Downloaded from Brill.Com09/24/2021 04:43:43PM Via Free Access 144 IAWA Journal, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com09/24/2021 04:43:43PM Via Free Access 144 IAWA Journal, Vol IAWA Journal, Vol. 29 (2), 2008: 143–152 VARIABILITY IN APICAL ELONGATION OF WOOD FIBRES IN LONCHOCARPUS SERICEUS Joanna Jura-Morawiec1*, Wiesław Włoch2,1, Paweł Kojs2,1 and Muhammad Iqbal3 SUMMARY Morphological variability in wood fibres ofLonchocarpus sericeus (Poir.) Kunth ex DC. (Leguminosae), a tropical hardwood tree with double- storeyed cambium, was examined in thin tangential and transverse sec- tions as well as in macerations of wood tissue. Occurrence of character- istic protrusions (lateral expansions) was detected on the extended part of the main fibre body. Distance between the adjacent protrusions cor- responded to the height of a storey (horizontal tier) of the cambial initials. Rays were shorter in height than the neighbouring fusiform initials and therefore unable to reach the boundary of the storey. This situation facili- tated the lateral expansion of the adjoining fibres during their apical elon- gation by intrusive growth. The presence of the characteristic protrusions on the fibre body thus indicated that the given fibre was associated with a double-storeyed cambium having rays shorter than the length of fusiform initials. The ultimate shape of fibres was thus correlated to the height of storeys and the height and width of rays. Key words: Wood fibre morphology, intrusive cell growth, vascular cam- bium. INTRODUCTION Lonchocarpus sericeus is a leguminous tree, native to Africa and Southern America. Wood anatomy of the genus Lonchocarpus has been described by Metcalfe and Chalk (1950), Wagenführ and Schreiber (1974), Chudnoff (1984), Richter and Dallwitz (2000) and Gasson et al. (2004). Lonchocarpus sericeus possesses diffuse-porous xylem with paratracheal confluent parenchyma. In transverse sections, bands of light-stained axial parenchyma surrounding the vessels alternate with bands of dark-stained fibres. Like many other tree species growing in the canopy and emergent layers of the tropical rainforests, this species is characterized by a double-storeyed arrangement of cambium, where both fusiform cells and rays are arranged in storeyed fashion. The pattern of cambial cell arrangement is also reflected in the arrangement of wood elements (Harris 1) Botanical Garden, Centre for Biological Diversity Conservation of the Polish Academy of Sciences, Prawdziwka 2, 02-973 Warsaw 76, Poland. 2) Department of Biosystematics, University of Opole, Oleska 22, 40-052 Opole, Poland. 3) Department of Botany, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India. *) Corresponding author [E-mail: [email protected]]. Associate Editor: Nigel Chaffey Downloaded from Brill.com09/24/2021 04:43:43PM via free access 144 IAWA Journal, Vol. 29 (2), 2008 Jura-Morawiec et al. — Apical fibre elongation 145 1989; Romberger et al. 1993; Carlquist 2001). In the wood of L. sericeus, which consists of vessel members, fibres and axial parenchyma cells in addition to rays, fibres are the only non-storeyed axial elements. Information on the shape of xylem fibres is scanty. Fibres are known to grow by apical intrusive growth (Fahn 1990; Larson 1994; Evert 2006). The rate and duration of cell expansion and secondary wall formation affect the overall cell size and wall thickness of xylem elements (Ridoutt & Sands 1993, 1994). Final dimensions of wood fibres are also affected by the state of maturation of other xylem elements in the vicinity (Honjo et al. 2006). The arrangement and rearrangement of cambial cells influence the pattern of fibre organization in the grain of the wood (Harris 1973, 1989; Hejnowicz & Zagórska-Marek 1974; Włoch et al. 2002; Kojs et al. 2004). In some species, like Pterocarpus soyauxii Taub., Ceiba pentandra Gaertn., Dalbergia nigra Fr.All., even the fibres reflect the storeyed arrangement of their precursor cambial cells, thus forming a perfect storeyed structure in the wood (Metcalfe & Chalk 1950; Wagenführ & Schreiber 1974; Richter & Dallwitz 2000; Carlquist 2001). However, no information is available in the literature to determine whether the arrangement of cambial cells also influences the shape of the fibres. The present report on the wood fibres of L. sericeus demonstrates their peculiar shapes and examines if the structure of the cambium has a bearing on the shape of wood fibres in this species. MATERIALS AND METHODS Sampling and slide preparation The material used in this study, i.e., a piece of wood of Lonchocarpus sericeus (Poir.) Kunth ex DC., was obtained from the collection of wood samples in the Botanical Gar- den, Centre for Biological Diversity Conservation of the Polish Academy of Sciences, Warsaw. Microscopic study of wood fibres was made both from sections and macerations. Small samples of wood (2 × 0.7 × 0.5 mm), deaerated in boiling water and then fixed in 2.5 % glutaraldehyde, were dehydrated in an acetone series and embedded in Epon (Meek 1976). The embedded samples were cut into 3-μm