Linear Vector Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Linear Vector Spaces Introduction to Linear Vector Spaces Concepts of primary interest: Closure and axioms for addition and multiplication Linear independence Span, basis and dimension Inner Product Sample calculations: Span of a set Certifying a vector space Certifying an inner product Gram-Schmidt basis construction Application examples: Legendre polynomials Tools of the trade: Desirable background: Fourier Series* * Fourier series are used as examples. They should be skipped if you are not familiar with Fourier series. Study Guide: Definitions and statements of fundamental rules (such as axioms) must be memorized as soon as one begins the study of a new topic. One must identify the definition of each concept. Do not blur the concept by using an example of the concept rather than its definition. You should be able to present prose statements of definitions and axioms using complete sentences. You statements should be complete enough to remove the need for any other defining material such as an equation. If you cannot do so, you do not know the definition. Memorizing definitions and statements of rules is the anchor step. Understanding cannot be achieved without it. Vector quantities play a central role in physics. At the lowest level, a vector is a quantity that has both magnitude and direction. A more complete and general Send comments to: [email protected] description of vectors, vector spaces and their properties is to be developed in this section and in a later section on linear transformations. The Displacement Model The properties of the collection of all possible displacements ri of a particle in our familiar model, a flat, infinite (Euclidean) three-dimensional universe, are presented to introduce vector concepts. Rules for the Addition of Displacements A1. The sum of two displacements is another allowed displacement. rr12 r3 A2. Additions can be regrouped without changing the resultant displacement. rrr123 rr 12 r3 A3. The order of additions can be changed without changing the sum. rr12 r 2 r1 A4. There is a displacement that does not change the position of the particle. ri0 ri for all ri . A5. For any displacement ri , there is another ri that has the opposite action on a particle's position. for all ri , ri ri 0 . Rules for the Multiplication of Displacements by Scalars M1. If ri is an allowed displacement, then any real scalar multiple of that displacement, cr i , is also an allowed displacement. M2. The scalar multiple of a sum of displacements is the same as the sum of the same multiple of the individual displacements. cr12 r crcr 1 2, an allowed displacement M3. A sum of scalars times a displacement is the sum of the individual scalars times that displacement. cd ri crdrii, an allowed displacement 1/3/2009 Physics Handout Series: Intro. Linear Vector Spaces VS-2 M4. The scalar multiplication of displacements is associative. cd ri cd ri . M5. One times any displacement is that same displacement. 1rri ii r. The collection of all displacements has other features such as an inner (dot) product that yields a scalar-valued measure of the component of one displacement along the direction of a second displacement times the magnitude of the second displacement. It gauges the degree to which the two displacements embody common behavior, displacing in the same direction. The inner product of a displacement with itself is always positive. Thus the inner product can be used to assign lengths to all the displacements in the space (to set a norm for the space: rri iri|). Further, we can find a set of three displacements bbb123,, such that all the allowed displacements can be represented as a sum of multiples of the members of this set, a linear combination. That is: all rci 11bcb 2 2 cb3 3 for some scalars: ccc123,, . This set of displacements bb12,,b3is a spanning set for our three dimensional universe. The minimum number of vectors bb12,,..., bn required such that every displacement can be represented as rcbi 11cb2 2...cbn 3 is the dimension of the space of displacements (three for our example). A spanning set with the minimum required number of elements is a basis set. A common choice for this set is{,ijkˆˆ ,ˆ }. Graphical Representations Dropping back to two dimensions to simplify the drawings, the figure below illustrates the concept of equality for displacements. 