Preparation of Perfluorinated Ionomers

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of Perfluorinated Ionomers PREPARATION OF PERFLUORINATED IONOMERS FOR FUEL CELL APPLICATIONS by TODD STEPHEN SAYLER JOSEPH S. THRASHER, COMMITTEE CHAIR RICHARD E. FERNANDEZ, Ph.D. ANTHONY J. ARDUENGO, Ph.D. MARTIN G. BAKKER, Ph.D. KEVIN H. SHAUGHNESSY, Ph.D. DARRYL D. DESMARTEAU, Ph.D. A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2012 Copyright Todd Stephen Sayler 2012 ALL RIGHTS RESERVED ABSTRACT One of the major issues with the current membrane technology for polymer electrolyte membrane fuel cells is the low conductivity seen at low relative humidity. This dissertation discloses the preparation of perfluorinated polymers with higher densities of acid sites and higher conductivities to overcome this issue. These materials are prepared using a system designed to safely synthesize and polymerize tetrafluoroethylene (TFE) on a hundred gram scale. The copolymerization of TFE and perfluoro-2-(2-fluorosulfonylethoxy) propyl vinyl ether (PSEPVE) to prepare materials with varying ratios of the two monomers was carried out by solution, bulk, and emulsion polymerization techniques. Additionally, the homopolymer of PSEPVE has been prepared and characterized by MALDI-TOF mass spectrometry, which shows the low molecular weight distribution seen in other similar materials in the literature is due to a high rate of β-scission termination. Spectroscopic measurements and thermal analysis were carried out on these samples to obtain better characterization than was currently available. Producing polymers with a higher amount of PSEPVE, and thus higher density of acid sites, leads to the materials becoming water soluble after hydrolysis. However, addition of a curable ter-monomer allows the polymer chains to be crosslinked to regain water insolubility. Using this approach, water insoluble membranes with high densities of acid sites and conductivities up to 5.5 times higher than Nafion® 115, the standard benchmark for fuel cell membranes, have been produced. Preparation of high molecular weight, low EW copolymers of TFE and PSEPVE is difficult due to the reactivity ratios of the two monomers. Literature reactivity ratios for VDF and PSEPVE are more favorable for preparation of high molecular weight, low EW copolymers. Here, alternating copolymers of VDF and PSEPVE are prepared for the first time; where high ii molecular weight samples have been shown to possess low swelling characteristics in water. It has also been found the lower molecular weight samples that are soluble in perfluorohexane can be converted to perfluorinated polymers by direct fluorination with 20% elemental fluorine in nitrogen with 254 nm UV irradiation. The author makes no warranties, expressed or implied, and assumes no liability in connection with any use of the information presented in this dissertation. No one but persons having technical skill in this area of fluorine chemistry should attempt or repeat anything presented herein, and then at their own discretion and risk. iii DEDICATION This dissertation is dedicated to my wife, Franchessa Sayler, for her love, support, and advice during this work. She has enriched my life in more ways than she knows and filled it with purpose and love. I would also like to dedicate this dissertation to my mother, Kathy Sayler, and grandparents, Hunter and Jean Read, for their love through the years and support in helping me to continue my education. iv LIST OF ABBREVIATIONS AND SYMBOLS ˚C degrees Celsius δ chemical shift in parts per million 3M monomer perfluoro-4-(fluorosulfonyl) butyl vinyl ether, (CF2=CFOCF2CF2CF2CF2SO2F) 3P bis(pentafluoropropionyl) peroxide, (CF3CF2C(O)OOC(O)CF2CF3) 4P bis(heptafluorobutyryl) peroxide, (CF3CF2CF2C(O)OOC(O)CF2CF2CF3) 