Cr(CO)6 System, While for the Mo(CO)6 and W(CO)E

Total Page:16

File Type:pdf, Size:1020Kb

Cr(CO)6 System, While for the Mo(CO)6 and W(CO)E The photochemistry of M(CO)6 and (rj6-pyridine)Cr(CO )3 (M = Cr, Mo, or W) and related systems. This thesis is presented to Dublin City University for the degree, Doctor of Philosophy, by Ciara Breheny BSc Supervisor Dr Conor Long School of Chemical Sciences, Dublin City University 1996 Declaration This thesis has not been submitted as an exercise for a degree at this or at any other university. Except as otherwise stated, this work has been carried out by the author alone. Signed Ciara Breheny. Dedication This thesis is dedicated to my family, Mum, Dad, Conor, and Saibh HI Acknowledgements I would like to say a most sincere thank you to all the following people, Dr Conor Long, for his constant support, help, and advice over the past few years All members past and present of the CLRG, namely Irene, Mick, Maureen, Celia, Mary, Siobhan, and Deirdre Everyone in AG07 who made the past few years enjoyable and unforgettable All members of the chemistry department, especially the technicians, who were always at hand to help when a problem arose (as it invariably did) A word of thanks to my friends outside DCU without whom the past few years would not have been the same, namely, Mane, Ger, Siobhan, Orla, Greg, Ciaran, Shivaun, Ciara, Teresa, Monica, Susan, Bronagh, Anna, Dawn, and Fiona Also a special thanks to Paul for his support over the past year Finally, to my family for their never-ending patience with the seemingly endless student life I have undertaken Without their love and support these past few years would have been a lot more difficult A special thanks to anyone else I have forgotten IV Abstract The reaction of M(CO)s(solvent) with CO has been investigated in a range of alkane solvents, where M = Cr, Mo, or W The kinetic and activation parameters have been determined for Reaction 1 M(CO)5(S) + CO - > M(CO)6 Reaction 1 For chromium hexacarbonyl the AH* is constant (22 ± 2 kJ mol'1), the rate of Reaction 1 increases with the lengthening as the alkane chain, this is reflected in the AS* term, which becomes less negative as the alkane chain length mcreases For the larger metals the variation in the kinetic and activation parameters is less significant The kinetic and activation parameters indicate that solvent displacement by CO involves an interchange mechanism for the Cr(CO)6 system, while for the Mo(CO)6 and W(CO)e systems the mechanism is more associative in character The photochemistry of (rj6-2,6-X2C5H3N)Cr(CO)3 was investigated both in low-temperature matrices (X = H, (CH3)3Si) and in room temperature solution ( X = H, CH3, or (CH3)3Si) Room temperature photolysis (k ^ c > 410 nm) of (t]6-pyndine)Cr(CO)3 m CO saturated methanol yielded ('n1-pyndme)Cr(CO)5 which subsequently formed Cr(CO)6 in a secondary photochemical process The efficiency of this reaction is reduced in cyclohexane, or when X = CH3 rather than X = H Photolysis in low temperature matrices resulted in an i f to r\l haptotropic rearrangement of pyridine (Acxc - 460 nm, X = H) Visible irradiation in a CO-doped methane matrix produced (t|1-pyndine)Cr(CO )5 while m N2 matrix/ac-(Vi>yndine)(N2)2Cr(CO)3 is formed Irradiation with A*« = v 308 nm produced both the nng-slip product and also the CO-loss product (rj6-pyndine)Cr(CO ) 2 Time resolved infrared spectroscopy in cyclohexane revealed only the CO-loss product = 308 nm, X = H) The apparent difference in room- temperature and low-temperature photochemistry is explamed by the rapid regeneration of the parent species from the r| ^intermediate This explanation is supported by the laser flash photolysis experiments = 355 nm) in CO-saturated cyclohexane (S), where