Please Scroll Down for Article

Total Page:16

File Type:pdf, Size:1020Kb

Please Scroll Down for Article This article was downloaded by: [Retallack, Gregory J.] On: 2 November 2009 Access details: Access Details: [subscription number 916429953] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Alcheringa: An Australasian Journal of Palaeontology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t770322720 Cambrian-Ordovician non-marine fossils from South Australia Gregory J. Retallack a a Department of Geological Sciences, University of Oregon, Eugene, OR, USA Online Publication Date: 01 December 2009 To cite this Article Retallack, Gregory J.(2009)'Cambrian-Ordovician non-marine fossils from South Australia',Alcheringa: An Australasian Journal of Palaeontology,33:4,355 — 391 To link to this Article: DOI: 10.1080/03115510903271066 URL: http://dx.doi.org/10.1080/03115510903271066 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Cambrian–Ordovician non-marine fossils from South Australia GREGORY J. RETALLACK RETALLACK, G.J., December 2009. Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa 33, 355–391. ISSN 0311-5518. Newly discovered trace and body fossils from the Grindstone Range Sandstone of South Australia reveal evidence of megascopic life on land during the Cambrian–Ordovician. Arthropod trackways (Diplichnites gouldi) are interpreted here to have formed on land. The most persuasive evidence for this view is that footprints vary in clarity along the length of the trackway as it traversed moist then dry silt, then biological soil crust. Compatible, though not diagnostic of walking on land is trackway symmetry, without one side buoyed up by current. The footprints bulge outward and are partially filled with miniature talus cones. Footprints also are alternate as in walking, rather than opposite as in sculling. Arthropod resting traces (Selenichnites sp. indet.) have 11 lateral furrows, and footprints are bundled into sets of 8–11, most like euthycarcinoids. No arthropod dwelling burrows were found in associated palaeosols, so the track maker was more likely amphibious than fully terrestrial. Associated trace fossils include a new ichnotaxon of burrow, Myrowichnus arenaceus gen. et sp. nov. Thallose impressions (Farghera robusta gen. et sp. nov.) have the radiating dichotomous form of lichens, algae and liverworts. All these trace and body fossils were found in weakly developed palaeosols. Other palaeosols in the same formation are evidence of terrestrial ecosystems of modest biomass, weathering, carbon sequestration and stability in dry tropical regions. Gregory J. Retallack [[email protected]], Department of Geological Sciences, University of Oregon, Eugene, OR 97403-1271, USA. Received 2.10.2008; revised 9.2.2009; accepted 5.3.2009. Key words: Ordovician, South Australia, euthycarcinoid, track, trace fossil, lichen. ANCIENT terrestrial ecosystems can now land, and burrows may reveal the limits of be studied using palaeosols, even in non- the soil water-table. Although biological marine rocks as old as Ordovician and affinities of this new assemblage are un- Cambrian (Retallack 2000, 2001, 2008). certain, they provide macroscopic images Downloaded By: [Retallack, Gregory J.] At: 18:34 2 November 2009 Insights from palaeosols into such ecosys- of a terrestrial ecosystem prior to Late tem parameters as soil respiration and Ordovician millipede-liverwort communities chemical weathering do not provide (Retallack 2001). details of the organisms involved, because The main purpose of this work is a Cambrian and Ordovician palaeosols are formal description of a newly discovered sparsely fossiliferous, like geologically assemblage of trace and body fossils from younger palaeosols (Retallack 1998). This the Grindstone Range Sandstone of South article reports newly discovered assemblages Australia. Sedimentary palaeoenviron- of Cambrian–Ordovician non-marine trace ments, palaeoclimate and palaeosols of this and body fossils in palaeosols. The plant- new biota have been described elsewhere like fossils are problematic but were more (Stock 1974, Moore 1990, Retallack 2008, likely lichens or algae than plants. Track- 2009). Palaeobiological and palaeoecologi- ways may reveal arthropod excursions onto cal interpretations of such poorly preserved and largely unprecedented fossils are a ISSN 0311-5518 (print)/ISSN 1752-0754 (online) Ó 2009 Association of Australasian Palaeontologists challenge but are attempted here following DOI: 10.1080/03115510903271066 systematic description. 