E3 Ubiquitin Ligase Mindbomb 1 Facilitates Nuclear Delivery of Adenovirus Genomes

Total Page:16

File Type:pdf, Size:1020Kb

E3 Ubiquitin Ligase Mindbomb 1 Facilitates Nuclear Delivery of Adenovirus Genomes E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes Stephanie L. Sarbanesa, Vincent A. Blomenb, Eric Lamc, Søren Heisseld, Joseph M. Lunaa, Thijn R. Brummelkampb,e,f, Erik Falck-Pedersenc, H.-Heinrich Hoffmanna,1, and Charles M. Ricea,1 aLaboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065; bOncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; cMolecular Biology Graduate Program, Department of Microbiology and Immunology, Hearst Research Foundation, Weill Medical College of Cornell University, New York, NY 10021; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; eCeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090, Vienna, Austria; and fCancer Genomics Center, 1066CX Amsterdam, The Netherlands Edited by Thomas Shenk, Princeton University, Princeton, NJ, and approved November 4, 2020 (received for review July 30, 2020) The journey from plasma membrane to nuclear pore is a critical centrosome. By hijacking MT tracks, the virus scales most of the step in the lifecycle of DNA viruses, many of which must success- distance to its nuclear destination (9). fully deposit their genomes into the nucleus for replication. Viral Even upon arrival in the vicinity of the nucleus, a series of capsids navigate this vast distance through the coordinated hijacking coordinated events are still required to successfully deliver the of a number of cellular host factors, many of which remain viral genome into the nucleus for early transcription and repli- unknown. We performed a gene-trap screen in haploid cells to iden- cation using host cell machinery. The viral capsid must transfer tify host factors for adenovirus (AdV), a DNA virus that can cause from the MTOC to the nuclear pore where it docks directly onto severe respiratory illness in immune-compromised individuals. This the nuclear pore complex (NPC) via Nup214 (10, 11). Here, work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved unable to traverse the pore, the capsid must be physically dis- in neurodevelopment, as critical for AdV infectivity. In the absence rupted. The liberated genomic viral DNA (vDNA) and associ- of MIB1, we observed that viral capsids successfully traffic to the ated proteins are imported into the nucleus while the now-empty proximity of the nucleus but ultimately fail to deposit their genomes capsid shell is relocated toward the periphery. The involvement within. The capacity of MIB1 to promote AdV infection was depen- of numerous cellular proteins including CRM1, histone H1, se- dent on its ubiquitination activity, suggesting that MIB1 may medi- lect nucleoporins, import factors, and MT motors highlight the MICROBIOLOGY ate proteasomal degradation of one or more negative regulators of complexity of these processes (12–16). However, a comprehen- AdV infection. Employing complementary proteomic approaches to sive view of the factors governing capsid disassembly and genome characterize proteins proximal to MIB1 upon AdV infection and dif- release at this interface is still lacking. ferentially ubiquitinated in the presence or absence of MIB1, we In this work, we used a gene-trap screening approach in observed an intersection between MIB1 and ribonucleoproteins haploid cells with AdV5 infection and identify the E3 ubiquitin (RNPs) largely unexplored in mammalian cells. This work uncovers ligase Mindbomb 1 (MIB1) as a host factor required by the virus. yet another way that viruses utilize host cell machinery for their We demonstrate that MIB1 functions early in the AdV lifecycle own replication, highlighting a potential target for therapeutic in- to promote delivery of the viral genome to the nucleus. Specif- terventions that counter AdV infection. ically, in the absence of MIB1 ubiquitination, capsids successfully arrive at the nucleus but the release of vDNA into the nucleus is adenovirus | viral entry | host factor | Mindbomb 1 | E3 ubiquitin ligase Significance uman adenoviruses (hAdVs) are DNA viruses that can cause severe respiratory illness predominantly