transverse and tangential sec- tions, using a glass knife and microtome, glued to the slides with Hauptʼs adhesive, stained with PAS and toluidine blue and mounted in Euparal, as described by Włoch and Połap (1994). The samples were examined by light microscope. For maceration, a piece of wood (approximately 10 × 5 × 4 cm) was cut into a few tangential slices of less than 0.5 mm thickness. The slices, taken in test tubes containing the Franklin (1945) mixture (1:1, glacial acetic acid : 30% hydrogen peroxide), were placed in boiling water for a few hours for macerating the tissue. The macerated wood elements were separated by shaking the solution vigorously. The solution was then centrifuged and the liquid decanted. The remaining pellet of macerated wood elements was washed with water, centrifuged again, dehydrated in ethylene and placed in isopropanol. Drops of the resultant suspension were placed on slides, stained with safranin T and mounted in Euparal, as described by Włoch (1976). Downloaded from Brill.com09/24/2021 04:43:43PM via free access 144 IAWA Journal, Vol. 29 (2), 2008 Jura-Morawiec et al. — Apical fibre elongation 145 Measurement of wood elements The length of axial parenchyma cells, height of a storey, and height and width of rays in parenchyma bands were measured from tangential longitudinal sections using the calibrated ocular micrometre scale in the eyepiece of a light microscope. Macerated material was used for measuring fibre length, distance between two adjacent protrusions of fibres, and width of fibre protrusions of various orders. The first order protrusions were those formed at the ends of the main fibre body, around the boundaries of storeys. During apical growth of fibres the second and third order protrusions could be formed if the growing fibre tip reached the next boundaries of the storeys. The length of the fusiform axial parenchyma cells has been used as an indicator of the length of fusiform initials (Süss 1967). For calculating mean fibre length, 200 unbroken and randomly selected fibres were measured. For the rest of the parameters the mean is based on 50 measurements each. For measuring the mean height of a storey, microphotographs of tangential sections were obtained with a microscope. Boundaries of the storeys were marked by horizontal lines in randomly selected areas of parenchyma bands on these photographs and the distance between the lines was measured. OBSERVATIONS The storeyed structure in the wood of Lonchocarpus sericeus, as seen in TLS, involved axial parenchyma cells, rays and vessel members (Fig. 1a). The heights of vessel members, ray bodies and 2–4-celled strands of axial parenchyma were mutually comparable (Fig. 1b–e). Rays were enclosed within the horizontal storeys (Fig. 1a, c). Nonetheless, fibres did not form a storeyed structure. Comparison of sections passing through a parenchyma band (Fig. 2a) and a fibre band (Fig. 2b), revealed that the fibre lumen was bigger at places near the boundaries of the storeys (Fig. 2b, 3a). Normally the tips of rays, as seen in tangential view, were not extended exactly up to the boundary of the storey it belonged to; this became evident also from transverse sections obtained from areas where storeys ended (Fig. 3c, 4b). In transverse sections, ray cells were not visible at the boundary line of the cell storeys (3c); only fibres with a distinctly large lumen diameter were present. In these fibres with larger lumen, pits were visible (Fig. 3c). On the contrary, at the mid-height of storeys, the fibres between rays were distinctly thinner with smaller lumen (Fig. 2b, 3b, 4a). It was interesting to confirm whether the characteristic differences in fibre-lumen diameter, as visible in thin sections, were detectable also in the macerated wood. It was found that the middle part of a macerated fibre cell, corresponding to the length of the cambial fusiform initial from which the given fibre had been derived, formed the main fibre body; this portion of the fibre was usually wider than the rest of the fibre body which was an outcome of subsequent cell elongation by apical intrusive growth (Fig. 5). Apical elongation of the main body of a fibre seemed to have completed after a prolonged course of intrusive growth. It was usual to find more than two protrusions (lateral expansions) on a fibre. The mean distance between two adjacent protrusions, i.e. 182 μm, was comparable with the mean height of a storey (Table 1). The first order Downloaded from Brill.com09/24/2021 04:43:43PM via free access 146 IAWA Journal, Vol. 29 (2), 2008 Jura-Morawiec et al. — Apical fibre elongation 147 Figure 1. Paratracheal parenchyma of Lonchocarpus sericeus wood. – a: Tangential section with visible storeyed structure. – b–e: Macerated cells of a storey; b: fusiform cell and 2-celled paren- chyma strands; c: axial parenchyma cells and rays enclosed within the storey as seen in the radial plane; d: macerated broad vessel member; e: narrow vessel member. — p = axial parenchyma cells; r = rays enclosed within the storey; v = vessel members.— Scale bar = 100 μm.
