Automotive Engineering (AENG) 1

Total Page:16

File Type:pdf, Size:1020Kb

Automotive Engineering (AENG) 1 Automotive Engineering (AENG) 1 AENG 546 Vehicle Ergonomics II 3 Credit Hours AUTOMOTIVE ENGINEERING This course covers advanced human factors engineering and ergonomics topics related to incorporation and integration of new (AENG) display, information, lighting and sensor technologies to improve driver convenience, performance, safety, and to reduce driver distractions. The AENG 500 Automobile: An Integrated Syst 3 Credit Hours students will learn new evaluation methodologies, driver performance Factors external to engineering such as markets, financing, and sales; models, and use research equipment to measure driver performance, the customers and their perceptions as influenced by marketing and and evaluate usability issues. Some advanced topics to be covered performance; volume markets; international. An abc of engineering include: driver workload, evaluation and design of new in-vehicle devices, factors in all the components and sub-systems areas and in the advanced vehicle lighting, and driver vision systems, models to predict plant, labor, and supplies area. Vehicle characteristics and dynamic and evaluate field of view, target detection, disability and discomfort interactions. glare, legibility, etc. Three lecture hours including laboratory projects and Restriction(s): demonstrations. Prerequisite: Graduate standing. (W). Can enroll if Level is Rackham or Graduate Prerequisite(s): AENG 545 Can enroll if Major is Automotive Systems Engineering Restriction(s): AENG 502 Modeling of Automotive Systems 3 Credit Hours Can enroll if Class is Graduate This course will first introduce systems modeling approach and then Can enroll if Level is Rackham or Graduate develop mathematical models for ride, vibration, handling control, etc. of AENG 547 Automotive Powertrains I 3 Credit Hours automobiles. The models will then be used to examine the design and Topics in kinematics and dynamics including engine output and balance; performance of an automobile from a systems point of view. (F, YR). mechanisms and machine theory. Force analysis and design of gears and Prerequisite(s): ME 265 or ME 345 shaft systems. Analysis of planetary gear trains. Design and analysis of Restriction(s): automotive gear boxes. Can enroll if Class is Graduate Prerequisite(s): ME 265 AENG 505 Intro to Embedded Systems 3 Credit Hours Restriction(s): Introduction to modern digital computer logic. Numbers and coding Can enroll if Level is Rackham or Graduate systems; Boolean algebra with applications to logic systems; Can enroll if College is Engineering and Computer Science combinational and sequential logic design; examples of digital logic AENG 550 Design of Automotive Chassis 3 Credit Hours circuits; simple machine language programming; microprocessors- This course provides a systems approach to the design of automotive programming, input/output, interrupts, and system design. (Not open to chassis and body components and examines the influence of their design students with EE degree.) on the overall structural performance of the automobile. Design issues Restriction(s): related to structural rigidity, ride comfort, safety and crash-worthiness, Can enroll if Level is Rackham or Graduate durability and assembly are covered. Applications of advanced materials Can enroll if College is Engineering and Computer Science and joining techniques are discussed. Analytical tools used in automotive Can enroll if Major is Automotive Systems Engineering structural design are also discussed. AENG 510 Vehicle Electronics I 3 Credit Hours Restriction(s): Semiconductor diodes, junction transistors, FETS, rectifiers and power Can enroll if Class is Graduate supplies, small signal amplifiers, biasing considerations, gain-bandwidth AENG 551 FEM in Auto Structure Design 3 Credit Hours limitations, circuits models, automotive applications and case studies. This course is designed to introduce the applications of finite element (Not open to students with EE degree.) method in automotive structure design. It includes specific design Prerequisite(s): ECE 305 examples of vehicle NVH and durability with commercial pre-processor Restriction(s): and FEA solver. The course also provides theoretical knowledge of FEA Can enroll if Level is Rackham or Graduate and vehicle design. Can enroll if Major is Automotive Systems Engineering Restriction(s): AENG 545 Vehicle Ergonomics I 3 Credit Hours Can enroll if Class is Graduate Overview of drive characteristics, capabilities, and limitations. Human Can enroll if Level is Rackham or Graduate variability and driver demographics, driver performance measurements. Can enroll if Major is Automotive Systems Engineering Driver information processing models, driver errors and response AENG 555 Vehicle Stability & Control 3 Credit Hours time. Driver sensory capabilities: vision, audition, and other inputs. Introduction to static and dynamic stability characteristics of vehicles. Vehicle controls and displays. Driver anthropometry, biomechanical Study on directional vehicle responses and stability in small disturbance considerations. maneuver. Design, numerical simulation, and analysis of vehicle control Prerequisite(s): IMSE 442 systems (ABS, active suspension, and yaw stability). Prerequisite: Restriction(s): Dynamics (ME 345), Control Systems Design and Analysis (ME 442) or Can enroll if Level is Rackham or Graduate equivalent. Can enroll if College is Engineering and Computer Science Restriction(s): Cannot enroll if Class is Can enroll if Level is Doctorate or Rackham or Graduate or Can enroll if Major is Automotive Systems Engineering 2 Automotive Engineering (AENG) AENG 566 Vehicle Thermal Management 3 