1/3/2009 Physics Handout Series: Intro. Linear Vector Spaces VS-3 y x All the displacements illustrated have the same magnitude (length) and direction; they are all equal. The 'location' of the displacement is not considered, and, in fact, the location of the vector is not an intrinsic property of the displacement, but rather is an adjustable parameter that may be used to be facilitate the solution of the problem of interest. Move the displacement vector around without changing its magnitude or direction, and the action of the displacement is unchanged. (Moving a vector without changing its direction is sometimes called parallel transport.) Vector addition illustrates the utility of the concept. r1+r2 r2 r1+r2 r2 r2 r1 r1 The sum of two displacements should be the net displacement when the two displacements are executed in sequence. The left-hand figure illustrates transporting the tail of r2 to the tip of r1 to yield the sum of the displacements. The parallelogram rule diagram presents another graphical representation of vector addition. 1/3/2009 Physics Handout Series: Intro. Linear Vector Spaces VS-4 r1 r1+r2 r2 r1+r2 r2 r1 Commutative Addition: Diagrams illustrating the commutative property (A3) for the addition of displacements in two dimensions. rr12 r 2 r1 Analytic (Component) Methods Graphical techniques are perhaps superior for thinking about problems, but, for the heavy lifting, analytic methods are needed. A representation is adopted; a coordinate system is chosen. The axes are chosen to be perpendicular (orthogonal). The values x and y are the projections of r onto the x and y axes. The unit (normalized basis) vectors iˆ and ˆj are chosen to have the directions of the x and y axes. The displacement r can then be represented in terms of its components as x iyˆˆj. Once vector addition, scalar multiplication and the inner product operations are defined in terms of these components, all problems can be submitted to a computer for analysis. y y rx ˆˆiyj r ˆj yˆj r yˆj iˆ x xiˆ x 1/3/2009 Physics Handout Series: Intro. Linear Vector Spaces VS-5 The component representation of a vector is found by representing the vector as a sum of pieces with the number of pieces matching the dimension of the space and with each of the pieces running along one of the coordinate directions. In the figure above, one can drop perpendiculars to the x and y axes to fin the corresponding components. Notice that rxiyˆˆj is clearly a representation of r as the sum of a piece in the x direction plus a piece in the y direction. Component-based representation of: ˆˆ ˆˆ ˆ ˆ Addition: rr12 xiyjxiyjxxiyy11 2 2 12 12j ˆˆ ˆ ˆ Scalar Multiplication: cr111 c xi yj cxi 1 cyj 1 ˆˆ ˆˆ Inner Product: rr12 xiyjxiyj 1 1 2 2 xx 12 yy 12 The operations of addition, scalar multiplication and inner product are defined in terms of the scalar components of the vectors. The properties of the vector operations can now be based on the properties of operations on the scalar components. The term 'scalars' means elements of a scalar field. Fields are discussed briefly below. The direction cosines provide a particularly useful representation of the direction of a vector. A direction has components that are the cosine of the angle between that direction and the coordinate direction of interest. ˆˆˆˆˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ eieijejkek cosex,, i cosey j cos ez, k Each direction cosine gauges the degree to which the direction eˆ points in a given coordinate direction. The inner product is a gauge of common behavior. The inner product of two displacements gauges the degree to which the displacements are in the same direction and scales that result by the product of the magnitudes of the individual displacements. This statement is in fuzzy-speak. It is not a math-worthy definition. 1/3/2009 Physics Handout Series: Intro. Linear Vector Spaces VS-6 The Big Shift: A summary of the properties of displacements has been presented. Those properties are those that are characteristic of vectors as studied in an introductory physics course. They apply to a number of physical vectors. Mathematicians collect the common rules from these behaviors and remove the context to define mathematical vector spaces. The spaces will include examples with various dimensions from one to infinity. The vector elements of these spaces can be quite different from our model of displacements in three dimensions. A space may be the collection of all periodic functions with a period T or of all 7 x 7 matrices with complex elements. Don’t expect outcomes based on your prior experiences. Make your highest priority memorizing the definitions of terms and statements of rules (axioms) as they arise. Base your arguments and conclusions on the new definitions and rules rather than on any prejudices based on your understanding of displacements. We will return to the concept of a physical vector in another section. At that time, the properties required to qualify an entity as a physical vector will be discussed. An Abstract Linear Vector Space: By definition, a vector space is any collection of physical or mathematical entities (elements) with defined binary addition and scalar multiplication operations that satisfy the axioms below.