affecting children H Adenoviruses (AdVs) are DNA viruses that can cause severe and immune-compromised individuals. Aside from respiratory respiratory illness in humans. A better understanding of the illness, AdVs can also cause meningitis, conjunctivitis, and gas- complex ways AdVs utilize cellular processes in service of their trointestinal disease with recent outbreaks in hospitals and col- replication is critical to the development of new therapies to leges resulting in fatalities (1, 2). The contagiousness of certain counter viral infection and disease. Using a genome-wide AdV serotypes poses a serious public health concern. However, screen, we identified a cellular protein Mindbomb 1 (MIB1) there are currently neither vaccines nor specific antiviral treat- required for AdV infection and show that it functions in the ments. Adenoviruses can also be reengineered as vectors to treat a AdV entry process to mediate release of the viral genome into variety of other diseases (3, 4). A better understanding of the the nucleus. We further show that MIB1, as an E3 ubiquitin li- factors mediating AdV genome delivery to the nucleus has im- gase, mediates AdV capsid disassembly and genome release plications for the development of antiviral therapeutics as well as through ubiquitination of a target protein(s), demonstrating in application of AdV vectors in vaccine development and the importance of this rapid posttranslational modification to oncolytic cancer therapies. virus infection. AdV entry encompasses all steps from attachment of the virus via its receptor at the plasma membrane to the successful de- Author contributions: S.L.S., H.-H.H., and C.M.R. designed research; S.L.S., V.A.B., E.L., S.H., position of the viral genome into the nucleus of the host cell. For and H.-H.H. performed research; J.M.L., T.R.B., and E.F.-P. contributed new reagents/ adenovirus serotype 5 (AdV5), binding of the fiber protein to the analytic tools; S.L.S., V.A.B., E.L., S.H., and H.-H.H. analyzed data; S.L.S. wrote the paper; coxsackievirus and adenovirus receptor (CAR) triggers endocy- and E.F.-P. contributed expertise. tosis of the virus particle (5). As this endosome matures and The authors declare no competing interest. acidifies, the capsid becomes partially degraded, shedding its This article is a PNAS Direct Submission. fibers and exposing the membrane-lytic pVI protein. Puncture of Published under the PNAS license. the endosome by pVI releases the compromised yet intact capsid 1To whom correspondence may be addressed. Email: [email protected] or into the cytoplasm where it can couple to microtubule motors [email protected]. (6–8). Microtubules (MTs) are dynamic cytoskeletal components This article contains supporting information online at https://www.pnas.org/lookup/suppl/ that nucleate predominantly from the microtubule organizing doi:10.1073/pnas.2015794118/-/DCSupplemental. center (MTOC), often synonymous with the nuclear-proximal Published December 28, 2020. PNAS 2021 Vol. 118 No. 1 e2015794118 https://doi.org/10.1073/pnas.2015794118 | 1of12 Downloaded by guest on September 28, 2021 blocked. Using complementary proteomic approaches, we iden- Appendix,Fig.S1B). Together these results corroborated our tified cellular proteins typically associated with ribonucleopro- findings from the screen supporting MIB1 as a host factor tein (RNP) granules enriched for ubiquitination and in close for AdV5. proximity to MIB1 during AdV DNA release while observing a MIB1 emerged from the screen as the sole additional host depletion of cytoskeletal components. These findings pave the factor for AdV5 infection besides known viral receptors. Given way for future mechanistic work to identify the specific MIB1 MIB1’s well-characterized roles in regulating surface level ex- ubiquitination target(s) mediating AdV genome delivery. pression of Notch and Wnt receptors by endocytosis (in the latter case coupled to degradation), we were curious whether the ef- Results fects of MIB1 were mediated by indirect modulation of CAR MIB1 Is a Host Factor for AdV Infection. To identify human host expression. Detection of CAR in both whole cell lysates and at factors required for AdV5 infection, we performed a