Recommended publications
  • Insects Associated with Seeds of Lonchocarpus Muehlbergianus Hassl
    July - September 2002 483 SCIENTIFIC NOTE Insects Associated with Seeds of Lonchocarpus muehlbergianus Hassl. (Fabaceae) in Tres Barras, Parana, Brazil1 L.T. SARI2,3, C.S. RIBEIRO-COSTA2,3 AND A.C.S. MEDEIROS4 1Contribuição no1315 do Depto. Zoologia, Universidade Federal do Paraná 2Depto. Zoologia, Universidade Federal do Paraná, C. postal 19020, 81531-990, Curitiba, PR 3Bolsistas do CNPq 4Embrapa Florestas, Estrada da Ribeira, km 111, 83411-000, Colombo, PR Insetos Associados às Sementes de Lonchocarpus muehlbergianus Hassl. (Fabaceae) em Três Barras, Paraná RESUMO - Com o objetivo de conhecer os insetos associados às sementes de uma espécie de leguminosa nativa do Brasil, Lonchocarpus muehlbergianus Hassl., frutos foram coletados de árvores isoladas no Município de Três Barras, Paraná, Brasil. Uma amostra de 500 g de frutos com 2353 sementes foi avaliada em laboratório. Foram registradas 77,4% de sementes não danificadas por insetos, 12,4% de sementes danificadas e 10,2% de sementes chochas. A espécie de Bruchidae Ctenocolum crotonae (Fåhraeus) foi detectada pela primeira vez nessa planta. Esta espécie já havia sido registrada no estado do Mato Grosso, Brasil, e neste trabalho, sua distribuição geográfica é ampliada para o estado do Paraná. Horismenus missouriensis Ashmead (Hymenoptera: Eulophidae) também foi observada na amostra e provavelmente é um parasitóide da larva ou pupa do bruquídeo. Do total de 2353 sementes, 4,9% foram danificadas por C. crotonae e 4,6% apresentavam orifícios de emergência de H. missouriensis. Larvas de Tenebrionidae e Curculionidae foram detectadas predando as sementes e representaram um dano de 2,8% do número total de sementes. PALAVRAS-CHAVE: Bruchidae, Coleoptera, Hymenoptera, sementes danificadas.
    [Show full text]
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus Erinaceus) in West Africa
    Chapter Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus erinaceus) in West Africa Adjonou Kossi, Houetchegnon Towanou, Rabiou Habou, Segla Kossi Novinyo, Abotsi Komla Elikplim, Johnson Benziwa Nathalie, Alaba Pyoabalo, Ouinsavi Christine A.I. Nougbodé, Quashie Akossiwoa Marie-Luce, Kokutse Adzo Dzifa, Mahamane Ali and Kokou Kouami Abstract Pterocarpus erinaceus is an endemic and threatened plant species in arid and semiarid zones of West Africa and is highly exploited for timber, animal feeding, and various medicinal uses. The species is currently native to the Guinean forest- savannah mosaic ecoregion and reported from Senegal to Cameroon. The values of the main characteristics of the P. erinaceus forest stands (density, average diameter, À average height and average stem height) vary significantly (P < 10 3) from the Guinean zone to the Sahelian zone. It has high technological performance and can be classified as heavy and very hard wood with a density of the order of 0.80 Æ 0.07 g/cm3 and an average hardness of 12 Æ 3.7 g/cm3. The species is the subject of large-scale international traffic between West Africa and Asia, which is by far the greatest threat to the species. The various uses induce repeated mutilation and increase pressures on the species resulting in a significant reduction in its natural populations. In response to this situation, measures are proposed, including large-scale plant production strategies, the definition of minimum felling diameters, policy measures, etc., to meet the restoration needs of natural stands of P. erinaceus and the fight against climate change. Keywords: Pterocarpus erinaceus, socioeconomic services, wood properties, uncontrolled logging, sustainable management, West Africa 1.