Recommended publications
  • Swimming in Spacetime: Motion by Cyclic Changes in Body Shape
    RESEARCH ARTICLE tation of the two disks can be accomplished without external torques, for example, by fixing Swimming in Spacetime: Motion the distance between the centers by a rigid circu- lar arc and then contracting a tension wire sym- by Cyclic Changes in Body Shape metrically attached to the outer edge of the two caps. Nevertheless, their contributions to the zˆ Jack Wisdom component of the angular momentum are parallel and add to give a nonzero angular momentum. Cyclic changes in the shape of a quasi-rigid body on a curved manifold can lead Other components of the angular momentum are to net translation and/or rotation of the body. The amount of translation zero. The total angular momentum of the system depends on the intrinsic curvature of the manifold. Presuming spacetime is a is zero, so the angular momentum due to twisting curved manifold as portrayed by general relativity, translation in space can be must be balanced by the angular momentum of accomplished simply by cyclic changes in the shape of a body, without any the motion of the system around the sphere. external forces. A net rotation of the system can be ac- complished by taking the internal configura- The motion of a swimmer at low Reynolds of cyclic changes in their shape. Then, presum- tion of the system through a cycle. A cycle number is determined by the geometry of the ing spacetime is a curved manifold as portrayed may be accomplished by increasing ␪ by ⌬␪ sequence of shapes that the swimmer assumes by general relativity, I show that net translations while holding ␾ fixed, then increasing ␾ by (1).
    [Show full text]
  • HILBERT SPACE GEOMETRY Definition: a Vector Space Over Is a Set V (Whose Elements Are Called Vectors) Together with a Binary Operation
    HILBERT SPACE GEOMETRY Definition: A vector space over is a set V (whose elements are called vectors) together with a binary operation +:V×V→V, which is called vector addition, and an external binary operation ⋅: ×V→V, which is called scalar multiplication, such that (i) (V,+) is a commutative group (whose neutral element is called zero vector) and (ii) for all λ,µ∈ , x,y∈V: λ(µx)=(λµ)x, 1 x=x, λ(x+y)=(λx)+(λy), (λ+µ)x=(λx)+(µx), where the image of (x,y)∈V×V under + is written as x+y and the image of (λ,x)∈ ×V under ⋅ is written as λx or as λ⋅x. Exercise: Show that the set 2 together with vector addition and scalar multiplication defined by x y x + y 1 + 1 = 1 1 + x 2 y2 x 2 y2 x λx and λ 1 = 1 , λ x 2 x 2 respectively, is a vector space. 1 Remark: Usually we do not distinguish strictly between a vector space (V,+,⋅) and the set of its vectors V. For example, in the next definition V will first denote the vector space and then the set of its vectors. Definition: If V is a vector space and M⊆V, then the set of all linear combinations of elements of M is called linear hull or linear span of M. It is denoted by span(M). By convention, span(∅)={0}. Proposition: If V is a vector space, then the linear hull of any subset M of V (together with the restriction of the vector addition to M×M and the restriction of the scalar multiplication to ×M) is also a vector space.
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • 2 Hilbert Spaces You Should Have Seen Some Examples Last Semester
    2 Hilbert spaces You should have seen some examples last semester. The simplest (finite-dimensional) ex- C • A complex Hilbert space H is a complete normed space over whose norm is derived from an ample is Cn with its standard inner product. It’s worth recalling from linear algebra that if V is inner product. That is, we assume that there is a sesquilinear form ( , ): H H C, linear in · · × → an n-dimensional (complex) vector space, then from any set of n linearly independent vectors we the first variable and conjugate linear in the second, such that can manufacture an orthonormal basis e1, e2,..., en using the Gram-Schmidt process. In terms of this basis we can write any v V in the form (f ,д) = (д, f ), ∈ v = a e , a = (v, e ) (f , f ) 0 f H, and (f , f ) = 0 = f = 0. i i i i ≥ ∀ ∈ ⇒ ∑ The norm and inner product are related by which can be derived by taking the inner product of the equation v = aiei with ei. We also have n ∑ (f , f ) = f 2. ∥ ∥ v 2 = a 2. ∥ ∥ | i | i=1 We will always assume that H is separable (has a countable dense subset). ∑ Standard infinite-dimensional examples are l2(N) or l2(Z), the space of square-summable As usual for a normed space, the distance on H is given byd(f ,д) = f д = (f д, f д). • • ∥ − ∥ − − sequences, and L2(Ω) where Ω is a measurable subset of Rn. The Cauchy-Schwarz and triangle inequalities, • √ (f ,д) f д , f + д f + д , | | ≤ ∥ ∥∥ ∥ ∥ ∥ ≤ ∥ ∥ ∥ ∥ 2.1 Orthogonality can be derived fairly easily from the inner product.
    [Show full text]
  • Does Geometric Algebra Provide a Loophole to Bell's Theorem?