Credit Hours AENG 587 Automotive Manuf Processes 3 Credit Hours This course covers fundamental thermo-fluid principles and advanced Manufacturing processes, including casting, forging, forming, topics in thermal management of conventional and electric drive vehicles machining, molding, etc., are examined specifically in the context of their (EDVs). The topics include: principles of energy conservation, heat applications in the automotive industry. Quality control and techniques, transfer, and fluid mechanics; vehicle thermal management system and process selection and methods are emphasized. components; electrification of vehicle thermal management system; EDV Restriction(s): thermal management; battery thermal management in EDVs; and waste Can enroll if Level is Doctorate or Rackham or Graduate or energy recovery. Can enroll if College is Engineering and Computer Science Restriction(s): Can enroll if Major is Automotive Systems Engineering Can enroll if Class is Graduate or Doctorate AENG 588 Design&Manufac for Environment 3 Credit Hours Can enroll if College is Engineering and Computer Science This is a course focused on the effects of product design and AENG 576 Battery Sys Modeling & Ctrl 3 Credit Hours manufacturing on the environment, with special emphasis on Full Course Title: Battery Systems, Modeling, and Control This course will automobiles. The fundamental principles of life cycle engineering will cover modeling, control, and estimation techniques for battery systems. be introduced. The importance of environmental improvement will Students will learn how electrochemical systems work and how they be considered. Design and material selection for recycling, reuse and can be mathematically described. A simple phenomenological electrical disposal will be illustrated. Furthermore, it will cover the elementary circuit model and a detailed physics-based model that can capture relationships between design and manufacturing for the development of diffusion dynamics will be covered. The thermal behavior of a battery future environmentally friendly vehicles. system and its modeling will be covered as well. Students will learn the Restriction(s): basic functions of battery management systems for monitoring state-of- Can enroll if Class is Graduate charge, state-of-power, and state-of-health in applications to automotive Can enroll if College is Engineering and Computer Science and consumer electronics. (OC) Can enroll if Program is MSE-Automotive Engineering Restriction(s): AENG 589 Auto Assembly Systems 3 Credit Hours Can enroll if Level is Graduate or Rackham or Doctorate This course deals with in-depth analysis of automotive assembly Can enroll if Major is , Automotive Systems Engineering systems. Design, analysis and economics of manual and automatic AENG 581 Materials Sel in Auto Design 3 Credit Hours assembly of automotive components are to be emphasized. It includes This course develops an understanding of the properties of modern design of assembly stations for manual assembly; automatic assembly engineering materials and explains the role of the materials selection stations; design for assembly and disassembly; analysis of automatic process in product design, development, and manufacturing. Materials feeding and orientation techniques of small parts; assembly of large selection/design problems and case studies involving automotive and parts; application of robotics in assembly; and economics of assembly other commercial products are discussed. The role of environmental for automotive systems as well as electronic systems. regulations, societal pressures and customer wants on the selection of Restriction(s): alternate materials is discussed. (YR) Cannot enroll if Class is Restriction(s): Can enroll if Level is Doctorate or Rackham or Graduate or Cannot enroll if Class is Can enroll if College is Engineering and Computer Science Cannot enroll if Level
Recommended publications
  • Addressing Complexity for Automotive Software and Systems Engineers
    Addressing complexity for automotive software and systems engineers – Today’s cars have about 30,000 parts and more than 100 million lines of code1 – To cope with rising product complexity and crushing amounts of data, teams must embrace the cloud to maintain a competitive edge – 47% of failed projects are due to poor requirements2 Three key areas are driving the digital transformation in automotive engineering Product complexity Data, data, data A connected, smart car is generating large amounts of data, while processing data from external sources such as weather and traffic. It’s not just interacting with other drivers, but also exchanging data with other connected devices such as smart phones, watches, connected homes, workplaces and other connected spaces. Today’s cars are required to have built-in data intake and processing capabilities, along with on-board analytics. Such data capabilities require advanced electronics and software, which in turn drives up product development complexity. More software than hardware Computerization of vehicles has been long underway, but the requirements for smart cars are a paradigm shift in how the products are designed and engineered. Today’s smart cars are packed with processing power which requires millions of lines of code to function properly. The situation is getting more complex as we head towards autonomous driving. A myriad of systems are being controlled by software, that haves to perform flawlessly while delivering a pleasurable occupant experience. As the complexity of product design increases, the reliance on modern engineering and development processes becomes increasingly crucial. Digitally managing requirements For an organization to be successful, it needs to deliver results.