genetic loss- the cell surface, assessed by Western blot and flow cytometry, of-function screen in near-haploid (Hap1) cells, which can be ef- respectively, however, revealed comparable levels between WT, ficiently mutagenized via insertional mutagenesis. This approach MIB1 KO, and WT MIB1-reconstituted Hap1 cell lines (Fig. 1C has been successfully employed in the identification of receptors and SI Appendix, Fig. S2 A and B). CAR independence of the and host factors for several viruses (17, 18). Retroviral delivery of observed AdV5 inhibition was further confirmed by infection a gene-trap cassette introducing a strong splice acceptor site and with alternate AdV serotypes that utilize distinct entry receptors. polyadenylation signal was used to disrupt genes and generate a While AdV2 similarly utilizes CAR, AdV7 and AdV35 utilize saturated library of loss-of-function mutants (19). Although the desmoglein-2 (DSG-2) and CD46, respectively (24). Infections − orientation in which the gene-trap cassette integrates into genes is with AdV5rep -GFP modified to express the fiber proteins of stochastic, the cassette was designed to disrupt a gene upon
Recommended publications
  • Title a New Centrosomal Protein Regulates Neurogenesis By
    Title A new centrosomal protein regulates neurogenesis by microtubule organization Authors: Germán Camargo Ortega1-3†, Sven Falk1,2†, Pia A. Johansson1,2†, Elise Peyre4, Sanjeeb Kumar Sahu5, Loïc Broic4, Camino De Juan Romero6, Kalina Draganova1,2, Stanislav Vinopal7, Kaviya Chinnappa1‡, Anna Gavranovic1, Tugay Karakaya1, Juliane Merl-Pham8, Arie Geerlof9, Regina Feederle10,11, Wei Shao12,13, Song-Hai Shi12,13, Stefanie M. Hauck8, Frank Bradke7, Victor Borrell6, Vijay K. Tiwari§, Wieland B. Huttner14, Michaela Wilsch- Bräuninger14, Laurent Nguyen4 and Magdalena Götz1,2,11* Affiliations: 1. Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 2. Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Germany. 3. Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilian University Munich, Germany. 4. GIGA-Neurosciences, Molecular regulation of neurogenesis, University of Liège, Belgium 5. Institute of Molecular Biology (IMB), Mainz, Germany. 6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain. 7. Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 8. Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany. 9. Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 10. Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 11. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig- Maximilian University Munich, Germany. 12. Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA 13.
    [Show full text]
  • Methods for Identifying Circadian Rhythm
    (19) *EP003302716B1* (11) EP 3 302 716 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61Q 17/04 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) 14.10.2020 Bulletin 2020/42 A61Q 19/08 A61Q 19/00 C12Q 1/68 (2018.01) (21) Application number: 16729482.6 (86) International application number: (22) Date of filing: 08.06.2016 PCT/US2016/036401 (87) International publication number: WO 2016/200905 (15.12.2016 Gazette 2016/50) (54) METHODS FOR IDENTIFYING CIRCADIAN RHYTHM-DEPENDENT COSMETIC AGENTS FOR SKIN CARE COMPOSITIONS VERFAHREN ZUR IDENTIFIZIERUNG VON BIORHYTHMUSABHÄNGIGEN KOSMETISCHEN MITTELN FÜR HAUTPFLEGEZUSAMMENSETZUNGEN PROCÉDÉS D’IDENTIFICATION D’AGENTS COSMÉTIQUES DÉPENDANT DU RYTHME CIRCADIEN POUR DES COMPOSITIONS DE SOIN DE LA PEAU (84) Designated Contracting States: • OSBORNE, Rosemarie AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Cincinnati, Ohio 45202 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: P&G Patent Belgium UK N.V. Procter & Gamble Services Company S.A. (30) Priority: 08.06.2015 US 201562172498 P Temselaan 100 1853 Strombeek-Bever (BE) (43) Date of publication of application: 11.04.2018 Bulletin 2018/15 (56) References cited: WO-A1-2010/079285 JP-A- 2010 098 965 (73) Proprietor: The Procter & Gamble Company US-A1- 2009 220 481 US-A1- 2010 028 317 Cincinnati, OH 45202 (US) US-A1- 2015 071 895 (72) Inventors: • GEYFMAN MIKHAIL ET AL: "Clock genes, hair • MULLINS, Lisa, Ann growth and aging", AGING, NEW YORK, NY, US, Cincinnati, Ohio 45202 (US) vol.
