Corticobasal Syndrome: a Practical Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cramp Fasciculation Syndrome: a Peripheral Nerve Hyperexcitability Disorder Bhojo A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eCommons@AKU Pakistan Journal of Neurological Sciences (PJNS) Volume 9 | Issue 3 Article 7 7-2014 Cramp fasciculation syndrome: a peripheral nerve hyperexcitability disorder Bhojo A. Khealani Aga Khan University Hospital, Follow this and additional works at: http://ecommons.aku.edu/pjns Part of the Neurology Commons Recommended Citation Khealani, Bhojo A. (2014) "Cramp fasciculation syndrome: a peripheral nerve hyperexcitability disorder," Pakistan Journal of Neurological Sciences (PJNS): Vol. 9: Iss. 3, Article 7. Available at: http://ecommons.aku.edu/pjns/vol9/iss3/7 CASE REPORT CRAMP FASCICULATION SYNDROME: A PERIPHERAL NERVE HYPEREXCITABILITY DISORDER Bhojo A. Khealani Assistant professor, Neurology section, Aga khan University, Karachi Correspondence to: Bhojo A Khealani, Department of Medicine (Neurology), Aga Khan University, Karachi. Email: [email protected] Date of submission: June 28, 2014, Date of revision: August 5, 2014, Date of acceptance:September 1, 2014 ABSTRACT Cramp fasciculation syndrome is mildest among all the peripheral nerve hyperexcitability disorders, which typically presents with cramps, body ache and fasciculations. The diagnosis is based on clinical grounds supported by electrodi- agnostic study. We report a case of young male with two months’ history of body ache, rippling, movements over calves and other body parts, and occasional cramps. His metabolic workup was suggestive of impaired fasting glucose, radio- logic work up (chest X-ray and ultrasound abdomen) was normal, and electrodiagnostic study was significant for fascicu- lation and myokymic discharges. He was started on pregablin and analgesics. To the best of our knowledge this is report first of cramp fasciculation syndrome from Pakistan. -
Vet Oracle Teleneurology: Client Factsheet
Client Factsheet Paroxysmal Dyskinesia Paroxysmal Dyskinesia: A little bit of background Paroxysmal dyskinesias (PDs) are episodic movement disorders in which abnormal movements are present only during attacks. Although increasingly being recognised, they are often poorly characterised in veterinary literature and are commonly mistaken for an epileptic seizure, both by owners and by vets. The term ‘paroxysmal’ indicates that the signs occur suddenly against a background of normality. The term ‘dyskinesia’ broadly refers to a movement of the body that is involuntary, which means that the animal has no control over the movement and remains fully aware of its surroundings. Between attacks, affected animals are totally normal and there is no loss of consciousness during the attacks, though some animals may find the episodes disconcerting and do not respond normally. The attacks can last anything from a few minutes to a couple of hours and can sometime occur multiple times in a day. What causes Paroxysmal Dyskinesia? Most neurologists consider that PD results from dysfunction an area of the brain called the basal nuclei (often call the basal ganglia) and the cerebellum which is a fundamental part of the brain that involves in coordinating movement. Nerve cells in the basal nuclei play an important role in initiating and controlling movement. It is thought that abnormal signal from the cerebellum causes abnormal activity of the basal nuclei, which results in spontaneous and uncontrolled muscle activity and, therefore, movement and posture. The underlying cause of many PDs is unknown, with the majority being described as idiopathic (meaning of unknown cause) and presumed to be related to abnormal brain signalling between different parts involved with movement or its feedback control. -
Nocturnal Leg Cramps: Is There Any Relief?
