduced42percentfewerspikelets,butproductionoflaterpollenproduction componentsdidnotdifferfromthecontrol.Thesedatasuggestalackofplasticityinthe tasselforrecoveryfromstressesexperiencedearlierindevelopmental. Theoveralleffectonpollenproductionpertasselbychillingstressatdifferenttassel developmentalstageswasquantified.ForDent11therewere43and29percentdecreasesin PTfortasselsreceivingchillingduringbranchandspikeletinitiation,respectively(Table3). Thiscoincideswiththe45and42percentdecreaseinspikeletproductionforthose treatments.Toverifypollenquantificationsatthetasselandsubtassellevels,PTandCPT werecorrelated(R2=0.85, P<0.01).ThelinearregressionwasPT=0.56+0.90×CPT. Bechouxetal.(2000)foundvariationinthesusceptibilityoftasseldevelopmentto chillingbetweenflintinbreds.Theypostulatedthatsensitivitywasduetooxidativestress and/orhormonalimbalances.In barren inflorescence2 mutants,suppressionoftassel 76 axillarybranchingisrelatedtoalteredexpressionof ZmPIN1 involvedinauxintransport (McSteenandHake,2001;Carraroetal.,2006).AnincreaseinPIN1expressionwasfound ina more axillary branching (max )mutant, max1-max4 (Bennettetal.,2006).Whileefflux ofauxinisrelatedtoincreasedbranching,ClineandOh(2006)reportedthatapplicationof abscisicacid(ABA)decreasedbranchproductionintwoofthreeherbaceousspecies.Since the MAX pathwayusesacarotenoidderivedhormone,theysuggestproductionofthis hormonemightberelatedtoproductionofcarotenoidderivedABA.Thusproductionof ABAmightcorrespondwiththeproductionofthehormoneusedbythe MAX pathway leadingtodecreasedauxineffluxandfewertasselbranchesandspikelets.InadditionABA hasbeenshowntoincreaseinleavesduetochilling(Janowiaketal.,2003,Melkonianetal., 2004).Thereforeadecreaseintasselbranchandspikeletproductionfromchillingmaybea resultofchillinginducedproductionofthecarotenoidderivedhormoneusedbythe MAX pathway.

Conclusion

Chillingstresswasappliedduringspecifictasseldevelopmentaleventsthatleadto pollenproduction.A103RMinbredproducedincreasedbranchareadevoidofspikelets whenchillingstresswasappliedduringspikeletinitiationandmeiosisofmicrosporogenesis. A113RMinbreddisplayedconsiderablesusceptibilitytochillingstressappliedduring branchandspikeletinitiation.Chillingstressduringmeiosisreducedthepercentofstarch filledpollengrainsonlyinlowerfloretsonthelowestbranchofthe113RMinbred.This studyshowsgeneticvariationofmoderndentinbredsintheirresponsetochillingstressfor pollenproductioncomponents. Compensationforchillinginducedtasselmodificationshasnotbeenpreviously reported.Wedidnotidentifyevidenceforsuchcompensation.Alackofplasticityofpollen productioncomponentsinitiatedlaterintasseldevelopmenttorespondtomodifications 77 inducedearlierindevelopmentlimitshighpollenproductionlevelsunderadverse productionconditions.Whenconsideringmanagementpracticesofmaleparentsinseed productionorotherinstanceswherepollenmaybealimitingfactor,stressesmustbe minimizingduringearlystagesoftasselformationtoobtainmaximumpollenproduction.

Acknowledgements

WethankPioneerHiBred,aDuPontCompany,foruseofitsfacilities.

References

Andrade,F.H.,andP.E.Abbate.2005.Responseofmaizeandsoybeantovariabilityin standuniformity.Agron.J.97:12631269. Bechoux,N.,G.Bernier,andP.Lejeune.2000.Environmentaleffectsontheearlystagesof tasselmorphogenesisinmaize( Zea mays L.).PlantCellEnviron.23:9198. Bennett,T.,T.Sieberer,B.Willett,J.Booker,C.Luschnig,andO.Leyser.2006.The Arabidopsis MAX pathwaycontrolsshootbranchingbyregulatingauxintransport.Curr. Biol.16:553563.