    [Show full text]
  • Endosamara Racemosa (Roxb.) Geesink and Callerya Vasta (Kosterm.) Schot
    Taiwania, 48(2): 118-128, 2003 Two New Members of the Callerya Group (Fabaceae) Based on Phylogenetic Analysis of rbcL Sequences: Endosamara racemosa (Roxb.) Geesink and Callerya vasta (Kosterm.) Schot (1,3) (1,2) Jer-Ming Hu and Shih-Pai Chang (Manuscript received 2 May, 2003; accepted 29 May, 2003) ABSTRACT: Two new members of Callerya group in Fabaceae, Endosamara racemosa (Roxb.) Geesink and Callerya vasta (Kosterm.) Schot, are identified based on phylogenetic analyses of chloroplast rbcL sequences. These taxa joined with other previously identified taxa in the Callerya group: Afgekia, Callerya, and Wisteria. These genera are resolved as a basal subclade in the Inverted Repeat Lacking Clade (IRLC), which is a large legume group that includes many temperate and herbaceous legumes in the subfamily Papilionoideae, such as Astragalus, Medicago and Pisum, and is not close to other Millettieae. Endosamara is sister to Millettia japonica (Siebold & Zucc.) A. Gray, but only weakly linked with Wisteria and Afgekia. KEY WORDS: Endosamara, Callerya, Millettieae, Millettia, rbcL, Phylogenetic analysis. INTRODUCTION Recent molecular phylogenetic studies of the tribe Millettieae have revealed that the tribe is polyphyletic and several taxa are needed to be segregated from the core Millettieae group. One of the major segregates from Millettieae is the Callerya group, comprising species from Callerya, Wisteria, Afgekia, and Millettia japonica (Siebold & Zucc.) A. Gray. The group is considered to be part of the Inverted-Repeat-Lacking Clade (IRLC; Wojciechowski et al., 1999) including many temperate herbaceous legumes. Such result is consistent and supported by chloroplast inverted repeat surveys (Lavin et al., 1990; Liston, 1995) and phylogenetic studies of the phytochrome gene family (Lavin et al., 1998), chloroplast rbcL (Doyle et al., 1997; Kajita et al., 2001), trnK/matK (Hu et al., 2000), and nuclear ribosomal ITS regions (Hu et al., 2002).
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • A Phylogeny of Legumes (Leguminosae) Based on Analysis of the Plastid Matk Gene Resolves Many Well-Supported Subclades Within the Family1
    American Journal of Botany 91(11): 1846±1862. 2004. A PHYLOGENY OF LEGUMES (LEGUMINOSAE) BASED ON ANALYSIS OF THE PLASTID MATK GENE RESOLVES MANY WELL-SUPPORTED SUBCLADES WITHIN THE FAMILY1 MARTIN F. W OJCIECHOWSKI,2,5 MATT LAVIN,3 AND MICHAEL J. SANDERSON4 2School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501 USA; 3Department of Plant Sciences, Montana State University, Bozeman, Montana 59717 USA; and 4Section of Evolution and Ecology, University of California, Davis, California 95616 USA Phylogenetic analysis of 330 plastid matK gene sequences, representing 235 genera from 37 of 39 tribes, and four outgroup taxa from eurosids I supports many well-resolved subclades within the Leguminosae. These results are generally consistent with those derived from other plastid sequence data (rbcL and trnL), but show greater resolution and clade support overall. In particular, the monophyly of subfamily Papilionoideae and at least seven major subclades are well-supported by bootstrap and Bayesian credibility values. These subclades are informally recognized as the Cladrastis clade, genistoid sensu lato, dalbergioid sensu lato, mirbelioid, millettioid, and robinioid clades, and the inverted-repeat-lacking clade (IRLC). The genistoid clade is expanded to include genera such as Poecilanthe, Cyclolobium, Bowdichia, and Diplotropis and thus contains the vast majority of papilionoids known to produce quinolizidine alkaloids. The dalbergioid clade is expanded to include the tribe Amorpheae. The mirbelioids include the tribes Bossiaeeae and Mirbelieae, with Hypocalypteae as its sister group. The millettioids comprise two major subclades that roughly correspond to the tribes Millettieae and Phaseoleae and represent the only major papilionoid clade marked by a macromorphological apomorphy, pseu- doracemose in¯orescences.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • Millettia Borneensis LC Taxonomic Authority: Adema  Global Assessment  Regional Assessment Region: Global  Endemic to Region