    [Show full text]
  • Genome-Wide Association Identifies Candidate Genes That Influence The
    Genome-wide association identifies candidate genes that influence the human electroencephalogram Colin A. Hodgkinsona,1, Mary-Anne Enocha, Vibhuti Srivastavaa, Justine S. Cummins-Omana, Cherisse Ferriera, Polina Iarikovaa, Sriram Sankararamanb, Goli Yaminia, Qiaoping Yuana, Zhifeng Zhoua, Bernard Albaughc, Kenneth V. Whitea, Pei-Hong Shena, and David Goldmana aLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852; bComputer Science Department, University of California, Berkeley, CA 94720; and cCenter for Human Behavior Studies, Weatherford, OK 73096 Edited* by Raymond L. White, University of California, Emeryville, CA, and approved March 31, 2010 (received for review July 23, 2009) Complex psychiatric disorders are resistant to whole-genome reflects rhythmic electrical activity of the brain. EEG patterns analysis due to genetic and etiological heterogeneity. Variation in dynamically and quantitatively index cortical activation, cognitive resting electroencephalogram (EEG) is associated with common, function, and state of consciousness. EEG traits were among the complex psychiatric diseases including alcoholism, schizophrenia, original intermediate phenotypes in neuropsychiatry, having been and anxiety disorders, although not diagnostic for any of them. EEG first recorded in humans in 1924 by Hans Berger, who documented traits for an individual are stable, variable between individuals, and the α rhythm, seen maximally during states of relaxation with eyes moderately to highly heritable. Such intermediate phenotypes closed, and supplanted by faster β waves during mental activity. appear to be closer to underlying molecular processes than are EEG can be used clinically for the evaluation and differential di- clinical symptoms, and represent an alternative approach for the agnosis of epilepsy and sleep disorders, differentiation of en- identification of genetic variation that underlies complex psychiat- cephalopathy from catatonia, assessment of depth of anesthesia, ric disorders.
    [Show full text]
  • KIAA0101/P15paf) Over Expression and Gene Copy Number Alterations in Hepatocellular Carcinoma Tissues
    PCNA-associated Factor (KIAA0101/p15PAF) over expression and Gene Copy Number Alterations in Hepatocellular Carcinoma Tissues Anchalee Tantiwetrueangdet Research Center, Faculty of Medicine, Ramathibodi Hospital Ravat Panvichian ( [email protected] ) Mahidol University Faculty of Medicine Ramathibodi Hospital https://orcid.org/0000-0001-5282-8166 Pattana Sornmayura Department of Pathology, Faculty of Medicine, Ramathibodi Hospital Surasak Leelaudomlipi Department of Surgery, Faculty of Medicine, Ramathibodi Hospital Research article Keywords: PCNA-associated factor (KIAA0101/p15PAF), droplet digital PCR, real-time PCR, p53 tumor suppressor protein, Ki-67 proliferation marker protein, HCC DOI: https://doi.org/10.21203/rs.3.rs-39782/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background PCNA-associated factor (KIAA0101/p15PAF) is a cell-cycle regulated oncoprotein that regulates DNA synthesis, maintenance of DNA methylation, and DNA-damage bypass, through the interaction with the human sliding clamp PCNA. KIAA0101 is overexpressed in various cancers, including hepatocellular carcinoma (HCC). However, it remains unknown whether KIAA0101 gene ampliƒcation occurs and causally correlates with the KIAA0101 overexpression in HCC. This question is relevant to the development of the optimal test(s) for KIAA0101 and the strategies to target KIAA0101 in HCC. Methods In this study, we validated KIAA0101 mRNA expression levels by quantitative real-time PCR in 40 pairs of snap-frozen HCC and matched-non-cancerous tissues; we then evaluated KIAA0101 gene copy numbers by droplet digital PCR (ddPCR) in 36 pairs of the tissues. Besides, KIAA0101 protein expression was detected by immunohistochemistry (IHC) in 81 pairs of formalin-ƒxed para∆n-embedded (FFPE) tissues.