the recovery of the (r|6-pyndine)Cr(CO ) 3 absorption follows a biphasic time profile, whereby the faster process was assigned to the r|l to rf rearrangement and the slower to the reaction of (r|6-pyndine)Cr(CO) 2(S) with CO When the matrix photochemistry was investigated in a CO-doped matrix, where X = (CH3)3Si, no pentacarbonyl or hexacarbonyl species were obtained Both the nng-slip and the CO-loss product were formed following irradiation with = 308 nm, and both were sensitive to photoreversal with white light, which may explain the lack of photoproducts following long wavelength photolysis Crystals of (ti6-2,6-X2C5H3N)Cr(CO)3 (X - H, CH3, or (CH3)3Si) were characterised by X-Ray diffraction When X = H or CH3 an eclipsed conformation is adopted, where the carbonyl ligands eclipse the carbon atoms When X = (CH3)3 Si the more common conformation where the carbonyl groups are in a staggered conformation and eclipse the ring bond centres is adopted In all the compounds the chromium atom is located directly below the arene ring, which is essentially planar VI TABLE OF CONTENTS (a) Title Page 1 (b) Declaration 11 (c) Dedication 111 (d) Acknowledgements iv (e) Abstract v (f) Table o f Contents vu INTRODUCTION: PAGE 1 (i) A brief history of organometalhc chemistry 2 (u) Definition of an organometalhc compound 4 (m) Organometalhc bonds encountered in this study 5 (iv) Excited states encountered in this study 10 (v) Uses o f organometalhc compounds 11 (vi) The nature o f the interaction between solvents and metal centres 13 (vu) Techniques employed for studying organometalhc transient species 14 References 23 V ll CHAPTER 1: PAGE 25 I Literature survey 26 111 Early low temperature studies o f the photochemistry ofM(CO)6 26 112 Room temperature studies o f the photochemistry ofM(CO)e 27 II 3 An in depth study of the photochemistry in the matrix 29 1 1 4 Solution phase photochemistry m weakly coordinating solvents 3 5 115 The photochemistry of M(CO) ó m liquefied noble gases 36 1 1 6 Investigation o f the dynamics o f solvation employing picosecond and femtosecond flash photolysis 37 1 1 7 The photochemistry ofM(CO)t in the gas phase 41 1 1 8 Time resolved photoacoustic calorimetry experiments 45 1 1 9 Mechanistic information obtained from solution phase experiments 47 1110 Photochemistry o f M(CO) 6 m the presence o f bidentate ligands 49 1 2 Results and discussion 52 121 Possible mechanisms for solvent dissociation 52 12 2 Spectroscopic information 54 12 3 Measurement o f rate constants 57 12 4 Activation parameters 59 12 6 Discussion 62 127 Conclusions 65 References 67 V1U CHAPTER 2: PAGE 72 2 1 Literature survey 73 2 1 1 Photochemistry of (7f-arene)M(C0) 3 complexes 73 2 1 2 Thermal chemistry of (rf-arene)M(C0)3 complexes 75 2 1 3 Haptotropic rearrangements 78 2 1 4 Molecular orbitals for rf pyridine vs r\l pyridine 81 2 1 5 Pyridine as a r f ligand 83 2 1 6 Pyridine as an rf-ligcmd 84 2 2 Results and discussion 87 2 21 Spectroscopic information 88 2 2 2 Steady state photolysis of (rf-pyridine) Cr(CO) 3 92 2 2 3 Matrix Isolation Experiments 101 2 2 4 Time Resolved Infrared Spectroscopy Experiments 110 2 2 5 Ultraviolet/visible Flash Photolysis Experiments 112 2 2 6 Discussion 126 2 2 7 Conclusions 135 References 136 CHAPTER 3: PAGE 141 3 1 Literature survey 142 311 X-ray single crystal diffraction 142 IX 3 1 2 Crystal structures obtained of related compounds 143 3 2 Results and Discussion 146 3 2 1 Data collection for (rf-pyridine)Cr(C 0)3 146 3 2 2 Molecular structure of (rf-pyridine)Cr(CO)3 147 3 2 3 Data collection fo r (rf- 2y 6-dimethylpyridine)Cr(C0) 3 149 3 2 4 Molecular structure of (rf- 2,6-dimethylpyridine)Cr(CO )3 150 3 2 5 Data collection for (rf- 2,6-bis(trimethylsilyl)pyridine)Cr(C0) 3 153 3 2 6 Molecular