Dihalocarbene Reactions with Steroid Olefins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium Using Ultrasonic Irradiation
Molecules 2003, 8, 608-613 molecules ISSN 1420-3049 http://www.mdpi.org A Facile Procedure for the Generation of Dichlorocarbene from the Reaction of Carbon Tetrachloride and Magnesium using Ultrasonic Irradiation Haixia Lin *, Mingfa Yang, Peigang Huang and Weiguo Cao Department of Chemistry, Shanghai University, Shanghai, 200436, P.R. China *Author to whom correspondence should be addressed: e-mail [email protected] Received: 7 April 2003; in revised form: 7 July 2003 / Accepted: 20 July 2003 / Published: 31 July 2003 Abstract: An improved method for the generation of dichlorocarbene was developed that utilizes ultrasound in the reaction of carbon tetrachloride with magnesium. High yields of gem-dichlorocyclopropane derivatives can be obtained in the presence of olefins by this method. Keywords: Dichlorocarbene; gem-dichlorocyclopropanes; ultrasonic irradiation; olefin addition; magnesium Introduction Gem-dichlorocyclopropanes are valuable intermediates in organic synthesis [1,2]. They are typically prepared by the addition of dichlorocarbene to olefins under phase-transfer catalysis conditions [3-5]. Sonochemical generation of dichlorocarbene has also been reported [6-8]. The reactions of dichlorocarbene with olefins in solid-liquid two-phase systems using ultrasonication usually afford high yields of double-bond addition products. In addition, excellent yields of diadducts have been obtained from dienes and dichlorocarbene under ultrasonication and phase-transfer catalyst [9]. Molecules 2003, 8 609 Previously, we reported a novel route for the generation of dichlorocarbene by the reaction of carbon tetrachloride with magnesium in a neutral medium and hypothesized that the mechanism of these reactions might involve a single electron transfer [10]. However, these reactions suffered from several experimental drawbacks: some of the major ones being the sudden exotherm that occurs after an unpredictable induction period, foaming, and in some cases, the use of iodine as the activating agent. -
Selective Syntheses of Difluoromethylene Compounds Via Difluorocarbene Catalyses
Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses 著者 青野 竜也 内容記述 この博士論文は全文公表に適さないやむを得ない事 由があり要約のみを公表していましたが、解消した ため、2017年10月2日に全文を公表しました。 year 2016 その他のタイトル ジフルオロカルベンを用いた触媒反応によるジフル オロメチレン化合物の選択的合成 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7642号 URL http://hdl.handle.net/2241/00144162 Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses Tatsuya Aono February 2016 Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses Tatsuya Aono Doctoral Program in Chemistry Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science at the University of Tsukuba Contents Chapter 1 General Introduction 1 Chapter 2 O-Selective Difluoromethylation of Amides with Free Difluorocarbene 20 2.1. Introduction 21 2.2. Synthesis of Difluoromethyl Imidates 24 2.3. Mechanistic Considerations on O-Selective Difluoromethylation of Amides 31 2.4. Conclusion 33 2.5. Experimental Section 34 2.6. Reference 38 Chapter 3 Regioselective Syntheses of gem-Difluorocyclopentanone Derivatives with Transition Metal Difluorocarbene Complexes 39 3.1. Introduction 40 3.2. Domino Difluorocyclopropanation/Ring Expansion with Nickel Difluorocarbene Complex 45 3.3. [4 + 1] Cycloaddition with Copper Difluorocarbene Complex 58 3.4. Conclusion 66 3.5. Experimental Section 67 3.6. Reference 101 Chapter 4 Conclusion 104 List of Publications 105 Acknowledgement 106 Chapter 1 1. General Introduction Organofluorine compounds often exhibit unique properties and behaviors in comparison with nonfluorinated parent compounds, playing important roles as pharmaceuticals and agrochemicals. Because of the high bond dissociation energy of C–F bonds, organofluorine compounds are resistant to heat and chemicals, and stable to metabolism. In addition, organofluorine compounds have high lipophilicity. -
Chloroform 18.08.2020.Pdf