8CNVE perfluoro 8-cyano-5-methyl-3,6-dioxa-1-octene, (CF2=CFOCF(CF3)CF2OCF2CF2CN) ARC® accelerating rate calorimeter ATR attenuated total reflectance βPS HO3SCF2CF2OCF(CF3)CF2- radical or end group b.p. boiling point BPR back pressure regulator CMC critical micelle concentration DHB 2,5-dihydroxybenzoic acid, [C6H3(CO2H)(OH)2] DMSO dimethyl sulfoxide DP HFPO dimer peroxide end group, CF3CF2CF2O(CF3)CF- DuPont E. I. du Pont de Nemours and Co. Dow perfluoro-3-oxa-4-pentene sulfonyl fluoride, (CF2=CFOCF2CF2SO2F) DSC differential scanning calorimetry ePTFE expanded polytetrafluoroethylene, e-(-CF2-CF2-)n ETFE ethylene tetrafluoroethylene copolymer, (-CH2CH2CF2CF2-)n EW equivalent weight, grams of polymer needed to have 1 mole of acid sites v FT-IR Fourier transform infrared spectroscopy FEP fluorinated ethylene propylene, (-CF2CF2)m-(CF2CF(CF3)-)n g grams HFC 43-10 2,3-dihydrodecafluoropentane, (CF3CFHCFHCF2CF3) HFE 7100 methyl nonafluorobutyl ether, (CH3-O-CF2CF2CF2CF3) HFP hexafluoropropylene, (CF2=CF(CF3)) HFPOdaf hexafluoropropylene oxide dimer acid fluoride, (CF3CF2CF2O(CF3)CFC(O)F) HFPOdp hexafluoropropylene oxide dimer peroxide, [CF3CF2CF2O(CF3)CFC(O)O-]2 K Kelvin k rate constant - + KHP potassium hydrogen phthalate, C6H4(CO2H)(CO2 K ) L liters M molarity M1 monomer 1 M2 monomer 2 Mn number average molecular weight Mw weight average molecular weight MAFS-010 Merck advanced fluorosurfactant 010 - bis(perfluorobutyl) phosphinic acid, (C4F9)2P(O)OH MALDI-TOF matrix assisted laser desorption ionization - time of flight MEA membrane electrode assembly mil milliinch MS mass spectrometry vi mS millisiemens NMR nuclear magnetic resonance N117 Nafion® membrane with equivalent weight of 1100 and thickness of 7 milliinches PDI polydispersity index PE polyethylene, (-CH2CH2-)n PEMFC polymer electrolyte membrane fuel cell PFIB perfluoroisobutylene, [(CF3)2C=CF2] - + PFOA ammonium perfluorooctanoate, (CF3CF2CF2CF2CF2CF2CF2CO2 NH4 ) PFA perfluoroalkoxy resin, (-CF2CF2-)m(-CF2CF(ORf)-)n PFPA pentafluoropropionic acid, (CF3CF2CO2H) ppm parts per million psia pounds per square inch absolute psig pounds per square inch gauge PTFE polytetrafluoroethylene, (-CF2-CF2-)n PVDF polyvinylidene difluoride, (-CF2-CH2-)n R113 1,1,2-trichloro-1,2,2-trifluoroethane, CCl2F-CF2C R22 chlorodifluoromethane, CClF2H Rf perfluoroalkyl RH relative humidity rpm rotations per minute SEC size-exclusion chromatography SEM scanning electron microscopy Td decomposition temperature (5 percent weight loss) vii TFA trifluoroacetic acid, (CF3C(O)OH) TFE tetrafluoroethylene, (CF2=CF2) TGA thermal gravimetric analysis UAXD Copolymer of TFE and Dow (University of Alabama eXperimental Dow resin) UAXDC Terpolymer resin of Dow, TFE, and 8CNVE UAXDC#C Cured terpolymer of Dow, TFE, and 8CNVE UAXDH Dow homopolymer (University of Alabama eXperimental Dow Homopolymer) UAXH PSEPVE homopolymer (University of Alabama eXperimental Homopolymer) UAXH#A Sulfonamide resin of PSEPVE homopolymer UAXH#H Hydrolyzed resin of PSEPVE homopolymer UAXHC Copolymer of PSEPVE and 8CNVE UAXHC#C Cured copolymer of PSEPVE and 8CNVE UAXR Copolymer of TFE and PSEPVE (University of Alabama eXperimental Resin) UAXRA Sulfonamide resin of TFE and PSEPVE copolymer UAXV Copolymer of VDF and PSEPVE VDF vinylidene difluoride, (CH2=CF2) viii ACKNOWLEDGEMENTS I would like to begin by thanking my research advisor, Prof. Joseph S. Thrasher, for his guidance and encouragement during the course of this work. He has had a significant role in both my scientific and personal development during my graduate career. I must also thank Dr. Richard E. Fernandez for his help and advice while acting as a second advisor to me. I also would like to thank Prof. Anthony J. Arduengo, Prof. Martin