    [Show full text]
  • The Basal Bodies of Chlamydomonas Reinhardtii Susan K
    Dutcher and O’Toole Cilia (2016) 5:18 DOI 10.1186/s13630-016-0039-z Cilia REVIEW Open Access The basal bodies of Chlamydomonas reinhardtii Susan K. Dutcher1* and Eileen T. O’Toole2 Abstract The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. Keywords: Site-specific basal body duplication, Cartwheel, Transition zone, Centrin fibers Phylogeny and conservation of proteins Centrin, SPD2/CEP192, Asterless/CEP152; CEP70, The green lineage or Viridiplantae consists of the green delta-tubulin, and epsilon-tubulin. Chlamydomonas has algae, which include Chlamydomonas, the angiosperms homologs of all of these based on sequence conservation (the land plants), and the gymnosperms (conifers, cycads, except PLK4, CEP152, and CEP192. Several lines of evi- ginkgos). They are grouped together because they have dence suggests that CEP152, CEP192, and PLK4 interact chlorophyll a and b and lack phycobiliproteins. The green [20, 52] and their concomitant absence in several organ- algae together with the cycads and ginkgos have basal isms suggests that other mechanisms exist that allow for bodies and cilia, while the angiosperms and conifers have control of duplication [4].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Nancy L. Maas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Maas, Nancy L., "A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk" (2014). Publicly Accessible Penn Dissertations. 1354. https://repository.upenn.edu/edissertations/1354 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1354 For more information, please contact [email protected]. A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Abstract Cells constantly encounter changing environments that challenge the ability to adapt and survive. Signal transduction networks enable cells to appropriately sense and respond to these changes, and are often mediated through the activity of protein kinases. Protein kinases are a class of enzyme responsible for regulating a broad spectrum of cellular functions by transferring phosphate groups from ATP to substrate proteins, thereby altering substrate activity and function. PERK is a resident kinase of the endoplasmic reticulum, and is responsible for sensing perturbations in the protein folding capacity of the ER. When the influx of unfolded, nascent proteins exceeds the folding capacity of the ER, PERK initiates a cascade of signaling events that enable cell adaptation and ER stress resolution. These signaling pathways are not only essential for the survival of normal cells undergoing ER stress, but are also co-opted by tumor cells in order to survive the oxygen and nutrient-restricted conditions of the tumor microenvironment.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • Structural Basis for the Regulatory Interactions of Proapoptotic Par-4
    Cell Death and Differentiation (2017) 24, 1540–1547 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Structural basis for the regulatory interactions of proapoptotic Par-4 Udaya K Tiruttani Subhramanyam1,2, Jan Kubicek2,3, Ulf B Eidhoff2 and Joerg Labahn*,1,2 Par-4 is a unique proapoptotic protein with the ability to induce apoptosis selectively in cancer cells. The X-ray crystal structure of the C-terminal domain of Par-4 (Par-4CC), which regulates its apoptotic function, was obtained by MAD phasing. Par-4 homodimerizes by forming a parallel coiled-coil structure. The N-terminal half of Par-4CC contains the homodimerization subdomain. This structure includes a nuclear export signal (Par-4NES) sequence, which is masked upon dimerization indicating a potential mechanism for nuclear localization. The heteromeric-interaction models specifically showed that charge interaction is an important factor in the stability of heteromers of the C-terminal leucine zipper subdomain of Par-4 (Par-4LZ). These heteromer models also displayed NES masking capacity and therefore the ability to influence intracellular localization. Cell Death and Differentiation (2017) 24, 1540–1547; doi:10.1038/cdd.2017.76; published online 16 June 2017 Par-4 is a 332 amino-acid proapoptotic protein with tumor mainly shown to mediates the interaction with partner proteins suppressor activity. Par-4 had been predicted to be largely such as PKCζ,15 WT1,16 Akt1,13 apoptosis antagonizing disordered.1 Its downregulation or non-functional state