structure o f (rf- 2, 6-bis(trimethylsilyl)pyndine)Cr(CO ) 3 154 3 2 7 Discussion 156 3 2 8 Conclusions 159 References 160 CHAPTER 4: PAGE 162 4 Experimental 163 4 1 Materials 163 4 2 Equipment 163 4 3 Synthesis of (rf-2,6-bis(trimethylsilyl)pyndine)Cr(CO)3 164 4 4 Synthesis of (if-pyndine)Cr(CO) 3 165 4 5 Synthesis of (rf-2 ,6-dimethylpyndme)Cr(CO) 3 165 4 6 Attempted synthesis o f molybendum and tungsten analogues 166 4 7 Laser flash photolysis 167 4 7 1 Sample preparation for laser flash photolysis with UV/vis detection 167 x 1 4 7 2 Laser flash photolysis with UV/vis detector apparatus 169 4 7 3 Laser flash photolysis with TRIR detection apparatus 170 4 8 Matrix isolation instrumentation 171 4 9 Steady state photolysis with NMR monitoring 171 4 10 Determination of extinction coefficients 111 4 11 Determination o f the concentration o f CO in an alkane solvent 173 412 Determination o f the activation parameters 173 References 175 Appendix 1: PAGE 176 A Extinction coefficients of M(CO )6 177 B Arrhenius and Eyring data for the desolvation of the M(CO) s(S) species 182 Appendix 2: PAGE 198 A (i) Extinction coefficients for the (rf-arene)Cr(CO) 3 compounds 199 (11) Spectroscopic spectra for the (rf~arene)Cr (CO) 3 compounds 205 B Supphmentary spectra from the matrix isolation experiments 212 Appendix 3: PAGE 216 Crystal data , intensity measurements , and refinements for the (rf-arene)Cr(CO) 3 compounds 217 Structural parameters for (rf- 2,6-dimethylpyridine)Cr(CO) 3 219 XI Observed and calculated structure factors for ( r f -2,6-dimethylpyndine)Cr(C0) 3 225 Structural parameters for ( r f -2,6-(TMS)pyridine)Cr(C0) 3 236 Observed and calculated structure factors for ( r f - 2, 6-(TMS)pyrtdme)Cr(C0) 3 242 Structural parameters for (rf-pyridine)Cr(CO )3 257 Observed and calculated structure factors for ( 7]6-pyridine)Cr(CO )3 262 XII INTRODUCTION 1 This introduction attempts to provide an overview of the relevant chemistry and techniques which are explored m this thesis It is not an extensive review of the relevant literature, this is provided at the beginning of the each chapter (i) A brief history of organometallic chemistry The history
Recommended publications
  • Arenechromium Tricarbonyl Complexes: Conformational
    η6 – ARENECHROMIUM TRICARBONYL COMPLEXES: CONFORMATIONAL ANALYSIS, STEREOCONTROL IN NUCLEOPHILIC ADDITION AND APPLICATIONS IN ORGANIC SYNTHESIS by HARINANDINI PARAMAHAMSAN Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Prof. Anthony J. Pearson Department of Chemistry CASE WESTERN RESERVE UNIVERSITY May 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Harinandini Paramahamsan candidate for the Ph.D. degree*. (signed) Prof. Philip P. Garner (Chair of the Committee, Department of Chemistry, CWRU) Prof. Anthony J. Pearson (Department of Chemistry, CWRU) Prof. Fred L. Urbach (Department of Chemistry, CWRU) Dr. Zwong-Wu Guo (Department of Chemistry, CWRU) Dr. Stuart J. Rowan (Department of Macromolecular Science and Engineering, CWRU) Date: 14th January 2005 *We also certify that written approval has been obtained for any propriety material contained therein. To Amma, Naina & all my Teachers Table of Contents List of Tables………………………………………………………………………..……iv List of Figures…………………………………………………………………….…........vi List of Schemes…………………………………………………………………….….….ix List of Equations………………………………………………………...……….……….xi Acknowledgements………………………………………………………….…..……….xii List of Abbreviations……………………………………………………………………xiv Abstract………………………………………………………………………………….xvi CHAPTER I........................................................................................................................ 1 I.1 Structure and Bonding ...........................................................................................