    Discussion Does Geometric Algebra provide a loophole to Bell’s Theorem? Richard David Gill 1 1 Leiden University, Faculty of Science, Mathematical Institute; [email protected] Version October 30, 2019 submitted to Entropy Abstract: Geometric Algebra, championed by David Hestenes as a universal language for physics, was used as a framework for the quantum mechanics of interacting qubits by Chris Doran, Anthony Lasenby and others. Independently of this, Joy Christian in 2007 claimed to have refuted Bell’s theorem with a local realistic model of the singlet correlations by taking account of the geometry of space as expressed through Geometric Algebra. A series of papers culminated in a book Christian (2014). The present paper first explores Geometric Algebra as a tool for quantum information and explains why it did not live up to its early promise. In summary, whereas the mapping between 3D geometry and the mathematics of one qubit is already familiar, Doran and Lasenby’s ingenious extension to a system of entangled qubits does not yield new insight but just reproduces standard QI computations in a clumsy way. The tensor product of two Clifford algebras is not a Clifford algebra. The dimension is too large, an ad hoc fix is needed, several are possible. I further analyse two of Christian’s earliest, shortest, least technical, and most accessible works (Christian 2007, 2011), exposing conceptual and algebraic errors. Since 2015, when the first version of this paper was posted to arXiv, Christian has published ambitious extensions of his theory in RSOS (Royal Society - Open Source), arXiv:1806.02392, and in IEEE Access, arXiv:1405.2355.
    [Show full text]
  • Phoronomy: Space, Construction, and Mathematizing Motion Marius Stan
    To appear in Bennett McNulty (ed.), Kant’s Metaphysical Foundations of Natural Science: A Critical Guide. Cambridge University Press. Phoronomy: space, construction, and mathematizing motion Marius Stan With his chapter, Phoronomy, Kant defies even the seasoned interpreter of his philosophy of physics.1 Exegetes have given it little attention, and un- derstandably so: his aims are opaque, his turns in argument little motivated, and his context mysterious, which makes his project there look alienating. I seek to illuminate here some of the darker corners in that chapter. Specifi- cally, I aim to clarify three notions in it: his concepts of velocity, of compo- site motion, and of the construction required to compose motions. I defend three theses about Kant. 1) his choice of velocity concept is ul- timately insufficient. 2) he sided with the rationalist faction in the early- modern debate on directed quantities. 3) it remains an open question if his algebra of motion is a priori, though he believed it was. I begin in § 1 by explaining Kant’s notion of phoronomy and its argu- ment structure in his chapter. In § 2, I present four pictures of velocity cur- rent in Kant’s century, and I assess the one he chose. My § 3 is in three parts: a historical account of why algebra of motion became a topic of early modern debate; a synopsis of the two sides that emerged then; and a brief account of his contribution to the debate. Finally, § 4 assesses how general his account of composite motion is, and if it counts as a priori knowledge.
    [Show full text]
  • Spanning Sets the Only Algebraic Operations That Are Defined in a Vector Space V Are Those of Addition and Scalar Multiplication
    i i “main” 2007/2/16 page 258 i i 258 CHAPTER 4 Vector Spaces 23. Show that the set of all solutions to the nonhomoge- and let neous differential equation S1 + S2 = {v ∈ V : y + a1y + a2y = F(x), v = x + y for some x ∈ S1 and y ∈ S2} . where F(x) is nonzero on an interval I, is not a sub- 2 space of C (I). (a) Show that, in general, S1 ∪ S2 is not a subspace of V . 24. Let S1 and S2 be subspaces of a vector space V . Let (b) Show that S1 ∩ S2 is a subspace of V . S ∪ S ={v ∈ V : v ∈ S or v ∈ S }, 1 2 1 2 (c) Show that S1 + S2 is a subspace of V . S1 ∩ S2 ={v ∈ V : v ∈ S1 and v ∈ S2}, 4.4 Spanning Sets The only algebraic operations that are defined in a vector space V are those of addition and scalar multiplication. Consequently, the most general way in which we can combine the vectors v1, v2,...,vk in V is c1v1 + c2v2 +···+ckvk, (4.4.1) where c1,c2,...,ck are scalars. An expression of the form (4.4.1) is called a linear combination of v1, v2,...,vk. Since V is closed under addition and scalar multiplica- tion, it follows that the foregoing linear combination is itself a vector in V . One of the questions we wish to answer is whether every vector in a vector space can be obtained by taking linear combinations of a finite set of vectors. The following terminology is used in the case when the answer to this question is affirmative: DEFINITION 4.4.1 If every vector in a vector space V can be written as a linear combination of v1, v2, ..., vk, we say that V is spanned or generated by v1, v2, ..., vk and call the set of vectors {v1, v2,...,vk} a spanning set for V .