    [Show full text]
  • Role of Coiled-Coil Registry Shifts in Activation of Human Bicaudal D2 for Dynein Recruitment Upon Cargo-Binding
    bioRxiv preprint doi: https://doi.org/10.1101/638536; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Role of coiled-coil registry shifts in activation of human Bicaudal D2 for dynein recruitment upon cargo-binding Crystal R. Noell,1,4 Jia Ying Loh, 1,4 Erik W. Debler,2 Kyle M. Loftus,1 Heying Cui,1 Blaine B. Russ,1 Puja Goyal,1,* Sozanne R. Solmaz1,3,* 1Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 2Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107. 3Lead contact. 4First author equally contributed *To whom the correspondence should be addressed: Sozanne R Solmaz Department of Chemistry, State University of New York at Binghamton PO Box 6000 Binghamton NY 13902 [email protected] +1 607 777 2089 Puja Goyal Department of Chemistry, State University of New York at Binghamton PO Box 6000 Binghamton NY 13902 [email protected] +1 607 777 4308 1 bioRxiv preprint doi: https://doi.org/10.1101/638536; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Highlights • Stable, bona fide BicD2 coiled-coils with distinct registries can be formed. • We provide evidence that a human disease mutation causes a coiled-coil registry shift. • A coiled-coil registry shift could relieve BicD2-autoinhibition upon cargo-binding. • The ability to undergo registry shifts may be an inherent property of coiled-coils.
    [Show full text]
  • Genome-Wide DNA Methylation and Long-Term Ambient Air Pollution
    Lee et al. Clinical Epigenetics (2019) 11:37 https://doi.org/10.1186/s13148-019-0635-z RESEARCH Open Access Genome-wide DNA methylation and long- term ambient air pollution exposure in Korean adults Mi Kyeong Lee1 , Cheng-Jian Xu2,3,4, Megan U. Carnes5, Cody E. Nichols1, James M. Ward1, The BIOS consortium, Sung Ok Kwon6, Sun-Young Kim7*†, Woo Jin Kim6*† and Stephanie J. London1*† Abstract Background: Ambient air pollution is associated with numerous adverse health outcomes, but the underlying mechanisms are not well understood; epigenetic effects including altered DNA methylation could play a role. To evaluate associations of long-term air pollution exposure with DNA methylation in blood, we conducted an epigenome- wide association study in a Korean chronic obstructive pulmonary disease cohort (N = 100 including 60 cases) using Illumina’s Infinium HumanMethylation450K Beadchip. Annual average concentrations of particulate matter ≤ 10 μmin diameter (PM10) and nitrogen dioxide (NO2) were estimated at participants’ residential addresses using exposure prediction models. We used robust linear regression to identify differentially methylated probes (DMPs) and two different approaches, DMRcate and comb-p, to identify differentially methylated regions (DMRs). Results: After multiple testing correction (false discovery rate < 0.05), there were 12 DMPs and 27 DMRs associated with PM10 and 45 DMPs and 57 DMRs related to NO2. DMP cg06992688 (OTUB2) and several DMRs were associated with both exposures. Eleven DMPs in relation to NO2 confirmed previous findings in Europeans; the remainder were novel. Methylation levels of 39 DMPs were associated with expression levels of nearby genes in a separate dataset of 3075 individuals.
    [Show full text]
  • Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
    www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
    [Show full text]