356 GREGORY J. RETALLACK ALCHERINGA (Ride et al. 1999) for trace fossils and Materials and methods fossils of uncertain fungal-animal affiliation Exposures of the Grindstone Range (Retallack 1994), and palaeobotanical pro- Sandstone were examined in Ten Mile visions of the International Code of Bota- (N31.253648 E138.977938) and Balcoracana nical Nomenclature (McNeill et al. 2006) creeks (S31.172468 E138.929638) in the for morphogenera of problematic plant-like eastern Flinders Ranges, South Australia impressions. Toponomic nomenclature of (Figs 1, 2). Stratigraphic sections were mea- trace fossils follows Martinsson (1970). All sured using the method of eyeheights. specimens (numbers prefixed P-) are held An environmental SEM was used (Univer- in the collections of the South Australian sity of Oregon’s FEI Quanta) to obtain Museum, Adelaide. Specimens were col- high-resolution images without conductive lected from two palaeosols and intervening coating. flaggy sandstone of the Grindstone Range Trace fossils and body fossils are named Sandstone in Ten Mile and Balcoracana here with legal provisions of the Interna- creeks, Wirrealpa Station, South Australia tional Code of Zoological Nomenclature (Fig. 1). Measurements of cross-sectional Downloaded By: [Retallack, Gregory J.] At: 18:34 2 November 2009 Fig. 1. Geological map and Early Ordovician fossil localities in the Grindstone Range Sandstone in Ten Mile and Balcoracana creeks, South Australia. ALCHERINGA CAMBRIAN–ORDOVICIAN FOSSILS 357 Downloaded By: [Retallack, Gregory J.] At: 18:34 2 November 2009 Fig. 2. Overall stratigraphic section (A) and fossiliferous intervals in (B) Ten Mile and (C) Balcoracana creeks, South Australia. Degree of development, thickness and stratigraphic position of individual palaeosols is indicated (dark bars). Some palaeosols have calcareous nodules (Bk horizon) whose depth (open circles) is a proxy for former mean annual precipitation (Retallack 2008). dimensions were made in the field on small homestead, in the central Flinders Ranges pieces in which the other side of the fossil of South Australia (Fig. 1). The age of the could be seen. Grindstone Range Sandstone is not older than late Cambrian (Paibian), because conformably underlying marine strata in- Geological setting clude age-diagnostic trilobites, such as The Grindstone Range Sandstone has Onaraspis rubra and Leiopyge laevigata its type area southwest of Wirrealpa (Jago et al. 2006). The Grindstone Range 358 GREGORY J. RETALLACK ALCHERINGA Sandstone is also no younger than Late with comparable palaeosols in the Officer Ordovician (Hirnantian, 446.3 + 2.2 Ma), Basin of South Australia and northern which is the oldest U–Pb isochron age of Perth Basin of Western Australia also local granites and Delamerian deformation suggests a geological age slightly younger in the northern Flinders Ranges, much than the Cambrian–Ordovician boundary younger than Delamerian deformation (Retallack 2009). The age of this deep-calcic further south in South Australia (Elburg palaeosol in the Officer Basin is constrained et al. 2003). by underlying volcanics dated by K–Ar The geological age of the Grindstone at 484 + 4 Ma (Table Hill Volcanics of Range Sandstone is poorly constrained Stevens & Apak 1999) and 483.6 + 20 Ma biostratigraphically and radiometrically, and 493.7 + 20 Ma (Kulyong Volcanics but two lithological correlation techniques of Major & Teluk 1967, corrected using favour an age of Early Ordovician (Trema- the decay constants of Dalrymple 1979). docian) suggested by Daily & Forbes (1969), The deep-calcic palaeosol in the Officer rather than late Cambrian (Jago et al. 2006). Basin also underlies the Indulkana Shale, First, linear extrapolation of tie points in which has been correlated with the Horn the Ten Mile Creek section (Fig. 2A) dates Valley Siltstone of the Amadeus Basin the fossiliferous level of the Grindstone and its Castlemainian trilobite (Lycophron Range Sandstone as 483 Ma (+2.8 Ma freemani) assemblage (Laurie 2006), from standard error of correlation and equivalent to Llanvirnian of Avalonia dating),
Recommended publications
  • FALL 2017 President’S Reflections
    PriscumPriscum NEWSLETTER OF THE VOLUME 24, ISSUE 1 President’s Reflections Paleobiology, the finances of both journals appear secure for INSIDE THIS ISSUE: the foreseeable future, and with a much-improved online presence for both journals. To be sure, more work lies ahead, Report on Student but we are collaborating with Cambridge to expand our au- 3 Diversity and Inclusion thor and reader bases, and, more generally, to monitor the ever-evolving publishing landscape. Our partnership with The Dry Dredgers of 10 Cambridge is providing additional enhancements for our Cincinnati, Ohio members, including the digitization of the Society’s entire archive of special publications; as of this writing, all of the PS Embraces the 13 Hydrologic Cycle Society’s short course volumes are now available through the member’s portal, and all remaining Society publications will be made available soon. We are also exploring an exciting PS Events at 2017 GSA 14 new outlet through Cambridge for all future Special Publica- By Arnie Miller (University of tions. Stay tuned! Book Reviews 15 Cincinnati), President In my first year as President, the Society has continued to These are challenging times for move forward on multiple fronts, as we actively explore and Books Available for 28 scientists and for the profes- pursue new means to carry out our core missions of enhanc- Review Announcement sional societies that represent ing and broadening the reach of our science and of our Socie- them. In the national political ty, and providing expanded developmental opportunities for arena, scientific findings, policies, and funding streams that all of our members.