    Millettia borneensis LC Taxonomic Authority: Adema Global Assessment Regional Assessment Region: Global Endemic to region Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: This was described as a new species of Millettia by F. Adema in 2000. General Information Distribution This species is reported to be in Sumatera, Borneo (Sarawak, Brunei, Sabah, West- and East-Kalimantan), Singapore and Peninsular Malaysia (Silk 2009, Adema 2000). However it was not found in the Checklist of the Total Vascular Plant Flora of Singapore (Chong et al. 2009). Two specimens were found from Singapore, however, they are dated 1857 and 1897. The current presence of this species here remains uncertain. The only specimen record found from Sumatera was collected from a garden, and the records from Peninsular Malaysia are pre 1940. As this species was newly described in 2000 (Adema 2000), it is possible that some existing specimens have not yet been redetermined, and further work on the identification and taxonomy of this species is needed. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 250 Afrotropical Extent of Occurrence: Lower limit: 0 Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population No population data is available for this species. However recent specimens have been collected in Borneo, the most recent dated 2005. A specimen from Sabah collected in 1965 records this species as a common tree along rivers. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This shrub or tree, from 4 to 50 metres high, grows in undisturbed, lowland, mixed dipterocarp forest.
    [Show full text]
  • Millettia Pinnata), a Candidate Biofuel Crop in Hawai‘I
    Observational field assessment of invasiveness of pongamia (Millettia pinnata), a candidate biofuel crop in Hawai‘i Prepared by: Curtis C. Daehler Department of Botany, University of Hawai‘i June 2018 Table of Contents Summary……………………………………………………………………………… 3 Background…………………………………………………………………………… 4 Methods………………………………………………………………………………. 5 Results ………………………………………………………………..………………. 6 Discussion ………………………………………………………………..…………… 31 Conclusions and Recommendations ………………………………………............…. 33 Acknowledgments………………………………………………………………….…. 34 Literature Cited………………………………………………………………………... 34 This work received funding support from the Federal Aviation Administration through the Aviation Sustainability Center (ASCENT), also known as the Center of Excellence for Alternative Jet Fuels and Environment. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA, NASA or Transport Canada. 2 Summary Pongamia (Millettia pinnata), a tree in the bean family (Fabaceae), is a candidate biofuel crop in Hawai‘i. Pongamia was previously assessed by the Hawaii-Pacific Weed Risk Assessment (HPWRA) and predicted to pose a high risk of becoming an invasive weed in Hawai‘i (HPWRA score = 7, where a score of 6 or higher indicates high risk). Retrospective analyses show that predictive WRA systems correctly identify many major pest plants, but WRA predictions are not 100% accurate. The purpose of this study was to make field observations of pongamia planted around Oahu in order to look for direct evidence that pongamia is escaping from plantings and becoming an invasive weed on Oahu. Seven field sites were visited in varying environments across Oahu. Although some pongamia seedlings were found in the vicinity of some pongamia plantings, particularly in wetter, partly shaded environments, almost all observed seedlings were restricted to areas directly beneath the canopy of mother trees.