Nocturnal leg cramps: is there any relief? Nocturnal leg cramps are common, particularly in older people and in women who are pregnant. The condition is characterised by painful cramps in the legs or feet, that affect sleep quality. Is there an effective treatment? Unfortunately, treatment options are limited, but lifestyle modifications and gentle stretching may have some effect. Pharmacological treatment may be considered for people with frequent, severe leg cramps, however, quinine is no longer recommended. What are nocturnal leg cramps? Factors known to be associated with an increased risk of nocturnal cramping, include:1 A nocturnal leg cramp is a sudden contraction of muscles in the leg or foot during sleep. This painful tightening of the Age over 50 years muscle can last from a few seconds to several minutes. Cramps Pregnancy often cause waking, and although the cramps themselves are Exercise, particularly over-exertion benign, the affected muscle may be painful for some hours Leg positioning, e.g. prolonged sitting with legs afterwards and the consequences of sleep impairment can be crossed, tight bed covers which cause the toes to point considerable. downwards Excessive consumption of alcohol Severe nocturnal cramps are characterised by painful, incapacitating episodes, which last on average for nine Chronic dehydration minutes, and recur intermittently throughout the night.1 Structural disorders, e.g. flat feet or other foot and ankle This can lead to secondary insomnia and impaired day-time malformations functioning. Approximately 20% of people who experience Medicines, e.g. diuretics (especially thiazide and regular nocturnal cramps have symptoms severe enough to potassium-sparing diuretics), some anti-inflammatories affect sleep quality or require medical attention.1 (e.g. -
Limb Dystonia Including Writer's Cramp
Limb dystonia including writer’s cramp Limb dystonia can occur in primary dystonias or as a complication in neurodegenerative diseases e.g. Huntington’s disease, Wilson’s disease or Parkinson syndromes or other diseases like structural brain damage, peripheral trauma or drug-induced. Any muscle group under voluntary control can be affected, dystonic muscle overactivity can occur during rest, be aggravated by movement, or occur only during voluntary movement (action dystonia). If the dystonia is triggered by a specific task, it is called “task-specific” dystonia and affects mostly the hand. As task-specific dystonia causes most disability and is the greatest therapeutic challenge, this summary will focus mainly on this form of limb dystonia. Exercises with a repetitive movement pattern such as writing, typing or playing musical instruments are predestinated to this type of dystonia (1). Co-contraction of agonist and antagonist muscles lead to abnormal postures and movements sometimes associated with tremor or myoclonic jerks. This leads to disability in occupations with repetitive fine motor tasks. The underlying pathophysiology why some individuals develop such a task-specific dystonia and others not, despite of maybe excessive overuse of the hand remains unclear. Safety and efficacy of botulinum toxin has been well established during decades of use (2). Pathophysiology Numerous studies in task-specific dystonias have shown abnormalities within the basal ganglia and its circuits, decreased inhibition at various levels of the sensorimotor system, abnormal plasticity and impaired sensorimotor processing (3). MRI- based volumetric techniques have shown changes in the basal ganglia, thalamus and gray matter of the sensorimotor cortex (4). -
THE MANAGEMENT of TREMOR Peter G Bain
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.72.suppl_1.i3 on 1 March 2002. Downloaded from THE MANAGEMENT OF TREMOR Peter G Bain *i3 J Neurol Neurosurg Psychiatry 2002;72(Suppl I):i3–i9 remor is defined as a rhythmical, involuntary oscillatory movement of a body part.1 The Tformulation of a clinical diagnosis for an individual’s tremor involves two discrete steps2: c The observed tremor is classified on phenomenological grounds c An attempt is made to find the cause of the tremor by looking for aetiological clues in the patient’s history and physical examination and also, in some cases, by investigation. c PHENOMENOLOGICAL CLASSIFICATION OF TREMOR The phenomenological classification of tremor is determined by finding out: c which parts of the patient’s body are affected by tremor? c what types (or components) of tremor, classified by state of activity, are present at those anatomical sites? The following definitions are used to describe the various tremor components evident on exam- ination1: c Rest tremor is a tremor present in a body part that is not voluntarily activated and is completely supported against gravity (ideally resting on a couch) copyright. c Action tremor is any tremor that is produced by voluntary contraction of a muscle. It includes pos- tural, kinetic, intention, task specific, and isometric tremor: – Postural tremor is present while voluntarily maintaining a position against gravity – Kinetic tremor is tremor occurring during any voluntary movement. Simple kinetic tremor occurs during voluntary movements that are not target directed – Intention tremor or tremor during target directed movement is present when tremor amplitude increases during visually guided movements towards a target at the termination of that movement, when the possibility of position specific tremor or postural tremor produced at the beginning and end of a movement has been excluded – Task specific kinetic tremor—kinetic tremor may appear or become exacerbated during specific activities. -