    [Show full text]
  • How Automotive Engineering Is Taking Product Line Engineering to the Extreme
    How Automotive Engineering Is Taking Product Line Engineering to the Extreme Len Wozniak Paul Clements General Motors Company BigLever Software 3300 General Motors Road 10500 Laurel Hill Cove Milford, MI 48380 Austin, Texas 78730 USA +1 248 255 2332 +1 512 426 2227 [email protected] [email protected] ABSTRACT 1. Introduction Automotive manufacturing ranks among the most extreme Automotive manufacturing likely represents the most challenging instances of systems and software product line engineering (PLE). environment for systems and software product line engineering The product family numbers in the millions, each product is (PLE) in the world today. The product family numbers in the highly complex in its own right, and the variation across products millions, each product is highly complex in its own right, and the is literally astronomical in scale. This paper explores the aspects variation across products is astronomical in scale. that make the domain extreme and the very specific implications they have for PLE. These implications include the need for These aspects of so-called mega-scale PLE have broad efficient manufacturing, complexity management, concurrent ramifications for the PLE approach and processes, both technical development streams, globally distributed engineering and and organizational, that are required to successfully manage this level of complexity. To borrow the tag line from a well-known production, a hierarchical product family tree, multi-level variation binding, constraint management, and a highly robust and General Motors marketing campaign, this is not your father’s PLE. integrated PLE tooling environment. Happily, the PLE paradigm supporting these implications brings about a number of Automotive PLE is, we believe, worth studying for a number of opportunities for analysis and automation that provide efficiencies reasons: of production previously unattainable.
    [Show full text]
  • Training and Further Education in Automotive Engineering Know-How – Skills – Passion Training in the Automotive Diagnostics Workshop Lab
    Training and Further Education in Automotive Engineering Know-how – Skills – Passion Training in the Automotive Diagnostics Workshop Lab 7th Edition Contents More Than a Laboratory Complete Solution – Diagnostics Workshop Lab for Automotive Engineering .................................................................................. 6 Teaching Skills and Know-how ................................................................................................................................................. 10 Multimedia Learning Environment LabSoft as a System-based Training/Administration Software ......................................................................................................... 12 Classroom Manager 4.0 ............................................................................................................................................................. 14 Contents Electricity/Electronics ............................................................................................................................................................ 16-25 DC and AC Technology, Electronics and Digital Technology, Pulse-width Modulated Signals, Fundamentals of Electronics, Plug-in System General Electrical Systems in Vehicles ................................................................................................................................. 26-41 Battery Diagnostic Training System, Three-phase Alternator/Generator, Three-phase Generator with Hybrid Controller, Three-phase Generator with Multifunction Controller,
    [Show full text]
  • Engineering Change Management in Automotive Industry
    Engineering Change Management in the Automotive Industry – When are you Finally Market Ready? Abstract The automotive industry is one of the largest manufacturing industries in terms of scale, revenue as well as processes and is also considered to be one of the largest drivers of economic growth across the globe. This is an industry that has its fulcrum not just on the strength of its manufacturing processes and engineering capabilities, but also on the strength of its parts procurement, assembly lines, supplier and distribution networks, quality testing, etc. to name just a few. Before a vehicle is ready for the market, it goes through various stages and investments that are to the tune of millions of dollars even for the prototype. While all automotive industry manufacturers aim to make their end product the perfect one, both in terms of safety as well as efficiency across parameters, the road to perfection does involve many changes. It could be either in the design, the performance criteria, the aesthetics, or the manufacturing methods and could sometimes be as simple as the design of the seats or as big as the efficacy of the ABS. These changes would in turn have an impact on the life cycle of the product, its competitive advantage, as well as its market readiness. This paper explores the effect that change can have on the automotive industry and analyses how the ECM process could make or break the success of the automobile and its manufacturer. 1. Anti-lock Braking Systems 2. Engineering Change Management WHITEPAPER Copyright © PROLIM Global Corporation Contents Abstract 1 Introduction 3 Automotive Engineering Change: Key Implications 3 Communicating the Change – PLM Shows the Way 4 Conclusion 6 References 7 About the Company 8 WHITEPAPER Copyright © PROLIM Global Corporation Introduction The automotive industry was predicted to cross US$1.7 trillion by the year 2015, an increase of 39.6% from the year 2010.