Brooking,I.R.1976.Malesterilityin Sorghum bicolor (L.)Moenchinducedbylownight temperature.I.Timingofthestageofsensitivity.Aust.J.PlantPhysiol.3:589596. Brooking,I.R.1979.Malesterilityin Sorghum bicolor (L.)Moenchinducedbylownight temperature.II.Genotypicdifferencesinsensitivity.Aust.J.PlantPhysiol.6:143147. 78

Carraro,N.,C.Forestan,S.Canova,J.Trass,andS.Varotto.2006. ZmPIN1a and ZmPIN1b encodetwonovelputativecandidatesforpolarauxintransportandplantarchitecture determinationofmaize.PlantPhysiol.142:254264.

Chang,M.T.,andM.G.Neuffer.1989.Maizemicrosporogenesis.Genome32:232244.

Cline,M.G.,andC.Oh.2006. Areappraisaloftheroleofabscisicacidanditsinteraction withauxininapicaldominance.Ann.Bot.(Lond.)98:891897. Duvick,D.N.2005.Thecontributionofbreedingtoyieldadvancesinmaize( Zea mays L.). Adv.Agron.86:83145. Foyer,C.H.,H.Vanacker,L.D.Gomez,andJ.Harbinson.2002.Regulationof photosynthesisandantioxidantmetabolisminmaizeleavesatoptimalandchilling temperatures:Review.PlantPhysiologyandBiochemistry40:659668. Hsu,S.Y.,andP.A.Peterson.1981.Relativestagedurationofmicrosporogenesisinmaize. IowaStateJ.Res.55:351373. Hunter,R.B.,L.A.Hunt,andL.W.Kannenberg.1974.Photoperiodandtemperatureeffects oncorn.Can.J.PlantSci.54:7178. Janowiak,F.,E.Luck,andK.Dorffling.2003. Chillingtoleranceofmaizeseedlingsinthe fieldduringcoldperiodsinspringisrelatedtochillinginducedincreaseinabscisicacid level.J.Agron.CropSci.189:156161. 79

KingstonSmith,A.H.,J.Harbinson,J.Williams,andC.H.Foyer.1997.Effectofchillingon carbonassimilation,enzymeactivation,andphotosyntheticelectrontransportintheabsence ofphotoinhibitioninmaizeleaves.PlantPhysiol.114:10391046.

KingstonSmith,A.H.,J.Harbinson,andC.H.Foyer.1999.Acclimationofphotosynthesis,

H2O2contentandantioxidantsinmaize( Zea mays )grownatsuboptimaltemperatures. PlantCellEnviron.22:10711083. Lejeune,P,andG.Bernier.1996.Effectofenvironmentontheearlystepsofearinitiationin maize( Zea mays L.).PlantCellEnviron.19:217224. McSteenP.,andS.Hake.2001. barren inflorescence2 regulatesaxillarymeristem developmentinthemaizeinflorescence.Development128:28812891. Melkonian,J.,L.X.Yu,andT.L.Setter.2004.Chillingresponsesofmaize( Zea mays L.) seedlings:Roothydraulicconductance,abscisicacid,andstomatalconductance.J.Exp.Bot. 55:17511760. Mercado,J.A.,M.MarTrigo,M.S.Reid,V.Valpuesta,andM.A.Quesada.1997.Effectsof lowtemperatureonpepperpollenmorphologyandfertility:Evidenceofcoldinducedexine alterations.J.Hortic.Sci.72:317326. Miedema,P.1982.Theeffectsoflowtemperatureon Zea mays .Adv.Agron.35:93128. Müller,P.,L.XiaoPing,andN.K.Krishna.2001. Nonphotochemicalquenching.A responsetoexcesslightenergy.PlantPhysiol.125:15581566. 80

Ritchie,S.W.,J.J.Hanway,H.E.Thompson,andG.O.Benson.1996.Howacornplant develops.Spec.Rep.48.Rev.ed.IowaStateUniv.Coop.Ext.Serv.,Ames.

Shaw,R.H.1988.Climaterequirement.p.609–638.InG.F.SpragueandJ.W.Dudley(ed.) Cornandcornimprovement.Agron.Monogr.18.ASA,CSSA,andSSSA,Madison,WI.