G. Bakker, Prof. Kevin H. Shaughnessy, and Prof. Darryl D. DesMarteau for serving as my dissertation committee and for their valuable suggestions and comments. I also must thank coworkers on this project Dr. Andrej Matsnev, Dr. Yoichi Hosokawa, Dr. Alfred Waterfeld, and Dr. Alex Kauffman for their help and advice. Dr. Zhiwei Yang of UTC provided support by running the conductivity, fuel cell, and SEM measurements. Additionally, Kevin Tice contributed a large amount of the work presented here and must be thanked for his hard work and extremely valuable ideas and suggestions. Instrumentation assistance was provided to me by Dr. Ken Belmore with NMR spectral characterization and Dr. Qiaoli Liang with MALDI-TOF mass spectra analysis. Mr. Richard Smith, Mr. David Key, Mr. Billy Atkins, and the UA Machine Shop all provided support with the construction and maintenance of experimental apparati. I would also like to thank group members Dr. John Hauptfleisch, Dr. Huizhen Zhu, and Mr. Matt Hennek for their helpful advice and discussions along with teaching me laboratory techniques. I must thank Adam Beg and Anthony Cesnik for their hard work as summer students with EW titrations and fine powder PTFE synthesis, respectively. Funding for this research was provided by a grant through United Technologies Corporation (UTC). ix CONTENTS ABSTRACT ............................................................................................................ ii DEDICATION ....................................................................................................... iv LIST OF ABBREVIATIONS AND SYMBOLS ....................................................v ACKNOWLEDGEMENTS ................................................................................... ix LIST OF TABLES ............................................................................................. xviii LIST OF FIGURES ............................................................................................
Recommended publications
  • Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications
    Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications William A. Arnold, Ph.D.1 ZIN Technologies, Inc., Brook Park, Ohio, 44142, USA Thomas G. Hartman, Ph.D.2 CAFT, Cook College, Rutgers the Sate University of New Jersey, New Brunswick, NJ, 08901 USA John McQuillen,3 NASA Glenn Research Center, Cleveland, Ohio, 44135, USA Perfluorohexane (PFH), C6F14, is a perfluorocarbon fluid. Several PFH fluids with different isomer concentrations were evaluated for use in an upcoming NASA space experiment. Samples tested included two commercially obtained high-purity n-perfluorohexane (n-PFH) fluids and a technical grade mixture of C6F14 branched and linear isomers (FC-72). These fluids were evaluated for exact chemical composition, impurity purity and high temperature degradation behavior (pyrolysis). Our investigation involved simulated thermal stressing studies of PFH fluids under conditions likely to occur in the event of an atmospheric breach within the International Space Station (ISS) and subsequent exposure of the vapors to the high temperature and catalyst present in its Trace Contaminant Control Subsystem (TCCS). Exposure to temperatures in the temperature range of 200-450°C in an inert or oxidizing atmosphere, with and without the presence of catalyst was investigated. The most aggressive conditions studied were exposure of PFH vapors to 450°C in air and in the presence of TCCS (palladium) catalyst. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses were conducted on the perfluorohexane samples before and after pyrolysis. The FC-72 and n-PFH samples showed no significant degradation following pyrolysis even under the most aggressive study conditions.