    [Show full text]
  • Maxwell's Equations in Differential Form
    M03_RAO3333_1_SE_CHO3.QXD 4/9/08 1:17 PM Page 71 CHAPTER Maxwell’s Equations in Differential Form 3 In Chapter 2 we introduced Maxwell’s equations in integral form. We learned that the quantities involved in the formulation of these equations are the scalar quantities, elec- tromotive force, magnetomotive force, magnetic flux, displacement flux, charge, and current, which are related to the field vectors and source densities through line, surface, and volume integrals. Thus, the integral forms of Maxwell’s equations,while containing all the information pertinent to the interdependence of the field and source quantities over a given region in space, do not permit us to study directly the interaction between the field vectors and their relationships with the source densities at individual points. It is our goal in this chapter to derive the differential forms of Maxwell’s equations that apply directly to the field vectors and source densities at a given point. We shall derive Maxwell’s equations in differential form by applying Maxwell’s equations in integral form to infinitesimal closed paths, surfaces, and volumes, in the limit that they shrink to points. We will find that the differential equations relate the spatial variations of the field vectors at a given point to their temporal variations and to the charge and current densities at that point. In this process we shall also learn two important operations in vector calculus, known as curl and divergence, and two related theorems, known as Stokes’ and divergence theorems. 3.1 FARADAY’S LAW We recall from the previous chapter that Faraday’s law is given in integral form by d E # dl =- B # dS (3.1) CC dt LS where S is any surface bounded by the closed path C.In the most general case,the elec- tric and magnetic fields have all three components (x, y,and z) and are dependent on all three coordinates (x, y,and z) in addition to time (t).
    [Show full text]
  • Worksheet 1, for the MATLAB Course by Hans G. Feichtinger, Edinburgh, Jan
    Worksheet 1, for the MATLAB course by Hans G. Feichtinger, Edinburgh, Jan. 9th Start MATLAB via: Start > Programs > School applications > Sci.+Eng. > Eng.+Electronics > MATLAB > R2007 (preferably). Generally speaking I suggest that you start your session by opening up a diary with the command: diary mydiary1.m and concluding the session with the command diary off. If you want to save your workspace you my want to call save today1.m in order to save all the current variable (names + values). Moreover, using the HELP command from MATLAB you can get help on more or less every MATLAB command. Try simply help inv or help plot. 1. Define an arbitrary (random) 3 × 3 matrix A, and check whether it is invertible. Calculate the inverse matrix. Then define an arbitrary right hand side vector b and determine the (unique) solution to the equation A ∗ x = b. Find in two different ways the solution to this problem, by either using the inverse matrix, or alternatively by applying Gauss elimination (i.e. the RREF command) to the extended system matrix [A; b]. In addition look at the output of the command rref([A,eye(3)]). What does it tell you? 2. Produce an \arbitrary" 7 × 7 matrix of rank 5. There are at east two simple ways to do this. Either by factorization, i.e. by obtaining it as a product of some 7 × 5 matrix with another random 5 × 7 matrix, or by purposely making two of the rows or columns linear dependent from the remaining ones. Maybe the second method is interesting (if you have time also try the first one): 3.