    [Show full text]
  • Continental Invertebrate and Plant Trace Fossils in Space and Time: State of the Art and Prospects
    48 3RD INTERNATIONAL CONFERENCE OF CONTINENTAL ICHNOLOGY, ABSTRACT VOLUME & FIELD TRIP GUIDE Continental invertebrate and plant trace fossils in space and time: State of the art and prospects M. GABRIELA MANGANO1 *, LUIS A. BUATOIS1 1 Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada * presenting author, [email protected] Continental invertebrate ichnology has experienced a substantial development during the last quarter of century. From being a field marginal to mainstream marine ichnology, represented by a handful of case studies, continental ichnology has grown to occupy a central position within the field of ani- mal-substrate interactions. This evolution is illustrated not only through the accumulation of ichnolog- ic information nurtured by neoichnologic observations and a detailed scrutiny of ancient continental successions, but also through the establishment of new concepts and methodologies. From an ichnofacies perspective, various recurrent associations were defined B( UATOIS & MÁNGANO 1995; GENISE et al. 2000, 2010, 2016; HUNT & LUCAS 2007; EKDALE et al. 2007; KRAPOVICKAS et al. 2016), a situation sharply contrasting with the sole recognition of the Scoyenia ichnofacies as the only valid one during the seventies and eighties (Table 1; Fig. 1). The ichnofacies model now includes not only freshwater ich- nofacies, but also terrestrial ones, most notably those reflecting the complex nature of paleosol trace fossils (GENISE 2017). Trace fossils are now being increasingly used to establish a chronology of the colonization of the land and to unravel the patterns and processes involved in the occupation of ecospace in continental set- tings (e.g. BUATOIS & MÁNGANO 1993; BUATOIS et al.
    [Show full text]
  • The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy.
    [Show full text]
  • A Symbiosis with Fungi?
    BIO Web of Conferences 4, 00009 (2015) DOI: 10.1051/bioconf/20150400009 C Owned by the authors, published by EDP Sciences, 2015 Origins of the terrestrial flora: A symbiosis with fungi? Marc-André Selosse1,a and Christine Strullu-Derrien2 1 Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP. 50, 75005 Paris, France 2 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Abstract. Land phototrophs need to exploit both atmosphere (providing gas and light) and substrate (furnishing water and minerals). Yet, their algal ancestors were poorly pre- adapted to such a life at the interface. We review the paleontological evidence that fungal symbioses which can exploit substrate resources, helped adaptation to land constraints. Diverse structures dating back to the Devonian present convincing evidence for lichens, (symbioses between fungi and microscopic algae) but fossils remain scarce, so that early lichen abundance and ecological relevance remain questionable. Several enigmatic but abundant fossils from the Siluro-Devonian, such as Spongiophyton or the giant Prototaxites (Nematophytes), likely represent fungus-algal symbioses, which shaped early terrestrial ecosystems. Yet, these taxa are fully extinct, and do not have clear affinities with extant groups. Finally, terrestrialization of Embryophyta (land plants), which currently dominate land ecosystems, is linked to a symbiosis with Glomeromycetes. Today, these fungi form arbuscular mycorrhizae, which help most Embryophyta to exploit soil, and molecular data combined with paleontological evidence support the idea that this type of association is ancestral. The role of symbiotic Mucoromycetes during terrestrialization is not fully understood and mycorrhizal association diversified later in the evolution of Embryophyta.