    [Show full text]
  • Selective Syntheses of Difluoromethylene Compounds Via Difluorocarbene Catalyses
    Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses 著者 青野 竜也 内容記述 この博士論文は全文公表に適さないやむを得ない事 由があり要約のみを公表していましたが、解消した ため、2017年10月2日に全文を公表しました。 year 2016 その他のタイトル ジフルオロカルベンを用いた触媒反応によるジフル オロメチレン化合物の選択的合成 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7642号 URL http://hdl.handle.net/2241/00144162 Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses Tatsuya Aono February 2016 Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses Tatsuya Aono Doctoral Program in Chemistry Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science at the University of Tsukuba Contents Chapter 1 General Introduction 1 Chapter 2 O-Selective Difluoromethylation of Amides with Free Difluorocarbene 20 2.1. Introduction 21 2.2. Synthesis of Difluoromethyl Imidates 24 2.3. Mechanistic Considerations on O-Selective Difluoromethylation of Amides 31 2.4. Conclusion 33 2.5. Experimental Section 34 2.6. Reference 38 Chapter 3 Regioselective Syntheses of gem-Difluorocyclopentanone Derivatives with Transition Metal Difluorocarbene Complexes 39 3.1. Introduction 40 3.2. Domino Difluorocyclopropanation/Ring Expansion with Nickel Difluorocarbene Complex 45 3.3. [4 + 1] Cycloaddition with Copper Difluorocarbene Complex 58 3.4. Conclusion 66 3.5. Experimental Section 67 3.6. Reference 101 Chapter 4 Conclusion 104 List of Publications 105 Acknowledgement 106 Chapter 1 1. General Introduction Organofluorine compounds often exhibit unique properties and behaviors in comparison with nonfluorinated parent compounds, playing important roles as pharmaceuticals and agrochemicals. Because of the high bond dissociation energy of C–F bonds, organofluorine compounds are resistant to heat and chemicals, and stable to metabolism. In addition, organofluorine compounds have high lipophilicity.
    [Show full text]
  • Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420 49 3)
    EPA-823-R-18-307 Public Comment Draft Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3) This document is a Public Comment draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. This information is distributed solely for the purpose of public review. This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420 49 3) Prepared by: U.S. Environmental Protection Agency Office of Research and Development (8101R) National Center for Environmental Assessment Washington, DC 20460 EPA Document Number: 823-R-18-307 NOVEMBER 2018 This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Disclaimer This document is a public comment draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. i This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Authors, Contributors, and Reviewers CHEMICAL MANAGERS Jason C.
    [Show full text]
  • United Nations Sc
    UNITED NATIONS SC UNEP/POPS/POPRC.12/INF/16 Distr.: General 2 August 2016 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Twelfth meeting Rome, 19–23 September 2015 Item 4 (d) of the provisional agenda Technical work: consolidated guidance on alternatives to perfluorooctane sulfonic acid and its related chemicals Comments and responses relating to the draft consolidated guidance on alternatives to perfluorooctane sulfonic acid and its related chemicals Note by the Secretariat As referred to in the note by the Secretariat on guidance on alternatives to perfluorooctane sulfonic acid and its related chemicals (UNEP/POPS/POPRC.12/7), the annex to the present note contains a table listing the comments and responses relating to the draft guidance. The present note, including its annex, has not been formally edited. UNEP/POPS/POPRC.12/1. 030816 UNEP/POPS/POPRC.12/INF/16 Annex Comments and responses relating to the draft consolidated guidance on alternatives to perfluorooctane sulfonic acid and its related chemicals Minor grammatical or spelling changes have been made without acknowledgment. Only substantial comments are listed. Yellow highlight indicates addition of text while green highlight indicates deletion. Source of Page Para Comments on the second draft Response Comment Austria 7 2 This statement is better placed in Chapter VII Rejected. accompanied with a justification for those “critical applications”. For clarification “where it is not currently possible without the use of PFOS” is added Austria 15 47 According to May be commercialized is revised to http://poppub.bcrc.cn/col/1413428117937/index.html “are commercialized” F-53 and F-53B have a long history of usage and have been commercialized before PFOS related Reference substances were used (cf.