Stevenson,J.C.,andM.M.Goodman.1972.Ecologyofexoticracesofmaize.I.Leaf numberandtilleringof16racesunderfourtemperaturesandtwophotoperiods.CropSci. 12:864868. Tranel,D.M.,A.Knapp.,A.Sayers,S.D.Strachan,andK.Koehler.2007.Anewtechnique forquantifyingpollenproductioninmaize( Zea mays).CropSci.inreviewb. Tranel,D.M.,A.Perdomo,andA.Knapp.2007.Tasseldevelopmenteventsleadingto pollenproduction:Atimeline.Maydicainreview. Vollbrecht,E.,P.S.Springer,L.Goh,E.S.BucklerIV,andR.Martienssen.2005. Architectureoffloralbranchsystemsinmaizeandrelatedgrasses.Nature436:11191126. 81

Table1.Developmentalstageofplantsafterchillingtreatmentswereappliedatbranch initiation(B),spikeletinitiation(S)andmeiosisofmicrosporogenesis(M)andthe correspondingstageofcontrolplantsforeachtreatment.Stagesarecompiledacrossplants andreplicationsandaregivenasthevegetativestage(V)followedbyvisibleleaftips(T). Dent11 Dent12 Treatment B S M B S M Chilling V6:T11 V6:T12 V14:T19 V7:T12 V8:T13 V15:T19 Control V7:T12 V8:T13 V16:T20 V8:T13 V9:T14 V16:T20

Table2.Timeuntilthestartofpollenshedaveragedacrossgenotypes.

TimetoPollenShed Treatment GDU(C) DaysafterPlanting C† 628a‡ 75a B 638a 78bc S 638a 79c M 608b 77b †ChillingtreatmentsofC=control,B=branch initiation,S=spikeletinitiation,M=meiosisof microsporogenesis. ‡Differentlettersindicatesignificant differencesintimetoshedatthe0.05 probabilitylevel. 82 Table3.Responseintasseldevelopmentduetochillingtreatmentsappliedatbranch initiation(B),spikeletinitiation(S)andmeiosisofmicrosporogenesis(M)aswellasthe control(C). Total Inbred Branches Spk† RacSpk TL RL SDR BDS PT cm cm spkcm 1 cm ×10 6‡ Dent11 C 15a§ 895a 234a 206a 24a 10a 4a 8.8a B 6b 494b 194b 98b 24a 8b 1a 5.1b S 8b 518b 165c 120b 26a 6c 1a 6.3b M 17a 935a 211ab 223a 26a 8b 3a 10.2a Dent12 C 11a 392a 104a 114a 16a 6a 11ab 3.0a B 10a 306a 86a 80a 13b 6a 10a 1.8a S 12a 357a 92a 102a 15ab 6a 19c 1.8a M 13a 319a 86a 103a 13b 7a 17bc 2.3a †Totalspk=totalspikeletsontassel,RacSpk=spikeletsonrachis,TL=totalbranchand rachislengthscontainingspikelets,RL=rachislengthcontainingspikelets,SDR=spikelet densityonrachis,BDS=branchlengthdevoidofspikelets,PT=pollenpertassel. ‡ Multiplythereportednumbersbythistoobtaintheactualnumbers. §Differentlettersindicatesignificantdifferencesbetweentreatmentswithinagenotypeat the0.05probabilitylevel.

83

Table4.Factorsandinteractionsaffectingpollenperanther( P<0.05). Effect F P G† 12.7 0.04 F 102.4 <0.01 T×F 7.2 <0.01 G×T×F 2.8 0.04 T×L×F 4.0 0.01 G×T×L×F 4.5 <0.01 †G=genotype,F=floret(upper andlower),T=chillingtreatments, L=tassellocation(rachisand lowestbranch).

Table5.Effectsandinteractionsaffectingpollendiameter( P<0.05).

Effect F P T† 4.0 0.01 L 13.3 <0.01 G×K 4.2 0.04 F 187.0 <0.01 †T=chillingtreatments,L= tassellocation(rachisand lowestbranch),G= genotype,K=spikelet (pedicellateandsessile),F= floret(upperandlower).