    [Show full text]
  • Synthesis, Characterization and Metal Carbonyl Complex Formation of Polycyclic Phosphorus Ligands Arthur Cyril Vandenbroucke Jr
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Synthesis, characterization and metal carbonyl complex formation of polycyclic phosphorus ligands Arthur Cyril Vandenbroucke Jr. Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Vandenbroucke, Arthur Cyril Jr., "Synthesis, characterization and metal carbonyl complex formation of polycyclic phosphorus ligands " (1967). Retrospective Theses and Dissertations. 3219. https://lib.dr.iastate.edu/rtd/3219 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 68-5990 VANDENBROUCKE, Jr., Arthur Cyril, 1941- SYNTHESIS, CHARACTERIZATION AND METAL CARBONYL COMPLEX FORMATION OF POLYCYCLIC PHOSPHORUS LIGANDS. Iowa State University, Ph.D,, 1967 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan . .SYNTHESISJ CHARACTERIZATION AND METAL CARBONYL COMPLEX FORMATION OF POLYCYCLIC PHOSPHORUS LIGANDS by Arthur Cyril Vandenbroucke, Jr. A -Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry • Approved: Signature was redacted for privacy. argë of Major Work Signature was redacted for privacy. Head of Major DepartmentDepart Signature was redacted for privacy. Iowa State University •Of Science and Technology Ames J Iowa 1967 il TABLE OF CONTENTS Pagé I. INTRODUCTION 1 II. A STUDY OF THE SYNTHESIS OF 1-PHOSPHAADAMANTANE 2 A.
    [Show full text]
  • United States Patent Office Patented Apr
    3,381,023 United States Patent Office Patented Apr. 30, 1968 1. 2 Furthermore, the isolation procedures for separating the 3,381,023 resulting compounds are simplified by the process of this PREPARATION OF AROMATIC GROUP VI-B METAL TRICARBONYS invention, as a minimum of unreacted starting materials Mark Crosby Whiting, Oxford, England, assignor to and side products are present in the final composition. In Ethyl Corporation, New York, N.Y., a corpora addition, Superior yields are obtained. For example, tion of Virginia O-cresyl methylether chromium tricarbonyl was prepared No Drawing. Filed Mar. 10, 1958, Ser. No. 720,083 in 99 percent yield by the process of this invention. Yields 31 Claims. (Ci. 260-429) of this order of magnitude have not heretofore been pos sible. This invention relates to a process for the preparation The temperatures employed in the process of this inven of organometallic compounds and more particularly the O tion may vary over a wide range. In general, tempera preparation of aromatic Group VI-B transition metal tures of from about 100° C. to 300° C. are employed. carbonyl compounds. However, a preferred range of temperature is from Recently a method for the preparation of aromatic 150 C. to 225 C. as the reaction in this temperature chromium tricarbonyl compounds has been proposed, 5 range leads to a high yield of products with a minimum which method comprises the equilibration, in an aromatic of undesirable side reactions. Solvent of a di-aromatic chromium compound with chro The aromatic compound which is a reactant in the mium hexacarbonyl and which employs a reaction time process of this invention can be selected from a wide of 12 hours under pressure at temperature in excess of range of aromatic organic compounds including mono 200 C.
    [Show full text]
  • Metal Carbonyls
    MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls.