    [Show full text]
  • Bachelor's Degree in Automotive Engineering
    Bachelor's degree in Automotive Engineering The bachelor's degree in Automotive Engineering responds to the automotive industry’s demand for automotive engineers who have specific skills and a mastery of both the product, that is, automobiles and their components, and the process of manufacturing them and managing the manufacturing process. The aim is to produce specialised engineers who have a comprehensive view of the automotive industry and its entire value chain. You will follow a course of study that will give you a solid scientific grounding that will be complemented with subjects as diverse as design; materials science; mechanical, electrical and electronic engineering; and the use of ICTs, all of which are applied to the automotive industry. A large proportion of the degree is devoted to innovative technologies such as electric and hybrid propulsion or autonomous vehicles. Training is enhanced by industrial organisation and business management topics. The degree has strong ties to the business sector through the Automotive Industry Cluster of Catalonia. Students can go on to take a fourth year at the EPSEM or the Barcelona School of Industrial Engineering (ETSEIB), where the master’s degree in Automotive Engineering is taught. GENERAL DETAILS Duration 4 years Study load 240 ECTS credits (including the bachelor's thesis). One credit is equivalent to a study load of 25-30 hours. Delivery Face-to-face Fees and grants Approximate fees per academic year: €1,660 (€2,490 for non-EU residents). Consult the public fees system based on income (grants and payment options). Location Manresa School of Engineering (EPSEM) ADMISSION Places 50 Registration and enrolment What are the requirements to enrol in a bachelor's degree course? Legalisation of foreign documents All documents issued in non-EU countries must be legalised and bear the corresponding apostille.
    [Show full text]
  • Clemson University Department of Automotive Engineering at CUICAR
    Clemson University Department of Automotive Engineering at CUICAR Upstate South Carolina Regional Automotive Cluster • BMW • Michelin • Freightliner, Detroit Diesel • Bosch • Bosch-Rexroth • Cummins Marine • BorgWarner • ZF Transmissions • Proterra • … 125 automotive suppliers and related companies in 10-county region Source: Upstate Alliance Department of Automotive Engineering: METRICS & IMPACT Vision & Mission METRICS . Graduate Program, MS and PhD Emphasis on Disciplines Critical for the Automotive Field & System Integration . Industrial Relevance Working with some of the best in the world! GM • Materials and Manufacturing for Lightweighting • Advanced Powertrain • Vehicle Dynamics, Connectivity & Automation • Human Factors Automotive Engineering is not just a Mechanical field anymore. AuE Faculty cover a wide range of disciplines Undergraduate Certificate in Automotive Engineering • Launches in Fall 2017 • Labs will be held on CU-ICAR campus • Courses will be delivered at CU-ICAR and made available to students via streaming and online methods Opportunities in the Automotive Sector • Continued growth and technological innovation – New players are entering: Apple, Google, Tesla, Fisker, Elio, Faraday Future …. • Everything about the automobile/mobility is changing – “The auto industry will change more in the next five years than it has in the last fifty” – Mary Barra – General Motors CEO • Vehicles are becoming devices – Automotive engineers needs to be well-rounded - all skillsets are needed: • Mechanical, electrical, controls, computing,
    [Show full text]
  • You're Not Going to Get There from Here
    You’re Not Going to Get There From Here The race to reinvent the process for developing connected and autonomous vehicles By Joe Barkai, Chairman of SAE’s Vehicle IoT Committee and author of “The Outcome Economy” “We see more change in the next five years than there’s been in the last 50.” Dan Ammann, President of General Motors (and numerous others…) THE RACE TO REINVENT THE PROCESS FOR DEVELOPING CONNECTED AND AUTONOMOUS VEHICLES Forward-looking automakers are recognizing how the convergence of technology, business, and societal trends is transforming the automotive industry, posing an unprecedented level of new opportunities as well as unfamiliar threats. These manufacturers have already begun to refine their structure and processes to embrace the changes, face the threats, and build organizations that can deliver on the ever- changing possibilities for new mobility solutions for customers. INDUSTRY IN FLUX Just over 100 years ago, Henry Ford disrupted the auto industry of the time with the introduction of the mass-production moving assembly line. To say that the auto industry is again in flux is almost cliché. Most everyone is aware of the massive changes the industry is undergoing, although the cumulative long-term effect of rapid technology innovation, disruptive business models, and evolving supply chain ecosystems is probably not yet fully comprehended. Vehicle technology is undergoing rapid change, requiring a new approach to design engineering and the management of the supply chain. The opaque and inefficient systems and processes used to design and manufacture cars today will not carry the industry forward into its next century.