84

Fig.1.PollenperantherfortreatmentsandtasselpartsofDent11(Fig.1a)andDent12(Fig. 1b).Treatmentsincludingchillingappliedatbranchinitiation(B),spikeletinitiation(S)and meiosisofmicrosporogenesis(M)aswellasthecontrol(C).Tasselpositionsincludedthe lowestbranch(BR),rachis(RAC),lowerfloret(LF),andupperfloret(UF).Differentletters indicatesignificantdifferencesbetweenbarsatthe0.05probabilitylevel. Fig.1a

BRLF BRUF RACLF RACUF

ab 2100 ac abc abcd abc abc abcf abce abcde abcde 1800 abcf cf bf

1500 def df

1200 f

900

pollenperanther 600

300

0 CBSM

85

Fig.1b

BRLF BRUF RACLF RACUF

2100 a

1800 ab abc abc bcd bcd 1500 cde cde cde cde 1200 def def deg 900 efg fh pollenperanther 600 gh

300

0 CBSM

86

Fig.2.PercentofpollengrainsstarchedfilledfortreatmentsandtasselpartsofDent11(Fig. 2a)andDent12(Fig.2b).Treatmentsincludingchillingappliedatbranchinitiation(B), spikeletinitiation(S)andmeiosisofmicrosporogenesis(M)aswellasthecontrol(C). Tasselpositionsincludedthelowestbranch(BR),rachis(RAC),lowerfloret(LF),and upperfloret(UF).Differentlettersindicatesignificantdifferencesbetweenbarsatthe0.05 probabilitylevel.

Fig.2a

BRLF BRUF RACLF RACUF

100 a ab ab ab ab ab ab 90 ab ab ab ab bab b b 80

70 c 60

50

40

30

20 pollengrainsstarchfilled(%)

10

0 CBSM

87

Fig.2b

BRLF BRUF RACLF RACUF

100 a a abc ab abcd abc abcd abcd 90 abcd abcd abc abcd be 80 ce de e 70

60

50

40

30

20 pollengrainsstarchfilled(%)

10

0 CBSM

88

CHAPTER 5. GENERAL CONCLUSIONS Ahighlevelofpollenproductionisbeneficialinhybridseedmaize( Zea mays L.) productionforseveralreasons.Amaleparentproducingabundantpollenlevelsoptimizes femaleparentseedset,allowsincreasedfemaleparentlandallocation,andminimizes outcrosses.Thisworkinvestigatesthemethodstoassesspollenproductionandprovides detailedknowledgeofwhenkeytasselformationcomponentsinitiate.Whileitisknownthat atassel’ssizecandecreaseundercertainstresses,compensationinpollenproduction responsetosuchchangeshasnotbeenpreviouslydocumented.Suchinformationis beneficialforpollenproductionriskmanagement. Whendeterminingpollenavailabilityforthefemaleparent’sovules,manyfactors requireconsideration.Amongthesearemaleparentpopulationandpollenproducedper tassel;thesedeterminedpotentialpollen.Theamountofpollenthatiscapableoffertilizing ovules,oreffectivepollen,involvesadditionalfactors,someofwhichincludepercentof pollendehisced,impedimentsinpollentraveltosilks,andtheabilityofthepollento fertilizeovulesafterreachingsilks.Quantifyingmanyofthesefactorsremainselusive.This workpresentsameanstoquantifypollenproductionpertassel.Suchmeasurementsare desirablewhendeterminingtotalpollengrainnumberproductiononasingletasselwithout regardstolatermovementofpollen.Thusdoorsareopenedtoansweralitanyofquestions concerningbasicagronomicpracticesandotherplantmodificationeffectsonpollen production. Pollenproductionresultsfromsequentialinitiationofcomponentsbeginningwith tasselinitiationandconcludingwithpollengrainformation.Failureofanyoneofthe intermediatemorphologicaleventsprecludesthedevelopmentoflatereventsthatleadsto pollenproductionatagiventasselposition.Investigationstoidentifygenesandstressesthat affecttheseeventsareongoing.Resultsfromthesestudieswillaidinbettermanagingtassel morphology,maximizingpollenproduction,andpredictingfloweringtime.Understanding 89 thetimelineofkeyeventsisthefirststep.Thetimelineestablishedinthisresearchnotonly allowedtheensuinginvestigationsbutalsoprovidesknowledgeforseedproducersto manageandtroubleshootpoorpollinations.Forexample,knowingleafstagesandrelated tasseldevelopmentalstagecanallowforquickassessmentofpotentialinjuryanddecreases inpollenproduction.Inaddition, a posteriori analysesaremadepossible. Thestresseffectsofchillingonbranch,spikeletpair,andmicrosporeformationwas exploredintwodentinbreds.Genotypicdifferenceswereidentified.The103RMinbred showedminimalresponsewhilethe113RMinbredproducedfewerbranchesandspikelets. Ipostulatethathormonalimbalancemayhaveledtodecreasedaxillarymeristemformation. Specifically,itcouldbeenhancedlevelsofacarotenoidderivedhormonecorrespondingto abscisicacidproductionleadingtoacascadeofeventsculminatingindecreasedaxillary branchformation.Minimaleffectsofchillingduringmeiosisofmicrosporogenesiswere identified.Wheneffectsweresignificant,theyoccurredinthelowerfloretsonthelowest tasselbranch.Additionalresearchisrequiredtodeterminethedifferentialresponseto chillingacrossthetassel;however,previousresearchinsorghumindicatesthatonlyearly meiosisstagesaresensitivetochilling.Tasseldevelopmentalresponsetoearlier morphologicalmodificationsisnotwellunderstood.Whenbranchandspikeletproduction wasdecreasedinoneinbred,plasticityinlaterformingpollenproductioncomponentswas notidentifiedinthisstudy.Ifcomponentcompensationforpollenproductiondoesnot occur,seedproducersshouldnotexpectthetasseltocompensatefordetrimentalearlytassel morphologychanges. 90