    [Show full text]
  • Alkane Coiling in Perfluoroalkane Solutions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Científico da Universidade de Évora Article Cite This: Langmuir 2017, 33, 11429-11435 pubs.acs.org/Langmuir Alkane Coiling in Perfluoroalkane Solutions: A New Primitive Solvophobic Effect † ‡ § † ∥ ‡ Pedro Morgado, Ana Rosa Garcia, , Luís F. G. Martins, , Laura M. Ilharco,*, † and Eduardo J. M. Filipe*, † ‡ Centro de Química Estrutural, Instituto Superior Tecnicó and Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Tecnico,́ Universidade de Lisboa, 1049-001 Lisboa, Portugal § Departamento de Química e Farmacia,́ FCT, Universidade do Algarve, 8000 Faro, Portugal ∥ Centro de Química de Évora, Escola de Cienciaŝ e Tecnologia, Universidade de Évora, 7000-671 Évora, Portugal *S Supporting Information ABSTRACT: In this work, we demonstrate that n-alkanes coil when mixed with perfluoroalkanes, changing their conformational equilibria to more globular states, with a higher number of gauche conformations. The new coiling effect is here observed in fluids governed exclusively by dispersion interactions, contrary to other examples in which hydrogen bonding and polarity play important roles. FTIR spectra of liquid mixtures of n-hexane and perfluorohexane unambiguously reveal that the population of n-hexane molecules in all-trans conformation reduces from 32% in the pure n-alkane to practically zero. The spectra of perfluorohexane remain unchanged, suggesting nanosegregation of the hydrogenated and fluorinated chains. Molecular dynamics simulations support this analysis. The new solvophobic effect is prone to have a major impact on the structure, organization, and therefore thermodynamic properties and phase equilibria of fluids involving mixed hydrogenated and fluorinated chains.
    [Show full text]
  • PERFLUOROHEXANE SULFONATE (Pfhxs)— SOCIO-ECONOMIC IMPACT, EXPOSURE, and the PRECAUTIONARY PRINCIPLE
    PERFLUOROHEXANE SULFONATE (PFHxS)— SOCIO-ECONOMIC IMPACT, EXPOSURE, AND THE PRECAUTIONARY PRINCIPLE IPEN Expert Panel Rome October 2019 PERFLUOROHEXANE SULFONATE (PFHxS)—SOCIO-ECONOMIC IMPACT, EXPOSURE, AND THE PRECAUTIONARY PRINCIPLE September 2019 Bluteau, T. a, Cornelsen, M. b, Holmes, N.J.C. c, Klein, R.A. d, McDowall, J.G.e, Shaefer, T.H. f, Tisbury, M. g, Whitehead, K. h. a Leia Laboratories, France b Cornelsen Umwelttechnologie GmbH, Essen, Germany c Department of of Science and Environment, Queensland Government, Australia d Cambridge, United Kingdom, and Christian Regenhard Center for Emergency Response Studies, John Jay College of Criminal Justice, City University New York (CUNY), New York USA e 3FFF Ltd, Corby, United Kingdom f Sydney, Australia g United Firefighters Union and Melbourne Metropolitan Fire Brigade (MFB), Australia h Unity Fire & Safety, Oman representing the IPEN Panel of Independent Experts White Paper prepared for IPEN by members of the IPEN Expert Panel and associates for the meeting of the Stock- holm Convention POPs Review Committee (POPRC-15), 1-4 October 2019, Rome, Italy © 2019 IPEN and Authors Listed as IPEN Expert Panel Members Cite this publication as: IPEN 2019. White Paper for the Stockholm Convention Persistent Organic Pollutants Review Committee (POPRC-15). Perfluorohexane Sulfonate (PFHxS)—Socio-Economic Impact, Exposure, and the Precautionary Principle. Corresponding authors: R. A. Klein <[email protected]>, Nigel Holmes <[email protected]> For your reference, the previously presented
    [Show full text]
  • Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2015
    ANNEX 6 Additional Information 6.1. Global Warming Potential Values Global Warming Potential (GWP) is intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing–both direct and indirect effectsintegrated over a specific period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 2007). Carbon dioxide (CO2) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between kilotons (kt) of a gas and million metric tons of CO2 equivalents (MMT CO2 Eq.) can be expressed as follows: MMT MMT CO2 Eq. kt of gas GWP 1,000 kt where, MMT CO2 Eq. = Million metric tons of CO2 equivalent kt = kilotons (equivalent to a thousand metric tons) GWP = Global warming potential MMT = Million metric tons GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWP values typically have an uncertainty of 35 percent, though some GWP values have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the parties to the UNFCCC have agreed to use consistent GWP values from the IPCC Fourth Assessment Report (AR4), based upon a 100 year time horizon, although other time horizon values are available (see Table A-263).