    [Show full text]
  • Automotive Engineering Technology: a Counter-Intuitive Path to Greater Engineering Technology Enrollment
    AC 2008-2243: AUTOMOTIVE ENGINEERING TECHNOLOGY: A COUNTER-INTUITIVE PATH TO GREATER ENGINEERING TECHNOLOGY ENROLLMENT Sangram Redkar, Arizona State University Sangram Redkar, Assistant Professor, joined Arizona State University and the Mechanical and Manufacturing Engineering Technology Department in August of 2007. Dr. Redkar's research interests include inertial measurement, MEMS dynamics and control and nonlinear dynamics. He worked in industry for four years in US and India. He earned his Ph.D. in Mechanical Engineering from Auburn. Scott Danielson, Arizona State University Scott Danielson is the Department Chair of the Mechanical and Manufacturing Engineering Technology Department at Arizona State University and has served in this capacity since 1999. He is active in ASEE and several of its Divisions, including serving as 2004-2005 Division Chair of the Mechanics Division. He serves on the Society of Manufacturing Engineers’ Manufacturing Education and Research Community steering committee member. He is currently serving on the Technology Accreditation Council (TAC) of ABET, representing ASME. Previously, he had been at North Dakota State University where he was a faculty member in the Industrial and Manufacturing Engineering department. His research interests include machining, effective teaching and engineering mechanics. Before coming to academia, he was a design engineer, maintenance supervisor, and plant engineer. He is a registered professional engineer. Bradley Rogers, Arizona State University Brad Rogers is an Associate Professor in the Department of Mechanical and Manufacturing Engineering Technology at the Polytechnic campus of Arizona State University. He received a Ph.D. in Mechanical Engineering from Arizona State University in 1992, and Bachelor and Master of Science Degrees in Mechanical Engineering from Montana State University in 1979 and 1980 respectively.
    [Show full text]
  • Automotive & Vehicle Systems 2
    AUTOMOTIVE & VEHICLE SYSTEMS ENGINEERING CollegeKhabri Track Description Industry Applicability Automotive and ground vehicle systems are This certificate program area is appropriate to crucial in the modern world, with impacts on prepare mechanical engineers for jobs in driving safety, energy consumption, environment, industry that deal with one or more of the mobility, and overall quality of life. With following functions: technological and engineering advances, - Modeling and analysis of automotive and automobiles and ground vehicles have evolved as vehicular systems complex engineered systems featuring multi- - Design and evaluation of automotive disciplinary innovations. Understanding and vehicle control systems automotive and vehicle system dynamics, - Intelligent, automated, and autonomous ground modeling, and controls can enhance opportunities vehicles for mechanical engineers to address real-world - Off-road vehicle and construction equipment challenges and collaborate with engineers in systems development other relevant disciplines. This thrust allows students to gain fundamental knowledge in automotive and vehicle systems engineering that Faculty Mentors can be applied to both industry and graduate Junmin Wang, [email protected] studies. Raul Longoria, [email protected] Required Courses Organizations & Societies M E 360: Vehicle System Dynamics and Controls Society of Automotive Engineers (SAE) M E 360B: Propulsion Systems and Controls American Society of Mechanical Engineers (ASME) IEEE Intelligent Transportation Systems Society IEEE Vehicular Technology Society Other Undergraduate Elective Courses (select two)* M E 374C Combustion Engine Processes M E 374D Automotive Engineering Laboratory M E 355K Engineering Vibrations M E 379N Engineering Acoustics M E 360C Cyber Vehicle Systems M E 3xx Real-time Control Systems Labs M E 377K Projects in Mechanical Engineering** For course descriptions visit the University Catalog.