APPENDEX A. TASSEL DIAGRAM Tasseldiagram.Abbreviationsincludeupperfloret(uf),lowerfloret(lf),innerglume(ig), outerglume(og),lemma(l),andpalea(p). FromMcSteenP.,andS.Hake.2001. barren inflorescence2 regulatesaxillarymeristem developmentinthemaizeinflorescence.Development128:28812891.

91

APPENDEX B. RAW DATA CoulterMultisizerIIcalibration

6000

5000

4000

y=1.0322x+115.22 3000 R2=0.9642 2000

CoulterMultisizerIIcount 1000

0 0 1000 2000 3000 4000 5000 6000 Manualcount

Pollencountsfromcomparisonofpollenproductionmeasurementmethods

location Pollen replication inbred method count France 1 Flint1A PB 940940 France 2 Flint1A PB 1084908 France 3 Flint1A PB 1710060 Iowa 1 Flint1A PB 157700 Iowa 2 Flint1A PB 133133 Iowa 3 Flint1A PB 199700 France 1 Flint2B PB 1867849 France 2 Flint2B PB 687924 France 3 Flint2B PB 795499 Iowa 1 Flint2B PB 373333 Iowa 2 Flint2B PB 337100 Iowa 3 Flint2B PB 214533 France 1 Dent1A PB 1635816 France 2 Dent1A PB 1297087 France 3 Dent1A PB 1943758 Iowa 1 Dent1A PB 4085167 Iowa 2 Dent1A PB 4394467 Iowa 3 Dent1A PB 2805700 France 1 Dent2A PB 2952291 France 2 Dent2A PB 926055 92