    [Show full text]
  • The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal,
    [Show full text]
  • Marchantia References 1986-2006 Mp Cpgenome To
    Marchantia literature 1986-2006 Mp CpGenome to Genome Project Marchantia literature 1986-2006 Mp CpGenome to Genome Project Adam, K.-P., and H. Becker, 1993 A lectin from the liverwort Marchantia polymorpha L. Experimentia 49: 1098-1100. Adam, K.-P., R. Thiel, J. Zapp and H. Becker, 1998 Involvement of the Mevalonic Acid Pathway and the Glyceraldehyde–Pyruvate Pathway in Terpenoid Biosynthesis of the Liverworts Ricciocarpos natans and Conocephalum conicum. Archives of Biochemistry and Biophysics 354: 181-187. Adam, K. P., and H. Becker, 1994 Phenanthrenes and Other Phenolics from in-Vitro Cultures of Marchantia-Polymorpha. Phytochemistry 35: 139-143. Akashi, K., J. Hirayama, M. Takenaka, S. Yamaoka, Y. Suyama et al., 1997 Accumulation of nuclear- encoded tRNA(Thr)(AGU) in mitochondria of the liverwort Marchantia polymorpha. Biochimica Et Biophysica Acta-Gene Structure and Expression 1350: 262-266. Akashi, K., K. Sakurai, J. Hirayama, H. Fukuzawa and K. Ohyama, 1996 Occurrence of nuclear- encoded tRNA(IIe) in mitochondria of the liverwort Marchantia polymorpha. Current Genetics 30: 181-185. Akashi, K., M. Takenaka, S. Yamaoka, Y. Suyama, H. Fukuzawa et al., 1998 Coexistence of nuclear DNA-encoded tRNA(Val)(AAC) and mitochondrial DNA-encoded tRNA(Val)(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Research 26: 2168-2172. Akiyama, H., and T. Hiraoka, 1994 Allozyme variability within and divergence among populations of the liverwort Conocephalum conicum (Marchantiales- Hepaticae) in Japan. Journal of Plant Research 107: 307-320. Alfano, F., A. Russell, R. Gambardella and J. G. Duckett, 1993 The actin cytoskeleton of the liverwort Riccia Fluitans-Effects of cytochalasin B and aluminium ions on rhizoid tip growth.
    [Show full text]
  • ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-02-6 Band 54 S. 323–335 Wien, Oktober 1999 North Gondwana: Mid-Paleozoic Terranes, Stratigraphy and Biota Editors: R. Feist, J.A. Talent & A. Daurer Plants Associated with Tentaculites in a New Early Devonian Locality from Morocco PHILIPPE GERRIENNE, MURIEL FAIRON-DEMARET, JEAN GALTIER, HUBERT LARDEUX, BRIGITTE MEYER-BERTHAUD, SERGE RÉGNAULT & PHILIPPE STEEMANS*) 4 Text-Figures, 2 Tables and 2 Plates Morocco Devonian Plants Miospores Systematics Tentaculites Palaeogeography Contents Zusammenfassung ...................................................................................................... 323 Abstract ................................................................................................................. 324 1. Introduction ............................................................................................................. 324 2. Materials and Methods ................................................................................................... 324 3. Description of the Tentaculite Assemblage ................................................................................ 325 4. Description of the Miospore Assemblage ................................................................................. 325 5. Description of the Plant Assemblage ...................................................................................... 326 5. 1. Pachytheca sp.......................................................................................................