    [Show full text]
  • AUTOMOTIVE ENGINEERING OBJECTIVE to Form Leading
    AUTOMOTIVE ENGINEERING OBJECTIVE To form leading automotive engineers in the areas of automotive production and maintenance with ability to diagnose, optimize, construct and implement a solution to the problems related to the fields of Automotive Mechanics, Automation and Manufacturing; with quality and respect for the environment, in an ethical and humanistic framework. DESIRABLE ASPIRANT PROFILE: The applicant for Automotive Engineering must meet the following characteristics: Facility for physics and mathematics. Interest in automobiles. Ease for Drawing Ability for analysis and synthesis Observation ability Entrepreneurial attitude Critical and reflective attitude GRADUATE PROFILE: Abilities To maintain the electrical, electronic and mechanical systems that are part of the automotive vehicles. To determine mechanical failures in gasoline and diesel vehicle engines, in accordance with the principles of electromechanical operation using electronic diagnostic equipment. To optimize the mechanisms for fuel consumption in the automobile and the emission of pollutants in industrial processes, in response to the national and international environment quality standards. To participate in production systems in the automotive industry seeking the optimization of resources in the manufacturing processes. To automate manufacturing processes through the use of current technology for the manufacture of auto parts. To adapt electromechanical, pneumatic, and hydraulic equipment using modern technology to improve production processes and costs. To develop auto part design projects, using technology and an adequate material selection. To implement quality and environmental standards in automotive production processes, under national and international control schemes. Construct electronic circuits to control the basic and power functions of the car as well as the adaptation of electrical signals in sensors. Implement software embedded in electronic, hydraulic and mechanical systems for comfort, safety and services in the car.
    [Show full text]
  • Automotive Engineering Solutions
    Automotive Engineering Solutions Automotive Engineering Solutions 3 Automotive Engineering Solutions Contents 04 Engineering a Better World 06 Why Tata Technologies? 07 Our Core Services 08 Our Core Domains 09 Off-shore Engineering Services 10 Automotive Product Development 12 Better Solutions 14 Case Studies 19 Our Operations 4 Automotive Engineering Solutions Engineering a better world We believe it’s our people that make the difference Designing and engineering products that change the world, improving efficiency and safety, environmental impact and time-to-market. We work with our customers to realize their vision, providing resources and services to get them from where they are today to where they want to be tomorrow. Our customers are making more products, faster and better than ever before and it’s the millions of people who benefit from those products we help to make that inspires us to constantly innovate, develop better solutions and deliver a better experience for everyone. Automotive Engineering Solutions 5 We work with our customers to realize their vision, providing solutions and resources to get them from where they are today to where they want to be tomorrow. 6 Automotive Engineering Solutions Why Tata Technologies? Product Development is at the core of everything we do Global presence and diverse resource pool to deliver complex product development programmes cost effectively helping customers realize better products Our Globally Distributed Execution Model (GDEM) with a balanced approach between onshore customer intimacy,
    [Show full text]
  • ENGINEER YOUR CAREER a World of Opportunity in Motor Sport Why Is Engineering Important?
    ENGINEER YOUR CAREER A World of Opportunity in Motor Sport Why is Engineering important? What skills does an Engineer need? Motor sport offers a variety of career options in Engineering Inspirational Engineer Profiles: Ana Andrade - F1 in Schools Graduate and Student Bernadette Collins - Senior Strategy Engineer, Sahara Force India Formula One Team Leena Gade – Technical Manager Customer Racing, Bentley Motorsport Delphine Biscaye - Mechanical Engineer, Project & Team Manager, Venturi Formula E Team Gemma Hatton - Formula One Trackside Tyre Engineer, Pirelli Tyre S.p.A Cristiana Pace - Research Consultant, FIA Kathryn Richards - Wind Tunnel Test Technician Mercedes AMG Petronas Formula One Team What to study to become a motor sport Engineer How can you get valuable work experience? F1 in Schools™ – The Formula 1 Technology Challenge The Williams “Spark” CSR Programme: Education Initiatives Who can you ask for advice? Success – Your first job in motor sport With thanks to our contributors and supporters ENGINEER YOUR CAREER IN MOTOR SPORT / A WORLD OF OPPORTUNITY I 3 WHY IS ENGINEERING IMPORTANT? • Engineering is the art of applying science, technology and maths to create solutions for human needs to improve the way we live. • As an engineer, every day is a challenge to innovate and solve problems. • It influences all aspects of our lives. Without engineering we wouldn’t be able to carry out daily tasks (transport, construction, generate and use electricity). • Engineering disciplines are very diverse. Areas in which you can specialise include Mechanical, Aerospace, Electrical and Civil. – Mechanical engineering involves the design, production and operation of machinery, and it is one of the oldest and broadest engineering disciplines.
    [Show full text]