    [Show full text]
  • Strategic Immobilisation of Catalytic Metal Nanoparticles in Metal-Organic Frameworks
    STRATEGIC IMMOBILISATION OF CATALYTIC METAL NANOPARTICLES IN METAL-ORGANIC FRAMEWORKS Amanda Anderson A Thesis Submitted for the Degree of PhD at the University of St Andrews 2017 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/10816 This item is protected by original copyright Strategic Immobilisation of Catalytic Metal Nanoparticles in Metal-Organic Frameworks Amanda Anderson This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews April 2017 Declarations Declarations 1. Candidate’s declarations: I, Amanda Anderson, hereby certify that this thesis, which is approximately 53,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in August, 2013 and as a candidate for the degree of PhD in July, 2014; the higher study for which this is a record was carried out in the University of St Andrews between 2013 and 2017. Date signature of candidate 2. Supervisor’s declarations: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • Application Note 33
    Application Note 33 : Chromium Arene Synthesis This application note demonstrates the preparation of arene chromium tricarbonyl complexes using 6 continuous-flow processing: ( η -C6H5CH 3)Cr(CO) 3 as an example. Scheme 1 Background Arene chromium tricarbonyl complexes, (arene)Cr(CO)3, have found extensive use in organic synthesis [ i,ii ]. The coordination of an aromatic ring to the chromium tricarbonyl unit has a profound effect on its reactivity. Due to the electron withdrawing nature of the Cr(CO) 3 moiety, nucleophilic substitution reactions can be performed on the aromatic ring. The electron-deficient ring is able to stabilize negative charge, allowing both ring and benzylic deprotonation. In addition, the chromium unit effectively blocks one side of the ring and this directs incoming reagents to the face opposite the metal. The preparation of chromium arene complexes generally involves heating chromium hexacarbonyl under reflux either in the arene as the solvent or in a high boiling solvent containing the arene (Scheme 1) [ iii ,iv ]. Reactions can take in the order of 1-4 days to reach completion and need to be performed under an inert atmosphere. The procedure is complicated by the sublimation of Cr(CO) 6 as well as the competitive decomposition of the arene chromium product over time. This can be somewhat overcome by heating a 1 : 1 mixture of arene and Cr(CO) 6 in a mixture of dibutyl ether and heptane in the presence of little tetrahydrofuran [ v]. R R ∆ Cr(CO)6 + OC Cr CO OC Scheme 2: Conventional preparation of (arene)Cr(CO)3 complexes VT1011-1 - 1 - Using butyl acetate as an additive, the reaction time can be decreased through the implementation vi of a special double-condenser apparatus [ ].
    [Show full text]
  • Rpt POL-TOXIC AIR POLLUTANTS 98 BY
    SWCAA TOXIC AIR POLLUTANTS '98 by CAS ASIL TAP SQER CAS No HAP POLLUTANT NAME HAP CAT 24hr ug/m3 Ann ug/m3 Class lbs/yr lbs/hr none17 BN 1750 0.20 ALUMINUM compounds none0.00023 AY None None ARSENIC compounds (E649418) ARSENIC COMPOUNDS none0.12 AY 20 None BENZENE, TOLUENE, ETHYLBENZENE, XYLENES BENZENE none0.12 AY 20 None BTEX BENZENE none0.000083 AY None None CHROMIUM (VI) compounds CHROMIUM COMPOUN none0.000083 AY None None CHROMIUM compounds (E649962) CHROMIUM COMPOUN none0.0016 AY 0.5 None COKE OVEN COMPOUNDS (E649830) - CAA 112B COKE OVEN EMISSIONS none3.3 BN 175 0.02 COPPER compounds none0.67 BN 175 0.02 COTTON DUST (raw) none17 BY 1,750 0.20 CYANIDE compounds CYANIDE COMPOUNDS none33 BN 5,250 0.60 FIBROUS GLASS DUST none33 BY 5,250 0.60 FINE MINERAL FIBERS FINE MINERAL FIBERS none8.3 BN 175 0.20 FLUORIDES, as F, containing fluoride, NOS none0.00000003 AY None None FURANS, NITRO- DIOXINS/FURANS none5900 BY 43,748 5.0 HEXANE, other isomers none3.3 BN 175 0.02 IRON SALTS, soluble as Fe none00 AN None None ISOPROPYL OILS none0.5 AY None None LEAD compounds (E650002) LEAD COMPOUNDS none0.4 BY 175 0.02 MANGANESE compounds (E650010) MANGANESE COMPOU none0.33 BY 175 0.02 MERCURY compounds (E650028) MERCURY COMPOUND none33 BY 5,250 0.60 MINERAL FIBERS ((fine), incl glass, glass wool, rock wool, slag w FINE MINERAL FIBERS none0.0021 AY 0.5 None NICKEL 59 (NY059280) NICKEL COMPOUNDS none0.0021 AY 0.5 None NICKEL compounds (E650036) NICKEL COMPOUNDS none0.00000003 AY None None NITROFURANS (nitrofurans furazolidone) DIOXINS/FURANS none0.0013