Chloroform Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants. It is one of the four chloromethanes and a trihalomethane. It is a powerful anesthetic, euphoriant, anxiolytic and sedative when inhaled or ingested. Formula: CHCl₃ IUPAC ID: Trichloromethane Molar mass: 119.38 g/mol Boiling point: 61.2 °C Density: 1.49 g/cm³ Melting point: -63.5 °C The molecule adopts a tetrahedral molecular geometry with C3v symmetry. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. Production:- In industry production, chloroform is produced by heating a mixture of chlorine and either chloromethane (CH3Cl) or methane (CH4). At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds: CH4 + Cl2 → CH3Cl + HCl CH3Cl + Cl2 → CH2Cl2 + HCl CH2Cl2 + Cl2 → CHCl3 + HCl Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4): CHCl3 + Cl2 → CCl4 + HCl The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation. Chloroform may also be produced on a small scale via the haloform reaction between acetone and sodium hypochlorite: 3 NaClO + (CH3)2CO → CHCl3 + 2 NaOH + CH3COONa Deuterochloroform[ Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom. -
United States Patent (19) 11, 3,977,878 Roteman (45) Aug
United States Patent (19) 11, 3,977,878 Roteman (45) Aug. 31, 1976 54 EPOXY RESEN PHOTORESIST WITH 3,522, 194 7/1970 Hada et al........................ 260/47 A ODOFORMAND BISMUTH TRPHENYL 3,708,296 1 / 1973 Schlesinger........................ 96/115 P 3,711,391 lf 1973 Feinberg............................ 96/115 P 75 Inventor: Jerome Roteman, Solon, Ohio 3,720,634 3/1973 Statton ........................... 260/47 EC 73) Assignee: American Can Company, 3,721,617 3/1973 Watt ................................. 260/2 EP Greenwich, Conn. Primary Examiner-Jack P. Brammer 22 Filed: Feb. 26, 1975 Attorney, Agent, or Firm-Robert P. Auber; Ernestine (21) Appl. No.: 553,262 C. Bartlett; George P. Ziehmer Related U.S. Application Data 57 ABSTRACT 62 Division of Ser. No. 369,086, June 1 1, 1973, Pat. No. 3,895,954. Photopolymerizable compositions and processes for photopolymerizing such compositions are provided, 52 U.S. Cl................................ 96/86 P; 96/115 R; said process comprising admixing with said epoxides, 96/ 15 P; 204/159. 18; 204/159.23; photosensitive organohalogen compounds in combina 204/159.24; 96/85; 96/87 R tion with an organometallic compound and thereafter 51 Int. Cl.’....................... G03C 1/94; G03C 1/68 applying energy to the resulting mixture. The or 58 Field of Search............. 96/115 R, 1 15 P, 86 P, ganohalogens decompose to liberate an active catalyst 96/85, 87 R; 204/159.18, 159.23, 159.24; which then serves to initiate polymerization of the ep 260/2 EP, 2 EC, 47 A, 47 C; 427/43 oxide material. The organometallic compound func tions synergistically with the organohalogen to en 56) References Cited hance the film forming properties of the resulting pol UNITED STATES PATENTS ymer and or sensitivity of the polymerizable system. -
Gas-Solid Alkali Destruction of Volatile Chlorocarbons
LA-13042-MS Gas-Solid Alkali Destruction of Volatile Chlorocarbons c£lVi •% to BO Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36- An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best aTaiiable original document. LA-13042-MS UC-901 Issued: December 1995 Gas-Solid Alkali Destruction of Volatile Chlorocarbons Jerry Foropoulos, Jr. -
Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles
NPTEL – Chemistry – Principles of Organic Synthesis Lecture 13 Electrophilic Aromatic Substitution I 5.1 Principles The reaction occurs in two stages: the electrophile adds to one carbon atom of the aromatic ring, yielding a carbocation in which the positive charge is delocalized, and a proton is then eliminated from the adduct. H E H E H E E -H E 5.2 Formation of Carbon-Carbon Bonds 5.2.1 Friedel-Crafts Acylation Acylation of aromatic rings is generally peroformed using acid chloride or acid anhydride as an acylating agent in the presence of Lewis acid. O Z RCOCl, AlCl Z 3 R H2O Mechanism AlCl3 RCOCl RC=O + AlCl4 H H RC=O COR Z Z COR Z Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 26 NPTEL – Chemistry – Principles of Organic Synthesis In some circumstances, carboxylic acid is used as an acylating agent in the presence of a proton acid. HO OH O 2 PhOH, H2SO4 O O -H2O O O Phenolphthalein Indicator Intramolecular reactions are of particular value to construct cyclic systems. These reactions are usually carried out using dibasic acid anhydrides. For example, the synthesis -tetralone has been accomplished from benzene and succinic anhydride using AlCl3 in 80% yield. O O OH OH AlCl3 reduction + O O O O SOCl2 Cl AlCl3 O O Joint initiative of IITs and IISc – Funded by MHRD Page 2 of 26 NPTEL – Chemistry – Principles of Organic Synthesis Examples: 5 mol% Tb(OTf)3 CO H 2 PhCl O D.-M. Cui, C. Zhang, M. Kawamura, S. -
The Dichlorocyclopropanation of 3-Methyl-1-Cyclohexene and 4-Vinyl-1- Cyclohexene Using Water Soluble Multi-Site Phase Transfer Catalyst-A Kinetic Study