France 3 Dent2A PB 2023237 Iowa 1 Dent2A PB 2825267 Iowa 2 Dent2A PB 2739133 Iowa 3 Dent2A PB 2323967 France 1 Dent3A PB 2473445 France 2 Dent3A PB 1054413 France 3 Dent3A PB 831996 Iowa 1 Dent3A PB 240233 Iowa 2 Dent3A PB 354600 Iowa 3 Dent3A PB 471867 Iowa 1 Flint1A TW 0 Iowa 2 Flint1A TW 306738 Iowa 3 Flint1A TW 0 Iowa 1 Flint2B TW 1055582 Iowa 2 Flint2B TW 1147022 Iowa 3 Flint2B TW 1238462 Iowa 1 Dent1A TW 6787085 Iowa 2 Dent1A TW 7754704 Iowa 3 Dent1A TW 3388839 Iowa 1 Dent2A TW 6136652 Iowa 2 Dent2A TW 9045938 Iowa 3 Dent2A TW 3612601 France 1 Flint1A TW 1168180 France 1 Dent2A TW 6137820 France 1 Flint2B TW 2271060 France 1 Dent1A TW 3294980 France 1 Dent3A TW 12422400 France 2 Flint1A TW 898600 France 2 Flint2B TW 2762100 France 2 Dent1A TW 5228990 France 2 Dent2A TW 5272230 France 2 Dent3A TW 10869600 France 3 Dent1A TW 3080090 France 3 Dent3A TW 14751600 France 3 Dent2A TW 4013190 France 3 Flint1A TW 988460 France 3 Flint2B TW 2393820 Iowa 3 Flint1A PPT 2604949 Iowa 2 Flint1A PPT 2384329 Iowa 1 Flint1A PPT 1678513 Iowa 3 Flint2B PPT 1751901 Iowa 2 Flint2B PPT 843277 Iowa 1 Flint2B PPT 842851 Iowa 3 Dent1A PPT 7938637 Iowa 2 Dent1A PPT 6793259 Iowa 1 Dent1A PPT 6749927 Iowa 3 Dent2A PPT 6528599 93

Iowa 2 Dent2A PPT 6240859 Iowa 1 Dent2A PPT 7122276 Iowa 3 Dent3A PPT 14354355 Iowa 2 Dent3A PPT 16523496 Iowa 1 Dent3A PPT 13314911 France 1 Flint1A PPT 2878040 France 1 Dent2A PPT 5406509 France 1 Flint2B PPT 2699424 France 1 Dent1A PPT 5277516 France 1 Dent3A PPT 10298631 France 2 Flint1A PPT 3419228 France 2 Flint2B PPT 3167625 France 2 Dent1A PPT 4477182 France 2 Dent2A PPT 6448177 France 2 Dent3A PPT 9004442 France 3 Dent1A PPT 3970512 France 3 Dent3A PPT 10163441 France 3 Dent2A PPT 7104922 France 3 Flint1A PPT 3239093 France 3 Flint2B PPT 3009221