Criteria for the Diagnosis of Corticobasal Degeneration
VIEWS & REVIEWS Criteria for the diagnosis of corticobasal degeneration Melissa J. Armstrong, ABSTRACT MD Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) Irene Litvan, MD no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An Anthony E. Lang, MD international consortium of behavioral neurology, neuropsychology, and movement disorders special- Thomas H. Bak, MD ists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses Kailash P. Bhatia, MD (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from pub- Barbara Borroni, MD lished reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal Adam L. Boxer, MD, syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary PhD progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features Dennis W. Dickson, MD of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing Murray Grossman, MD a comprehensive description of CBD and correcting common misconceptions. Clinical CBD pheno- Mark Hallett, MD types and features were combined to create 2 sets of criteria: more specific clinical research criteria Keith A. Josephs, MD for probable CBD and broader criteria for possibleCBDthataremoreinclusivebuthaveahigher Andrew Kertesz, MD chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and grad- Suzee E. Lee, MD ual progression for at least 1 year, age at onset $50 years, no similar family history or known tau Bruce L. Miller, MD mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS Stephen G. -
Physiotherapy of Focal Dystonia: a Physiotherapists Personal Experience
European Journal of Neurology 2010, 17 (Suppl. 1): 107–112 doi:10.1111/j.1468-1331.2010.03061.x Physiotherapy of focal dystonia: a physiotherapistÕs personal experience J.-P. Bleton Universite´ Paris Descartes INSERM U894, Service de Neurologie, Hoˆpital Sainte-Anne, Paris, France Keywords: The approach of the physiotherapist to each form of dystonia is individual and has to dystonia, physiotherapy, be specific. There is not one single method but several strategies related to the different cervical dystonia, writerÕs clinical forms. Although there is no standard programme applicable to all forms of cramp, writing tremor, cervical dystonia, we can distinguish a number of guidelines for the different clinical relaxation, pen grip forms. In the myoclonic form, emphasis is placed on seeking to immobilize the head, training and for the tonic form, on rehabilitating corrector muscles. Physiotherapy and bot- ulinum toxin injections mutually interact in order to reduce the symptoms. Recent Received 3 August 2009 studies have shown the clinical benefits of physiotherapy. The physiotherapy of wri- Accepted 5 March 2010 terÕs cramp is designed as a re-learning process. The first step is to perform exercises to improve independence and precision of fingers and wrist movements. Then, the muscles involved in the correction of dystonic postures are trained by drawing loops, curves and arabesques. The aim of rehabilitation is not to enable patients with writerÕs cramp to write as they used to, but to help their dysgraphia evolve towards a fast, fluid and effortless handwriting. A reshaping of the sensory cortical hand representation appears to be associated with clinical improvement in patients with dystonia after rehabilitation. -
Traumatic Brain Injury(Tbi)
TRAUMATIC BRAIN INJURY(TBI) B.K NANDA, LECTURER(PHYSIOTHERAPY) S. K. HALDAR, SR. OCCUPATIONAL THERAPIST CUM JR. LECTURER What is Traumatic Brain injury? Traumatic brain injury is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration impact, blast waves, or penetration by a projectile, leading to temporary or permanent impairment of brain function. Traumatic brain injury (TBI) has a dramatic impact on the health of the nation: it accounts for 15–20% of deaths in people aged 5–35 yr old, and is responsible for 1% of all adult deaths. TBI is a major cause of death and disability worldwide, especially in children and young adults. Males sustain traumatic brain injuries more frequently than do females. Approximately 1.4 million people in the UK suffer a head injury every year, resulting in nearly 150 000 hospital admissions per year. Of these, approximately 3500 patients require admission to ICU. The overall mortality in severe TBI, defined as a post-resuscitation Glasgow Coma Score (GCS) ≤8, is 23%. In addition to the high mortality, approximately 60% of survivors have significant ongoing deficits including cognitive competency, major activity, and leisure and recreation. This has a severe financial, emotional, and social impact on survivors left with lifelong disability and on their families. It is well established that the major determinant of outcome from TBI is the severity of the primary injury, which is irreversible. However, secondary injury, primarily cerebral ischaemia, occurring in the post-injury phase, may be due to intracranial hypertension, systemic hypotension, hypoxia, hyperpyrexia, hypocapnia and hypoglycaemia, all of which have been shown to independently worsen survival after TBI. -