    [Show full text]
  • IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals
    IAEA-TECDOC-1968 IAEA-TECDOC-1968 IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals IAEA-TECDOC-1968 Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals International Atomic Energy Agency Vienna @ PRODUCTION AND QUALITY CONTROL OF FLUORINE-18 LABELLED RADIOPHARMACEUTICALS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND SAINT VINCENT AND BENIN ISRAEL THE GRENADINES BOLIVIA, PLURINATIONAL ITALY SAMOA STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COMOROS LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE
    [Show full text]
  • US2979539.Pdf
    2,979,539 United States Patent Office Patented Apr. 11, 1961 2 fluoride, vinylidene chloride, vinyl chloride, 1,1-difluoro dichloroethylene, propene, ethylene, 3,3,4,4,4-pentafluoro 2,979,539 buetene-1, perfluoropropene, and hexafluorobutene-1. DFLUOROCAR BENE FREE RADCALS IN THE Generally the ethylenes are preferred, particularly the SYNTHESS OF FLUORNATED OLEFNC COM fluorinated ethylenes. The use of tetrafluoroethylene in POUNDS this process, producing perfluoropropene, constitutes a Louis A. Errede, St. Paul, and Wesley R. Peterson, North particularly preferred embodiment. It may also be desir Oaks, Minn, assignors to Minnesota Mining and Man able to use other perhalogenated ethylenes, such as tri ufacturing Company, St. Paul, Minn., a corporation of fluorochloroethylene, as a reactant. Delaware - 0 Any method can be employed to produce the difluoro carbene radical, providing the free radical is available Filed Jan. 6, 1959, Ser, No. 785,246 for the addition reaction. Such methods include the 7 Claims. (CI. 260-653.3) production of difluorocarbene during the pyrolysis of CHCIF, as described in U.S. 2,551,573. It is also pos - This invention relates to a process for the manufacture 15 sible to obtain the difluorocarbene free radical during of unsaturated fluorine-containing compounds. In one the pyrolysis of tetrafluoroethylene at temperatures above aspect, this invention relates to the addition of a difluoro 750° C. However, for the purposes of this invention, carbene radical to an ethylenically unsaturated compound the method of producing difluorocarbene is not critical. to produce higher molecular weight fluorine-containing Because of the relatively short life of the difluoro compounds.
    [Show full text]
  • Information for Technicians and Users of Refrigeration, Air Conditioning and Heat Pump Equipment Containing Fluorinated Greenhouse Gases (January 2015)
    Information for technicians and users of refrigeration, air conditioning and heat pump equipment containing fluorinated greenhouse gases (January 2015) Summary Regulation (EU) No 517/2014 on fluorinated gases (“the Regulation”) includes a number of requirements for service technicians and for operators of equipment containing fluorinated greenhouse gases (F-gases) such as hydrofluorocarbons (HFCs). Service technicians and operators of refrigeration, air-conditioning and heat pumps are required to ensure emission prevention and containment. In particular, they will need to know if and how often the equipment must be checked for leakage and keep records on these interventions. Automatic leakage detection systems may also be obligatory for some equipment. The specific requirements depend on the F-gas charge size of the equipment measured in CO2 equivalents, a unit reflecting the potential impact on global warming. Whenever the equipment's F-gas circuit is being checked or repaired, both the service companies and the operator must ensure that the technician entrusted with this task has the relevant F-gas certificate or training for that type of equipment. Furthermore, operators of all types of equipment must make arrangements for the proper recovery and/or destruction of the F-gases before the equipment is discarded. The Regulation also puts into place the so-called 'HFC phase-down'. This HFC phase-down implies that the supply of the HFCs will become much scarcer in the future, in particular for those HFCs having a relatively high global warming potential (GWP). For this reason operators have a clear incentive to invest in equipment using gases with the lowest possible impact on global warming, including those using alternative gases such hydrocarbons, ammonia and carbon dioxide.