94

TasseldevelopmentrawdataofDent11

95

TasseldevelopmentrawdataofDent12

96

Rawdataforplantresponsetochillingstress. repli variety treat leav poll GD GDU plan bran bra rac bra rach spk spk cati men es en Uto tosilk t ch nch his nch is on on on t per she heig num len len voi void bran rach tass d ht ber gth gth d of ch is el (cm) s s of spk spk 1 Dent11 B 22 3.9 632 971 212 3 29 28 . . 69 228 1 Dent11 B 21 3.2 632 767 215 2 20 26 . . 52 190 1 Dent11 B 21 9.7 618 794 200 10 163 27 . . 596 . 1 Dent11 C 21 9.6 638 . 224 18 230 25 . . . . 1 Dent11 C 22 12.7 651 785 226 17 223 23 . . . . 1 Dent11 C 21 12.7 651 1004 204 14 230 27 . . . . 1 Dent11 M . 14.3 612 952 149 16 218 30 . . 909 . 1 Dent11 S 21 4.7 668 967 228 3 45 26 1 3 130 141 1 Dent11 S 21 5.8 668 776 233 5 57 21 0 2 179 150 1 Dent11 S 21 8.6 641 967 226 8 104 30 0 0 242 260 1 Dent12 B 21 0.4 668 695 161 6 27 3 13 6 67 17 1 Dent12 B 21 1 628 668 184 8 55 10 . . 152 54 1 Dent12 B 21 1.2 654 681 162 6 49 11 8 2 248 73 1 Dent12 C 21 3 651 704 193 8 65 12 . . 166 68 1 Dent12 C 20 2.6 664 717 159 10 81 17 . . 234 107 1 Dent12 C 20 . 664 758 190 8 43 9 . . 111 46 1 Dent12 M 22 2.1 670 738 167 7 48 10 6 2 115 73 1 Dent12 S 20 2.6 665 692 188 13 100 16 18 1 277 80 1 Dent12 S 21 0.6 639 679 174 10 52 10 27 2 102 69 1 Dent12 S 21 0.5 652 706 189 7 37 10 28 5 91 27 2 Dent11 B 21 9.7 647 . 171 8 124 20 5 0 545 138 2 Dent11 B 22 2.4 674 . 168 2 19 22 0 0 72 123 2 Dent11 C 22 9 677 . 189 15 166 16 4 0 652 160 2 Dent11 C 21 7.8 625 . 142 22 241 19 20 0 899 214 2 Dent11 C 21 2.2 677 813 181 11 122 24 8 0 522 196 2 Dent11 M 23 5.1 655 . 125 14 109 20 9 0 340 140 2 Dent11 M 22 9.5 615 777 141 19 169 20 8 0 592 206 2 Dent11 S 23 5.1 630 . 193 10 105 22 4 2 381 152 2 Dent11 S 22 2.6 657 765 203 4 32 21 0 0 112 148 2 Dent11 S 23 6.2 630 . 182 6 75 30 1 0 353 142 2 Dent12 B 20 0.6 657 711 153 4 28 8 2 2 98 42 2 Dent12 B 21 1.3 684 711 161 7 58 9 1 2 169 34 2 Dent12 B 20 1.2 657 670 145 16 58 10 35 2 144 47 2 Dent12 C 20 1.1 612 664 157 8 79 19 7 1 248 104 2 Dent12 C 21 0.5 625 744 155 11 73 14 12 2 176 73 2 Dent12 C 21 1.4 625 704 159 16 77 15 38 3 239 79 2 Dent12 M 21 3.4 590 724 150 13 120 14 16 1 314 91 2 Dent12 M 22 1.8 656 710 161 10 52 11 17 1 116 63 2 Dent12 S 20 0.8 669 669 148 6 51 15 7 0 140 79 2 Dent12 S 21 1 669 709 151 12 44 16 28 1 111 77 2 Dent12 S 20 1.5 656 642 147 14 61 14 32 4 180 77 97