    [Show full text]
  • Central Limit Theorems for the Brownian Motion on Large Unitary Groups
    CENTRAL LIMIT THEOREMS FOR THE BROWNIAN MOTION ON LARGE UNITARY GROUPS FLORENT BENAYCH-GEORGES Abstract. In this paper, we are concerned with the large n limit of the distributions of linear combinations of the entries of a Brownian motion on the group of n × n unitary matrices. We prove that the process of such a linear combination converges to a Gaussian one. Various scales of time and various initial distributions are considered, giving rise to various limit processes, related to the geometric construction of the unitary Brownian motion. As an application, we propose a very short proof of the asymptotic Gaussian feature of the entries of Haar distributed random unitary matrices, a result already proved by Diaconis et al. Abstract. Dans cet article, on consid`erela loi limite, lorsque n tend vers l’infini, de combinaisons lin´eairesdes coefficients d'un mouvement Brownien sur le groupe des matri- ces unitaires n × n. On prouve que le processus d'une telle combinaison lin´eaireconverge vers un processus gaussien. Diff´erentes ´echelles de temps et diff´erentes lois initiales sont consid´er´ees,donnant lieu `aplusieurs processus limites, li´es`ala construction g´eom´etrique du mouvement Brownien unitaire. En application, on propose une preuve tr`escourte du caract`ereasymptotiquement gaussien des coefficients d'une matrice unitaire distribu´ee selon la mesure de Haar, un r´esultatd´ej`aprouv´epar Diaconis et al. Introduction There is a natural definition of Brownian motion on any compact Lie group, whose distribution is sometimes called the heat kernel measure. Mainly due to its relations with the object from free probability theory called the free unitary Brownian motion and with the two-dimentional Yang-Mills theory, the Brownian motion on large unitary groups has appeared in several papers during the last decade.
    [Show full text]
  • Rigid Motion – a Transformation That Preserves Distance and Angle Measure (The Shapes Are Congruent, Angles Are Congruent)
    REVIEW OF TRANSFORMATIONS GEOMETRY Rigid motion – A transformation that preserves distance and angle measure (the shapes are congruent, angles are congruent). Isometry – A transformation that preserves distance (the shapes are congruent). Direct Isometry – A transformation that preserves orientation, the order of the lettering (ABCD) in the figure and the image are the same, either both clockwise or both counterclockwise (the shapes are congruent). Opposite Isometry – A transformation that DOES NOT preserve orientation, the order of the lettering (ABCD) is reversed, either clockwise or counterclockwise becomes clockwise (the shapes are congruent). Composition of transformations – is a combination of 2 or more transformations. In a composition, you perform each transformation on the image of the preceding transformation. Example: rRx axis O,180 , the little circle tells us that this is a composition of transformations, we also execute the transformations from right to left (backwards). If you would like a visual of this information or if you would like to quiz yourself, go to http://www.mathsisfun.com/geometry/transformations.html. Line Reflection Point Reflection Translations (Shift) Rotations (Turn) Glide Reflection Dilations (Multiply) Rigid Motion Rigid Motion Rigid Motion Rigid Motion Rigid Motion Not a rigid motion Opposite isometry Direct isometry Direct isometry Direct isometry Opposite isometry NOT an isometry Reverse orientation Same orientation Same orientation Same orientation Reverse orientation Same orientation Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: Properties preserved: 1. Distance 1. Distance 1. Distance 1. Distance 1. Distance 1. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2. Angle measure 2.
    [Show full text]
  • Some C*-Algebras with a Single Generator*1 )
    transactions of the american mathematical society Volume 215, 1976 SOMEC*-ALGEBRAS WITH A SINGLEGENERATOR*1 ) BY CATHERINE L. OLSEN AND WILLIAM R. ZAME ABSTRACT. This paper grew out of the following question: If X is a com- pact subset of Cn, is C(X) ® M„ (the C*-algebra of n x n matrices with entries from C(X)) singly generated? It is shown that the answer is affirmative; in fact, A ® M„ is singly generated whenever A is a C*-algebra with identity, generated by a set of n(n + l)/2 elements of which n(n - l)/2 are selfadjoint. If A is a separable C*-algebra with identity, then A ® K and A ® U are shown to be sing- ly generated, where K is the algebra of compact operators in a separable, infinite- dimensional Hubert space, and U is any UHF algebra. In all these cases, the gen- erator is explicitly constructed. 1. Introduction. This paper grew out of a question raised by Claude Scho- chet and communicated to us by J. A. Deddens: If X is a compact subset of C, is C(X) ® M„ (the C*-algebra ofnxn matrices with entries from C(X)) singly generated? We show that the answer is affirmative; in fact, A ® Mn is singly gen- erated whenever A is a C*-algebra with identity, generated by a set of n(n + l)/2 elements of which n(n - l)/2 are selfadjoint. Working towards a converse, we show that A ® M2 need not be singly generated if A is generated by a set con- sisting of four elements.
    [Show full text]