    [Show full text]
  • Mt Mabu, Mozambique: Biodiversity and Conservation
    Darwin Initiative Award 15/036: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems MT MABU, MOZAMBIQUE: BIODIVERSITY AND CONSERVATION November 2012 Jonathan Timberlake, Julian Bayliss, Françoise Dowsett-Lemaire, Colin Congdon, Bill Branch, Steve Collins, Michael Curran, Robert J. Dowsett, Lincoln Fishpool, Jorge Francisco, Tim Harris, Mirjam Kopp & Camila de Sousa ABRI african butterfly research in Forestry Research Institute of Malawi Biodiversity of Mt Mabu, Mozambique, page 2 Front cover: Main camp in lower forest area on Mt Mabu (JB). Frontispiece: View over Mabu forest to north (TT, top); Hermenegildo Matimele plant collecting (TT, middle L); view of Mt Mabu from abandoned tea estate (JT, middle R); butterflies (Lachnoptera ayresii) mating (JB, bottom L); Atheris mabuensis (JB, bottom R). Photo credits: JB – Julian Bayliss CS ‒ Camila de Sousa JT – Jonathan Timberlake TT – Tom Timberlake TH – Tim Harris Suggested citation: Timberlake, J.R., Bayliss, J., Dowsett-Lemaire, F., Congdon, C., Branch, W.R., Collins, S., Curran, M., Dowsett, R.J., Fishpool, L., Francisco, J., Harris, T., Kopp, M. & de Sousa, C. (2012). Mt Mabu, Mozambique: Biodiversity and Conservation. Report produced under the Darwin Initiative Award 15/036. Royal Botanic Gardens, Kew, London. 94 pp. Biodiversity of Mt Mabu, Mozambique, page 3 LIST OF CONTENTS List of Contents .......................................................................................................................... 3 List of Tables .............................................................................................................................
    [Show full text]
  • Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences In
    Systematic Botany (2002), 27(4): pp. 722±733 q Copyright 2002 by the American Society of Plant Taxonomists Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences in the Tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya Group JER-MING HU,1,5 MATT LAVIN,2 MARTIN F. W OJCIECHOWSKI,3 and MICHAEL J. SANDERSON4 1Department of Botany, National Taiwan University, Taipei, Taiwan; 2Department of Plant Sciences, Montana State University, Bozeman, Montana 59717; 3Department of Plant Biology, Arizona State University, Tempe, Arizona 85287; 4Section of Evolution and Ecology, University of California, Davis, California 95616 5Author for correspondence ([email protected]) Communicating Editor: Jerrold I. Davis ABSTRACT. The taxonomic composition of three principal and distantly related groups of the former tribe Millettieae, which were ®rst identi®ed from nuclear phytochrome and chloroplast trnK/matK sequences, was more extensively investi- gated with a phylogenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences. The ®rst of these groups includes the neotropical genera Poecilanthe and Cyclolobium, which are resolved as basal lineages in a clade that otherwise includes the neotropical genera Brongniartia and Harpalyce and the Australian Templetonia and Hovea. The second group includes the large millettioid genera, Millettia, Lonchocarpus, Derris,andTephrosia, which are referred to as the ``core Millettieae'' group. Phy- logenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences reveals that Millettia is polyphyletic, and that subclades of the core Millettieae group, such as the New World Lonchocarpus or the pantropical Tephrosia and segregate genera (e.g., Chadsia and Mundulea), each form well supported monophyletic subgroups.
    [Show full text]
  • A Catalog of Orchid Species and Their Distribution in Mazumbai Forest Reserve, Tanga Region, Tanzania Sierra Loomis SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2018 A Catalog of Orchid Species and Their Distribution in Mazumbai Forest Reserve, Tanga Region, Tanzania Sierra Loomis SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Biodiversity Commons, Botany Commons, Environmental Sciences Commons, and the Plant Biology Commons Recommended Citation Loomis, Sierra, "A Catalog of Orchid Species and Their Distribution in Mazumbai Forest Reserve, Tanga Region, Tanzania" (2018). Independent Study Project (ISP) Collection. 2921. https://digitalcollections.sit.edu/isp_collection/2921 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. A Catalog of Orchid Species and Their Distribution in Mazumbai Forest Reserve, Tanga Region, Tanzania By Sierra Loomis Advisor: Mr. Saidi Kiparu Academic Director: Dr. Felicity Kitchin SIT Tanzania Fall Acknowledgements First, I would like to thank my guide Imamu for running down the mountain with me, rolling up my measuring tape, and repeating many, many times how to spell tree names in Kisambaa. I would also like to thank Oscar and Felicity who, by guiding me through the ISP selection process, enabled me to study something I didn’t even know I was interested in. I want to thank the experts for teaching me the data collection techniques that I later used in my ISP.
    [Show full text]