    [Show full text]
  • "Diplichnites" Triassicus (LINCK, 1943), from the Lower Triassic (Buntsandstein) Fluvial Deposits of the Holy Cross Mts, Central Poland
    acta geologica polonica Vol. 44, No. 3-4 Warszawa 1994 MARCIN MACHALSKI & KATARZYNA MACHALSKA Arthropod trackways, "Diplichnites" triassicus (LINCK, 1943), from the Lower Triassic (Buntsandstein) fluvial deposits of the Holy Cross Mts, Central Poland ABSTRACT: Arthropod trackways of possibJy notostracan origin, determined as "Diplichnites" triossicus (LINCK, 1943), are described from the Buntsandstein (Lower Triassic) fluvial deposits exposed at Stryczowice on the north-eastern margin of the Holy Cross Mountains, Central Poland. These trackways form an almost monotypic ichnocoenose preserved on the sole surfaces of sandstone beds, interpreted as crevasse-splay deposits. In contrast to other "Dip/ichnites" triassicus ichnocoenoses, the trackways have been left by animals moving generally down-current. INTRODUCTION Trace fossils, both of vertebrate and invertebrate origin, have recently been described from the Lower Triassic Buntsandstein deposits of the Holy Cross Mts, Central Poland (FUGLEWICZ & al. 1990, GRADZlNSKI & UCHMAN 1994). The present contribution supplements these papers, giving a description and environmental interpretation of the arthropod trackways, formally at­ tributed to the ichnospecies "Diplichnites" triassicus (LINCK, 1943). GEOLOGIC SETIING The described trackways come from a small quarry situated at a hill south of Stryczowice, a village south-west of Ostrowiec Swi~tokrzyski at the north-eastern margin of the Holy Cross Mountains (Text-fig. lA-C; for detailed location see MADER & BARCZUK 1985, Fig. 5, outcrop 32). A sequence of red-violet sandstones and mudstones exposed at that quarry (Text-fig. ID) is assigned to the Labirynthodontidae Beds of the Middle Buntsandstein in the locallithostratigraphic scheme; chronostratigraphically, they correspond pro- 268 M. MACHALSKl &: K. MACHALSKA B D ...., -v-Ijr mudstone flakes 00 0<> silicate gravel e:r vertebrate bones r-\ desiccation cracks 1m ~:~=~ arthropod trackways -""'-- current ripples -v- groove m.arks y prod, bounce marks ! ! m s Fig.
    [Show full text]
  • JOGGINS RESEARCH SYMPOSIUM September 22, 2018
    JOGGINS RESEARCH SYMPOSIUM September 22, 2018 2 INTRODUCTION AND ACKNOWLEDGEMENTS The Joggins Fossil Cliffs is celebrating its tenth year as a UNESCO World Heritage Site! To acknowledge this special anniversary, the Joggins Fossil Institute (JFI), and its Science Advisory Committee, organized this symposium to highlight recent and current research conducted at Joggins and work relevant to the site and the Pennsylvanian in general. We organized a day with plenty of opportunity for discussion and discovery so we invite you to share, learn and enjoy your time at the Joggins Fossils Cliffs! The organizing committee appreciates the support of the Atlantic Geoscience Society for this event and in general. Sincerely, JFI Science Advisory Committee, Symposium Subcommittee: Elisabeth Kosters (Chair), Nikole Bingham-Koslowski, Suzie Currie, Lynn Dafoe, Melissa Grey, and Jason Loxton 3 CONTENTS Symposium schedule 4 Technical session schedule 5 Abstracts (arranged alphabetically by first author) 6 Basic Field Guide to the Joggins Formation______________________18 4 SYMPOSIUM SCHEDULE 8:30 – 9:00 am Registration 9:00 – 9:10 am Welcome by Dr. Elisabeth Kosters, JFI Science Advisory Committee Chair 9:10 – 10:30 am Talks 10:25 – 10:40 am Coffee Break and Discussion 10:45 – 12:00 pm Talks and Discussion 12:00 – 1:30 pm Lunch 1:30 – 4:30 pm Joggins Formation Field Trip 4:30 – 6:00 pm Refreshments and Wrap-up 5 TECHNICAL SESSION SCHEDULE Chair: Melissa Grey 9:10 – 9:20 am Peir Pufahl 9:20 – 9:30 am Nikole Bingham-Koslowski 9:30 – 9:40 am Michael Ryan 9:40 – 9:50 am Lynn Dafoe 9:50 – 10:00 am Matt Stimson 10:00 – 10:15 am Olivia King 10:15 – 10:25 am Hillary Maddin COFFEE BREAK Chair: Elisabeth Kosters 10:40 – 10:50 am Martin Gibling 10:50 – 11:00 am Todd Ventura 11:10 – 11:20 am Jason Loxton 11:20 – 11:30 am Nathan Rowbottom 11:30 – 11:40 am John Calder 11:40 – 12:30 Discussion led by Elisabeth Kosters LUNCH 6 ABSTRACTS Breaking down Late Carboniferous fish coprolites from the Joggins Formation NIKOLE BINGHAM-KOSLOWSKI1, MELISSA GREY2, PEIR PUFAHL3, AND JAMES M.