Int.J.Curr.Microbiol.App.Sci (2014) 3(9) 211-223 ISSN: 2319-7706 Volume 3 Number 9 (2014) pp. 211-223 http://www.ijcmas.com Original Research Article The dichlorocyclopropanation of 3-methyl-1-cyclohexene and 4-vinyl-1- cyclohexene using water soluble multi-site phase transfer catalyst-A kinetic study K.Shanmugam* and E.Kannadasan Deptartment of Chemistry, Government Arts College, Chidambaram, TamilNadu, India *Corresponding author A B S T R A C T The present study focuses the attention towards the utility of multi-site phase K e y w o r d s transfer catalyst (MPTC), is demonstrated by studying hydroxide-ion initiated reaction like dichlorocarbene addition to olefins. The formation of the product was Multi-site phase monitored by GLC.Dichlorocyclopropanation of 3-methyl-1-cyclohexene and 4- transfer catalysts, vinyl-1-cyclohexene catalysed by multi-site phase transfer catalyst carried out in Dichlorocyclopro biphasic medium under pseudo-first-order conditions by keeping aqueous sodium panation, hydroxide and chloroform in excess. The effect of various experimental parameters 3-methyl-1- on the rate of the reaction has been studied. Also thermodynamic parameters such cyclohexene;4- as S#, G# and H# were evaluated; based on the experimental results, a suitable vinyl-1- mechanism is proposed.It also deals in greater detail on the kinetic aspects of cyclohexene, Kinetics chosen reactions. An attempt has been made to compare the ability of MPTC-1 with MPTC-II and single-site PTC for dichlorocarbeneaddition to olefins like 3- methyl-l-cyclohexene and 4-vinyl-l-cyclohexene. Introduction The reaction of chloroform with strong to be generated in, or transferred to the bases to generate synthetically useful organic phase, where its reaction with 3- dichlorocarbene normally requires methyl-l-cyclohexene is much greater than anhydrous conditions to avoid its rapid with water addition of dichlorocarbene to 3- hydrolysis (Reeves et al., 1976). -
REACTIONS of HALOCYCLOPROPANES. The
This dissertation has been microfilmed exactly as received 69-11,652 HOUSER, Charles W., 1934- REACTIONS OF HALOCYCLOPROPANES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan REACTIONS OF HALOCYCLOPROPANES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School o f The Ohio State U niversity By Charles W. Houser, B.A. ******** The Ohio State U niversity 1968 Approved hy /Adviser Department of Chemistry Dedicated to Jane and Brian i l ACKNOWLEDGMENTS The author wishes to express sincere appreciation to Professor Harold Shechter for the inception of this problem and for his helpful discussions throughout the course of this research. His editorial guidance during preparation of this manuscript is also gratefully acknowledged. National Science Foundation and Petroleum Research Fund are thanked for their financial assistance to this research. The author owes a special debt of gratitude to his wife, Jane, for her patience and encouragement during completion of this work. i i i VITA October 20, 1934 Born - Parkersburg, West Virginia 1954-1958 U. S. Marine Corps 1962 B.A., David Lipscomb College, Nashville, Tennessee 1962-1965 Teaching Assistant, The Ohio State University, Columbus, Ohio I965-I968 Research Associate, The Ohio State University, Columbus, Ohio iv CONTENTS Page ACKNOWLEDGMENTS.......................................................................................................... i i i VITA ......................................................................... -
IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals
IAEA-TECDOC-1968 IAEA-TECDOC-1968 IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals IAEA-TECDOC-1968 Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals International Atomic Energy Agency Vienna @ PRODUCTION AND QUALITY CONTROL OF FLUORINE-18 LABELLED RADIOPHARMACEUTICALS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND SAINT VINCENT AND BENIN ISRAEL THE GRENADINES BOLIVIA, PLURINATIONAL ITALY SAMOA STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COMOROS LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE -
US2979539.Pdf