    [Show full text]
  • Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene
    Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama February 2018 1 Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama Doctoral Program in Chemistry Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Science at the University of Tsukuba 2 Contents Chapter 1. General Introduction Chapter 2. Introduction of Difluoromethylene Unit into Thiocarbonyl Compounds 2-1. S-Selective Difluoromethylation of Thiocarbonyl Compounds 2-1-1. Introduction 2-1-2. Synthesis of S-Difluoromethyl Thioimidates 2-1-3. Mechanistic Study 2-1-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-1-5. Conclusion 2-2. Difluoromethylidenation of Dithioesters: Synthesis of Sulfur-Substituted Difluoroalkenes 2-2-1. Introduction 2-2-2. Synthesis of Sulfanylated Difluoroalkenes 2-2-3. Mechanistic Study 2-2-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-2-5. Conclusion 2-3. Experimental Section 2-4. References 3 Chapter 3. Introduction of Difluoromethylene Unit into Dienol Silyl Ethers 3-1. Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-1-1. Introduction 3-1-2. Regioselective Difluorocyclopropanation: Synthesis of Vinylated Difluorocyclopropanes 3-1-3. Conclusion 3-2. Metal-Free Synthesis of α,α-Difluorocyclopentanone Derivatives via Regioselective Difluorocyclopropanation/VCP Rearrangement of Dienol Silyl Ethers 3-2-1. Introduction 3-2-2. Metal-Free Synthesis of 5,5-Difluorocyclopent-1-en-1yl Silyl Ethers 3-2-3. Advantages of the Organocatalytic Synthesis 3-2-4. Conclusion 3-3. Synthesis of Fluorinated Cyclopentenones via Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-3-1.
    [Show full text]
  • Cycloaddition Reactions of Ni(0) Difluorocarbene Complexes: Investigating the Formation of Various Perfluorometallacycles
    Cycloaddition Reactions of Ni(0) Difluorocarbene Complexes: Investigating the Formation of Various Perfluorometallacycles Alexandra Rochon Thesis submitted in partial fulfillment of the requirements for the Master’s degree in Chemistry Department of Chemistry and Biomolecular Sciences Faculty of Science University of Ottawa © Alexandra Rochon, Ottawa, Canada, 2019 Abstract Formation of carbon–fluorine and carbon–fluoroalkyl bonds via transition metal complexes represents an efficient synthetic route towards a wide array of valuable fluorinated organic compounds and fluorinated metallacycles offer a potentially green and atom economical pathway towards these functionalized fluorocarbons. This thesis is focused on cycloaddition reactions of Ni=CF2 complexes with fluoroalkenes (FAs) and acetylenes. Cycloaddition reactions of the FAs vinylidene fluoride (CF2=CH2) and perfluoro(methyl vinyl ether) [CF2=CF(OCF3)] with the electron-rich Ni(0) fluorocarbene, Ni=CF2[P(OMe)3](dppe) affords stable metallacyclobutane complexes, likely through a 1,4-diradical mechanism previously investigated for analogous reactions using computational chemistry. With CF2=CHF (TrFE), however, the observed products are the C3 alkene E-CHF=CF(CF3) and the metallacyclopentane complex, Ni(C4H2F6)(dppe), derived from oxidative coupling of two additional equivalents of TrFE. It is proposed that the instability of the initially formed metallacyclobutane gives rise to a 2,1-F shift, yielding the C3 alkene complex. Reaction of the latter with excess TrFE then liberates the C3 alkene, forming the TrFE alkene complex followed by the observed metallacyclopentane product. In the reaction of 1a with chlorotrifluoroethylene (CF2=CFCl) a single regioisomer of the metallacyclobutane is observed, but reacts further in THF solvent via α-Cl migration to Ni, affording the tetrafluoroallyl complex, NiCl(CF2CF=CFH), in which one F has been replaced by a hydrogen.
    [Show full text]