    [Show full text]
  • The Photochemical Properties of Arene Metal Carbonyl Complexes of Group 6 and 7 Elements
    THE PHOTOCHEMICAL PROPERTIES OF ARENE METAL CARBONYL COMPLEXES OF GROUP 6 AND 7 ELEMENTS DCU THIS THESIS IS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT DUBLIN CITY UNIVERSITY BY Peter Brennan B.Sc. UNDER THE SUPERVISION OF DR. MARY PRYCE AND PROF. CONOR LONG SCHOOL OF CHEMICAL SCIENCES FEBRUARY-2003 DECLARATION I hereby certify that this thesis, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work Signed :________________________ Date :_________________________ Peter Brennan Student ID No. 97970646 Table of contents Page Title i Declaration ii Table of contents iii Acknowledgements ix Abstract x Chapter 1 Literature survey 1.1 Introduction to the chemistry of organometallic complexes 2 1.2 UV/vis monitored flash photolysis 8 1.3 Time Resolved InfraRed (TRIR) Spectroscopy 10 1.3.1 Step scan TRIR spectroscopy 10 1.3.2 Point by point TRIR 12 1.4 Matrix isolation 14 1.5 Bonding in M-CO complexes 19 1.6 Metal - Arene bonding 24 1.7 The electronic absorption spectra of (fi6-arene)Cr(CO)3 complexes 26 1.8 Photochemistry of (ri6-arene)M(CO)3 complexes 27 1.9 Photochemistry of (r|S-CsHs)Mn(CO)3 complexes 32 1.10 Arene exchange reactions 35 1.11 Ring slippage reactions 41 1.12 The Indenyl ligand effect 43 1.13 References 46 Chapter 2 The photochemistry of substituted arene metal carbonyls 2.1 Introduction to the photochemistry
    [Show full text]
  • Crystal Field Theory Describes How the D Orbitals of the Transition Metal Are Affected by the Presence of Coordinating Ligands
    Crystal Field Theory Describes how the d orbitals of the transition metal are affected by the presence of coordinating ligands. • Imagine the metal ion surrounded by a uniform spherical electric field where the d orbitals are degenerate. • As the ligands approach the metal from the six octahedral directions ±x, ±y, and ±z, the degeneracy is broken • The dx 2−y 2 and dz 2 orbitals point toward the L groups are destabilized by the negative charge of the ligands and move to higher energy. • Those that point away from L (dxy, dyz, and dxz) are less destabilized. • The crystal field splitting energy (∆∆∆ - sometimes labeled 10Dq) depends on the value of the effective negative charge and therefore on the nature of the ligands. • Higher ∆∆∆ leads to stronger M−L bonds. High spin vs. low spin electron configuration • If Δ is low enough, electrons may arrange in a "high spin" configuration reducing electron- electron repulsion that occurs upon pairing up in the same orbital. • In 1st row metals complexes, low-field ligands (strong π - donors) favor high spin configurations whereas high field ligands (π-acceptors/ strong σ donors) favor low spin. • The majority of 2nd and 3rd row metal complexes are low-spin irrespective of their ligands. • Low-oxidation state complexes also tend to have lower Δ than high-oxidation state complexes. • High oxidation state→ increased χχχ →increased Δ → low-spin configuration Construction of MO diagrams for Transition Metal Complexes σσσ bonding only scenario General MO Approach for MX n Molecules • To construct delocalized MOs we define a linear combination of atomic orbitals (LCAOs) that combine central-atom AOs with combinations of pendant ligand orbitals called SALCs: ΨMO = a Ψ (Metal AO) ± b Ψ (SALC nX) (SALC = Symmetry Adapted Linear Combination) • SALCs are constructed with the aid of group theory, and those SALCs that belong to a particular species of the group are matched with central-atom AOs with the same symmetry to make bonding and antibonding MOs.