    [Show full text]
  • The Foerstia Zone of the Ohio and Chattanooga Shales
    The Foerstia Zone of the Ohio and Chattanooga Shales GEOLOGICAL SURVEY BULLETIN 1294 H The Foerstia Zone of the Ohio and Chattanooga Shales By J. M. SCHOPF and J. F. SCHWIETERING CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1294-H An explanation for the strati graphic zonation of the fossils and a report on a newly discovered occurrence of the Foerstia zone in western Ohio UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 73-607393 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents (paper cover) CONTENTS Page Abstract ..... ....................... ...................... ............................................... HI Introduction ..................... ............ .................. ................................................. 1 Earlier reports .... ..................... ... ..... ... ......................................... 2 The "spores" of Foerstia ................. ... ............. _........... .. 4 Littoral control ............................. ... ............ ........................................ 6 Stratigraphic occurrence of Foerstia ............. ....... ..................................... 8 A new Foerstia locality ........ ... ............................. ................................... ..... 12 Summary ......................................................................................._..._..............-....
    [Show full text]
  • Aquatic Stem Group Myriapods Close a Gap Between Molecular Divergence Dates and the Terrestrial Fossil Record
    Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record Gregory D. Edgecombea,1, Christine Strullu-Derriena,b, Tomasz Góralc,d, Alexander J. Hetheringtone, Christine Thompsonf, and Markus Kochg,h aDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; bInstitut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d’Histoire Naturelle, 75005 Paris, France; cImaging and Analysis Centre, The Natural History Museum, London SW7 5BD, United Kingdom; dCentre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; eDepartment of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom; fDepartment of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom; gSenckenberg Society for Nature Research, Leibniz Institution for Biodiversity and Earth System Research, 60325 Frankfurt am Main, Germany; and hInstitute for Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany Edited by Conrad C. Labandeira, Smithsonian Institution, National Museum of Natural History, Washington, DC, and accepted by Editorial Board Member David Jablonski February 24, 2020 (received for review November 25, 2019) Identifying marine or freshwater fossils that belong to the stem (2–5). Despite this inferred antiquity, there are no compelling groups of the major terrestrial arthropod radiations is a long- fossil remains of Myriapoda until the mid-Silurian and no hexa- standing challenge. Molecular dating and fossils of their pancrus- pods until the Lower Devonian. In both cases, the oldest fossils tacean sister group predict that myriapods originated in the can be assigned to crown group lineages (Diplopoda in the case of Cambrian, much earlier than their oldest known fossils, but Silurian myriapods and Collembola in the case of Hexapoda) and uncertainty about stem group Myriapoda confounds efforts to the fossils have morphological characters shared by extant species resolve the timing of the group’s terrestrialization.
    [Show full text]
  • Taxonomy and Phylogeny of the Manna Lichens and Allied
    View metadata, citation and similar papers at core.ac.uk University ofbrought Helsinki to you by CORE Faculty of Biological and Environmentalprovided by Helsingin yliopiston Sciences digitaalinen arkisto Publications in Botany from the University of Helsinki No: 43 Taxonomy and phylogeny of the ‘manna lichens’ and allied species (Megasporaceae) Mohammad Sohrabi Helsinki 2011 Department of Biosciences Faculty of Biological and Environmental Sciences University of Helsinki Finland Botanical Museum Finnish Museum of Natural History University of Helsinki Finland ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki, in the lecture room (Nylander-sali) of the Botanical Museum, Unioninkatu 44, on January 27th 2012, at 12 noon. Helsinki 2011 Author’s address Botanical Museum, Finnish Museum of Natural History P.O. Box 7, FI–00014 University of Helsinki, Finland. Department of Plant Science, University of Tabriz, 51666 Tabriz, Iran. Email: [email protected], [email protected] Supervisors Prof. Jaakko Hyvönen Prof. Soili Stenroos University of Helsinki, Finland University of Helsinki, Finland Pre-examiners Prof. Thorsten Lumbsch Dr. Christian Printzen Field Museum of Natural History, Chicago, Senckenberg Research Institute and Natural Illinois, USA History Museum, Frankfurt, Germany Opponent Prof. Helmut Mayrhofer University of Graz, Austria Custos Prof. Heikki Hänninen University of Helsinki, Finland ISSN 1238-4577 ISBN 978-952-10-7399-1 (paperback) ISBN 978-952-10-7400-4 (PDF) http://ethesis.helsinki.fi Layout: Mohammad Sohrabi Cover photo: The three vagrant species, Circinaria fruticulosa, C. gyrosa,andC. hispida, growing at the same spot: Iran, East Azerbaijan province.
    [Show full text]