Part Ii – Neurological Disorders
Part ii – Neurological Disorders CHAPTER 14 MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE 329 PARKINSON’S DISEASE (PD) � � � � � � � � � � � -
Corticobasal Syndrome: Clinical, Neuropsychological, Imaging
CORTICOBASAL SYNDROME: CLINICAL, NEUROPSYCHOLOGICAL, IMAGING, GENETIC AND PATHOLOGICAL FEATURES by Mario Masellis A thesis submitted in conformity with the requirements for the degree of Doctorate of Philosophy in the Graduate Department of Institute of Medical Sciences, University of Toronto © Copyright by Mario Masellis (2012) Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-97827-6 Our file Notre référence ISBN: 978-0-494-97827-6 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
What Every Social Worker Physical Therapist Occupational
What Every Social Worker Physical Therapist Occupational Therapist Speech-Language Pathologist Should Know About Progressive Supranuclear Palsy (PSP) Corticobasal Degeneration (CBD) Multiple System Atrophy (MSA) A Comprehensive Guide to Signs, Symptoms, and Management Strategies DISEASE SUMMARIES at a glance Progressive Supranuclear Palsy (PSP) • Rare neurodegenerative disease, the most common parkinsonian disorder after Parkinson’s disease (PD) • Originally described in 1964 as Steele-Richardson-Olszewski syndrome • Often mistakenly diagnosed as PD due to the similar early symptoms • Symptoms include early postural instability, supranuclear gaze palsy (paralysis of voluntary vertical gaze with preserved reflexive eye movements), and levodopa-nonresponsive parkinsonism • Onset of symptoms is typically symmetric • Pathologically classified as a tauopathy (abnormal accumulation in the brain of the protein tau) • Five to seven cases per 100,000 people • Slightly more common in men • Average age of onset is 60–65 years, but can occur as early as age 40 • Life expectancy is five to seven years following symptom onset • No cure or effective medication management Signs and Symptoms • Early onset gait and balance problems • Clumsy, slow, or shuffling gait 2 • Lack of coordination • Slowed or absent balance reactions and postural instability • Frequent falls (primarily backward) • Slowed movements • Rigidity (generally axial) • Vertical gaze palsy • Loss of downward gaze is usually first • Abnormal eyelid control • Decreased blinking with “staring” -
The Clinical Approach to Movement Disorders Wilson F
REVIEWS The clinical approach to movement disorders Wilson F. Abdo, Bart P. C. van de Warrenburg, David J. Burn, Niall P. Quinn and Bastiaan R. Bloem Abstract | Movement disorders are commonly encountered in the clinic. In this Review, aimed at trainees and general neurologists, we provide a practical step-by-step approach to help clinicians in their ‘pattern recognition’ of movement disorders, as part of a process that ultimately leads to the diagnosis. The key to success is establishing the phenomenology of the clinical syndrome, which is determined from the specific combination of the dominant movement disorder, other abnormal movements in patients presenting with a mixed movement disorder, and a set of associated neurological and non-neurological abnormalities. Definition of the clinical syndrome in this manner should, in turn, result in a differential diagnosis. Sometimes, simple pattern recognition will suffice and lead directly to the diagnosis, but often ancillary investigations, guided by the dominant movement disorder, are required. We illustrate this diagnostic process for the most common types of movement disorder, namely, akinetic –rigid syndromes and the various types of hyperkinetic disorders (myoclonus, chorea, tics, dystonia and tremor). Abdo, W. F. et al. Nat. Rev. Neurol. 6, 29–37 (2010); doi:10.1038/nrneurol.2009.196 1 Continuing Medical Education online 85 years. The prevalence of essential tremor—the most common form of tremor—is 4% in people aged over This activity has been planned and implemented in accordance 40 years, increasing to 14% in people over 65 years of with the Essential Areas and policies of the Accreditation Council age.2,3 The prevalence of tics in school-age children and for Continuing Medical Education through the joint sponsorship of 4 MedscapeCME and Nature Publishing Group.