    [Show full text]
  • Metal Carbonyl Complexes of Polycyclic Phosphite Esters David George Hendricker Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1965 Metal carbonyl complexes of polycyclic phosphite esters David George Hendricker Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Hendricker, David George, "Metal carbonyl complexes of polycyclic phosphite esters " (1965). Retrospective Theses and Dissertations. 3298. https://lib.dr.iastate.edu/rtd/3298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been nucroiihned• i-, J exactly.1 as received. 66-2989 HENDRICKER, David George, 1938- METAL CARBONYL COMPLEXES OF POLY- CYCLIC PHOSPHITE ESTERS. Iowa State University of Science and Technology Ph.D., 1965 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan METAL CARBONYL COMPLEXES OF POLYCYCLIC PHOSPHITE ESTERS by David George Hendricker À Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Inorganic Chemistry Approved; Signature was redacted for privacy. Charge of Major Work Signature was redacted for privacy. Head or Major Department Signature was redacted for privacy. D6 te College Iowa State University Of Science and Technology Ames, Iowa 1965 ii TABLE OF CONTENTS Page INTRODUCTION 1 EXPERIMENTAL 52 DISCUSSION 83 SUMMARY 136 SUGGESTIONS FOR FUTURE WORK 139 BIBLIOGRAPHY 142 ACKNO^EDGMENT 154 VITA 156 iii LIST OF FIGURES Page Figure 1.
    [Show full text]
  • (Arene) Chromium Tricarbonyls Anthony L
    University of Richmond UR Scholarship Repository Master's Theses Student Research 7-1973 Synthesis and selected reactions of [pi]-(arene) chromium tricarbonyls Anthony L. Scaggs Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Chemistry Commons Recommended Citation Scaggs, Anthony L., "Synthesis and selected reactions of [pi]-(arene) chromium tricarbonyls" (1973). Master's Theses. Paper 897. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. SYNTHESIS AND SELECTED REACTIONS OF TT-(AR~E) CHROMIUM TRICARBONTI.S A THESIS SUBMITTED TO THE DEPAR™~T OF CHEl1ISTRY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF RICHMOND IlJ PARTIAL FULFILI.MENT OF THE RmUIREMENTS FOR THE DEGREE OF MASTER OF SCI~CE BY ANTHONY L. SCAGGS APPROVED: JULY, UNIVERSITY OF H!CHMOND VIRGINIA To My Parents and Family (ii) LIBRARY UNIVERSITY OF RiCHMOND VIRGINIA ACKNOWLEDJEMENTS The author wishes to express his sincere appreciation to: Dr. Richard A. Mateer for his patience, guidance and friendship. Dr. W. Allan Powell for his invaluable aid. Dr. Richard W. Topham for the use of his laboratory. Ashby French Johnson, Jr. for providing the analyses. David Powell for his invaluable assistance and friendship. Pauline F'ones for the many hours she spent in typing this thesis. Melvin Oakley and Christopher Akey for their technical assistance. (iii) TABLE OF CONTENTS Page HISTORICAL 1 DISCUSSION A. Attempted Synthesis of n-(Acetophenone)Chro~ium Tricarbonyl....
    [Show full text]
  • (Title of the Thesis)*
    PHOTOREACTIVITY OF N-HETEROCYCLIC CARBENE-BORANES AND THE REACTIVITY OF PYRIDO[2,1-A]ISOINDOLE by Sean M. McDonald A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada (June, 2018) Copyright ©Sean M. McDonald, 2018 Dedicated to my wife, Larissa Smith ii Abstract N-heterocyclic carbene (NHC) borane systems have become an important topic in main group chemistry. Finding uses as catalysts, coordinators for radical polymerizations, and reagents in a variety of reactions, NHCs have become a very important ligand for fundamental research. However, there have been relatively few studies on NHC-boranes over the last fifty years. This thesis will make new strides in the understanding and reactivity of NHC-boranes with UV light. Modeling after a previous result, NHC-BH3 systems were investigated for their photoreactivity. The systems investigated were found to decompose under irradiation. The systems were shifted to NHC-BH2R where the R group has a -hydrogen relative to the boron center. When exposed to UV light a facile reaction occurred, akin to a -hydrogen elimination reaction. The resulting products are an NHC-BH3 and the corresponding alkene from the elimination. BMes2 moieties chelated by an NHC were synthesized, analogous to previous work. When irradiated by UV light, mesitylene was eliminated, yielding a new B-C -bond. This new system contains an imbedded 1,3-azaborine within its multicyclic structure and is the first example of this type. When the precursor was heated, the boron moiety was eliminated and the ring closed to make a new 1H-imidazo[1,2- a]indole.
    [Show full text]