2,979,539 United States Patent Office Patented Apr. 11, 1961 2 fluoride, vinylidene chloride, vinyl chloride, 1,1-difluoro dichloroethylene, propene, ethylene, 3,3,4,4,4-pentafluoro 2,979,539 buetene-1, perfluoropropene, and hexafluorobutene-1. DFLUOROCAR BENE FREE RADCALS IN THE Generally the ethylenes are preferred, particularly the SYNTHESS OF FLUORNATED OLEFNC COM fluorinated ethylenes. The use of tetrafluoroethylene in POUNDS this process, producing perfluoropropene, constitutes a Louis A. Errede, St. Paul, and Wesley R. Peterson, North particularly preferred embodiment. It may also be desir Oaks, Minn, assignors to Minnesota Mining and Man able to use other perhalogenated ethylenes, such as tri ufacturing Company, St. Paul, Minn., a corporation of fluorochloroethylene, as a reactant. Delaware - 0 Any method can be employed to produce the difluoro carbene radical, providing the free radical is available Filed Jan. 6, 1959, Ser, No. 785,246 for the addition reaction. Such methods include the 7 Claims. (CI. 260-653.3) production of difluorocarbene during the pyrolysis of CHCIF, as described in U.S. 2,551,573. It is also pos - This invention relates to a process for the manufacture 15 sible to obtain the difluorocarbene free radical during of unsaturated fluorine-containing compounds. In one the pyrolysis of tetrafluoroethylene at temperatures above aspect, this invention relates to the addition of a difluoro 750° C. However, for the purposes of this invention, carbene radical to an ethylenically unsaturated compound the method of producing difluorocarbene is not critical. to produce higher molecular weight fluorine-containing Because of the relatively short life of the difluoro compounds. -
C-Aihrlsulfonylacetic ACIDS a 1ID THEIR
A KINETIC STUDST OP THE DECOMPOSITION OF SOME «C-AiHrLSULFONYLACETIC ACIDS A1 ID THEIR SALTS HI VARIOUS SOLVENTS DISSERTATION sented in Partial Pulfillxncnt of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Donald Joseph CJ’Connor, B.S. The Ohio State University 1952 Approved by: i J d b l Advioer ACKNOWLEDGEMENT The author would Ilka to aeknowladgs his indebtedness to Dr. Frank Varhoek for hid halpful eounsal during the eouraa of this work. -1 S 0 9 4 GO TABLE OF CONTENTS INTRODUCTION 1 EXPERIMENTAL Preparation of Solvents 3 Preparation of p-Toluenemercaptoacetic Acid 3 Preparation of p-ToluenesulfonylacetIc Acid k Preparation of Sodium p-Toluenesulfonylacetate 5 Apparatus 5 Procedure 6 RESULTS The Reaction 8 Order of the Reaction 8 Dissociation Constant of p-Toluenesulfonyl- acetic Acid 9 Reaction Rate Constants 10 Effect of Solvent 1^ Effect of Concentration 23 Effect of Added Ease 23 Energy of Activation 24- Entropy Factor 26 Decomposition of the Free Acid 23 DISCUSSION Effect of Solvent on the Activation Energy 30 Sffect of Solvent on the Sntrooy Factor 3Jl Effect of Ion Association 1u2 SUMMARY h 5 SUGGESTIONS FOR FURTHER WORK I4.6 EXPGRIHGNTAL DATA REFERENCES 61 AUTOBIOGRAPHY -ii- A KINETIC STUDY OP THE DECOMPOSITION OP SOME og-ARYLSULPONYLACETIC ACIDS AND THEIR SALTS IN VARIOUS SOLVENTS INTRODUCTION 1 2 Recent review articles * have highlighted the great Interest in decarboxylation reactions of many types of organ ic acids. In this paper, the major concern is for that tyne of reaction which involves first order decomposition of the anion of the acid as examplified by trinitrobenzoic acid,^*^ trihaloacetic acids^'^*?»8 and X-nitroa].Vcylcarboxylic^' ^ ! r-/ acids. -
Preparation of Perfluorinated Ionomers
PREPARATION OF PERFLUORINATED IONOMERS FOR FUEL CELL APPLICATIONS by TODD STEPHEN SAYLER JOSEPH S. THRASHER, COMMITTEE CHAIR RICHARD E. FERNANDEZ, Ph.D. ANTHONY J. ARDUENGO, Ph.D. MARTIN G. BAKKER, Ph.D. KEVIN H. SHAUGHNESSY, Ph.D. DARRYL D. DESMARTEAU, Ph.D. A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2012 Copyright Todd Stephen Sayler 2012 ALL RIGHTS RESERVED ABSTRACT One of the major issues with the current membrane technology for polymer electrolyte membrane fuel cells is the low conductivity seen at low relative humidity. This dissertation discloses the preparation of perfluorinated polymers with higher densities of acid sites and higher conductivities to overcome this issue. These materials are prepared using a system designed to safely synthesize and polymerize tetrafluoroethylene (TFE) on a hundred gram scale. The copolymerization of TFE and perfluoro-2-(2-fluorosulfonylethoxy) propyl vinyl ether (PSEPVE) to prepare materials with varying ratios of the two monomers was carried out by solution, bulk, and emulsion polymerization techniques. Additionally, the homopolymer of PSEPVE has been prepared and characterized by MALDI-TOF mass spectrometry, which shows the low molecular weight distribution seen in other similar materials in the literature is due to a high rate of β-scission termination. Spectroscopic measurements and thermal analysis were carried out on these samples to obtain better characterization than was currently available. Producing polymers with a higher amount of PSEPVE, and thus higher density of acid sites, leads to the materials becoming water soluble after hydrolysis.