3 Dent11 B 21 8.6 557 . 165 13 150 24 0 0 561 202 3 Dent11 B 20 1.4 675 . 173 5 59 20 1 0 288 118 3 Dent11 B 22 5.8 583 729 178 11 123 22 1 0 407 200 3 Dent11 C 22 8.3 612 . 181 13 143 25 1 0 498 248 3 Dent11 C 21 17.6 573 . 164 22 286 25 0 0 . . 3 Dent11 C 20 8.2 586 . 182 14 154 27 0 0 584 27 132 3 Dent11 M 20 15.4 589 . 159 16 159 27 2 0 0 190 3 Dent11 M 21 7.7 589 . 169 36 385 24 1 0 . . 3 Dent11 M 20 13.2 589 . 148 14 189 27 1 0 822 236 3 Dent11 S 22 7.9 580 713 171 9 105 27 1 0 406 114 3 Dent11 S 21 7.4 580 741 156 12 128 28 1 0 513 141 3 Dent11 S 22 10.9 620 741 157 11 150 25 0 0 615 258 3 Dent12 B 20 2.6 595 621 134 13 95 16 9 0 331 121 3 Dent12 B 20 2 569 621 141 15 87 17 16 0 257 117 3 Dent12 B 21 4.1 595 647 152 11 90 16 3 1 294 118 3 Dent12 C 20 4.2 560 651 129 7 71 17 2 2 243 116 3 Dent12 C 20 3.5 586 677 149 14 105 18 12 1 315 121 3 Dent12 C 19 4.7 548 638 126 15 154 18 4 0 479 137 3 Dent12 M 19 2.4 503 580 133 10 92 17 9 0 260 108 3 Dent12 M 20 3.8 554 633 144 21 160 16 25 2 422 113 3 Dent12 M 20 3.5 541 593 115 16 113 12 18 1 290 74 3 Dent12 S 20 2.3 587 600 145 16 120 15 23 2 330 86 3 Dent12 S 20 4.1 574 640 134 14 96 15 15 4 285 116 3 Dent12 S 19 4.3 510 600 126 13 143 18 6 1 440 132 4 Dent11 B 20 4.3 672 . 167 4 49 26 0 0 250 254 4 Dent11 B 19 3.6 726 . 162 5 60 24 0 0 298 244 4 Dent11 B 20 4.8 698 . 156 3 43 24 0 0 213 270 4 Dent11 C 20 4.9 664 . 178 11 132 31 0 0 532 264 4 Dent11 C 20 5.6 638 . 171 9 89 26 0 0 292 246 4 Dent11 C 21 7 664 . 186 12 164 25 0 0 595 237 4 Dent11 M 20 8.9 641 . 186 15 216 25 0 0 812 . 4 Dent11 M 20 9.5 641 790 186 16 212 25 1 0 75 . 4 Dent11 M 21 7.2 601 . 323 11 128 35 0 0 411 254 4 Dent11 S 21 3.3 709 . 168 5 67 23 0 1 291 111 4 Dent11 S 20 6.4 629 . 168 7 100 30 0 0 385 244 4 Dent11 S 21 6.2 682 805 163 14 163 25 1 0 628 114 4 Dent12 B 19 1.5 656 669 131 10 71 16 14 1 236 123 4 Dent12 B 19 2.3 603 642 123 9 82 19 4 0 316 122 4 Dent12 B 18 3.7 577 642 123 10 104 24 3 1 326 164 4 Dent12 C 19 3.8 625 691 141 9 119 23 3 1 375 159 4 Dent12 C 20 3.3 638 691 137 14 151 17 5 2 417 106 4 Dent12 C 20 5 612 704 131 15 153 18 13 2 454 126 4 Dent12 M 21 1.7 602 696 149 16 111 12 24 0 337 67 4 Dent12 M 19 2 576 669 133 17 140 20 17 3 385 140 4 Dent12 M 20 1.3 629 683 138 8 31 13 13 1 69 118 4 Dent12 S 19 0.4 678 664 138 11 97 18 8 2 346 104 98

4 Dent12 S 20 2.5 651 705 148 10 95 21 3 1 374 142 4 Dent12 S 20 1.3 678 678 134 21 138 16 29 0 503 117

Relationshipofpollentraitsfromchillingresponsestudies

100

90

80

70

60

50

40

30

20 averagepollendiameters(m)

10

0 0 500 1000 1500 2000 2500 3000 3500 pollenperanther

120

100

80

60

40

20 percentpollengrainsstarchfilled(%)

0 0 500 1000 1500 2000 2500 3000 3500 pollenperanther

99

100

90

80

70

60

50

40

30

20

percentpollengrainsstarchfilled(%) 10

0 50 55 60 65 70 75 80 85 90 averagepollendiameter(m) 100

ACKNOWLEDGEMENTS Manypeopleallowedthisworktobepossible.Iwishtoacknowledgesomeofthose peoplehere.MymajorprofessorAllenKnappprovidedinvaluableinsight,evaluation,and criticalreviewofthisworkthroughout.Hisattentiontodetail,availability,andempirical thoughtprocesssubstantialimprovedthequalityofthesestudies. AntonioPerdomoprovidedknowledgeablesupportofmethodologiesanddirection onstudygoals.SteveStrachansupportedmyeffortsasmysupervisor,providedcritical supportinadministrativeoperations,andallowedmefreedomtopursuepersonalchallenges whileremindingmeofbalanceinlife.AddaSayersandcommitteememberswereavailable withexperiencedguidancewhenevercalledupon.Fellowcoworkershavegivenmoral supportforwhichIamveryappreciative. Manyothersfromthroughouttheworldlentahand,collectedsamples,providedadvice,and gavewordsofencouragement.Iacknowledgethesupportfrommyparentswhoinstilledin methedesiretoreachbeyondmycomfortzonewhilemaintainingfocusonlife’srealties. FinallyIwishtoacknowledgetheloveandsupportfrommywife,Christine,anddaughter, Elizabeth.Theirwillingnesstoallowmetotakemytimeandenergyowedtothemand applyittowardthesestudieswasunselfish.ForthisIamdeeplygrateful.