Forest Creeks Research Natural Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environmental Conditions Appendix II
Environmental Conditions Environmental Conditions Appendix II The unique geology, hydrology and climates of the Deschutes River Subbasin create a diverse mix of habitat conditions for fish and wildlife. These populations are linked to the ecosystems in which they live and their health, individual characteristics and abundance reflect the diversity ― and quality ― of their environments. Fish populations, for instance, developed complex life histories through time that responded to the subbasin’s considerable variation in habitat conditions. Stream flows, water temperatures, substrate characteristics and other combined attributes affected anadromous fish distribution within the subbasin and timing of migration. Wildlife population abundance and distribution also developed in response to habitat conditions. Native grasslands once covered vast areas and supported species such as sage grouse, which once occurred exclusively in this habitat. Loss of grassland habitat greatly reduced such populations. Today subbasin habitat conditions continue to influence fish and wildlife production, distribution and survival. These habitats and their attributes ― as well as the aquatic and terrestrial populations they support ― are affected by both natural watershed processes and human activities that influence flow, water quality, upland and riparian conditions and instream habitat. This chapter examines how environmental conditions in the Deschutes watershed affect the subbasin’s fish and wildlife populations. Building on the more general review provided in the Overview, the discussion characterizes the environmental conditions within three watershed areas: the Lower Deschutes watershed (below RM 100), Crooked River watershed, and Upper Deschutes watershed (above RM 100). It characterizes the natural watershed environments, such as geology, climate and hydrology, and the focal fish species they support. -
Plant Species of Special Concern and Vascular Plant Flora of the National
Plant Species of Special Concern and Vascular Plant Flora of the National Elk Refuge Prepared for the US Fish and Wildlife Service National Elk Refuge By Walter Fertig Wyoming Natural Diversity Database The Nature Conservancy 1604 Grand Avenue Laramie, WY 82070 February 28, 1998 Acknowledgements I would like to thank the following individuals for their assistance with this project: Jim Ozenberger, ecologist with the Jackson Ranger District of Bridger-Teton National Forest, for guiding me in his canoe on Flat Creek and for providing aerial photographs and lodging; Jennifer Whipple, Yellowstone National Park botanist, for field assistance and help with field identification of rare Carex species; Dr. David Cooper of Colorado State University, for sharing field information from his 1994 studies; Dr. Ron Hartman and Ernie Nelson of the Rocky Mountain Herbarium, for providing access to unmounted collections by Michele Potkin and others from the National Elk Refuge; Dr. Anton Reznicek of the University of Michigan, for confirming the identification of several problematic Carex specimens; Dr. Robert Dorn for confirming the identification of several vegetative Salix specimens; and lastly Bruce Smith and the staff of the National Elk Refuge for providing funding and logistical support and for allowing me free rein to roam the refuge for plants. 2 Table of Contents Page Introduction . 6 Study Area . 6 Methods . 8 Results . 10 Vascular Plant Flora of the National Elk Refuge . 10 Plant Species of Special Concern . 10 Species Summaries . 23 Aster borealis . 24 Astragalus terminalis . 26 Carex buxbaumii . 28 Carex parryana var. parryana . 30 Carex sartwellii . 32 Carex scirpoidea var. scirpiformis . -
Chapter Vii Table of Contents
CHAPTER VII TABLE OF CONTENTS VII. APPENDICES AND REFERENCES CITED........................................................................1 Appendix 1: Description of Vegetation Databases......................................................................1 Appendix 2: Suggested Stocking Levels......................................................................................8 Appendix 3: Known Plants of the Desolation Watershed.........................................................15 Literature Cited............................................................................................................................25 CHAPTER VII - APPENDICES & REFERENCES - DESOLATION ECOSYSTEM ANALYSIS i VII. APPENDICES AND REFERENCES CITED Appendix 1: Description of Vegetation Databases Vegetation data for the Desolation ecosystem analysis was stored in three different databases. This document serves as a data dictionary for the existing vegetation, historical vegetation, and potential natural vegetation databases, as described below: • Interpretation of aerial photography acquired in 1995, 1996, and 1997 was used to characterize existing (current) conditions. The 1996 and 1997 photography was obtained after cessation of the Bull and Summit wildfires in order to characterize post-fire conditions. The database name is: 97veg. • Interpretation of late-1930s and early-1940s photography was used to characterize historical conditions. The database name is: 39veg. • The potential natural vegetation was determined for each polygon in the analysis -
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone. -
Sutton Mountain Painted Hills Pat's Cabin
visitors guide sutton mountain pat’s cabin painted hills proposed wilderness areas oregon natural desert association John Day River area (photo © Tyler Roemer) area facts Plant Communities Welcome to Sutton Mountain, Pat’s Cabin, Sutton Mountain, Pat’s Cabin, and Painted Hills are all dominated by big sagebrush, Painted Hills Proposed Wilderness Areas native bunchgrasses, and western juniper, Located near Mitchell, Oregon, and surrounding the Painted Hills National Monument, Sutton providing important habitat and forage for Mountain, Pat’s Cabin, and Painted Hills Proposed Wilderness Areas provide spectacular vistas of native wildlife. The sagebrush-juniper wood- the John Day River, Bridge Creek valley and surrounding landscape. These unique wild areas offer lands that characterize these unique areas recreational opportunities for hikers, horseback riders, hunters, botanists and other outdoor enthu- provide vital habitat for the sensitive species siasts. The proposed wilderness areas encompass Arrowleaf thelypody and Peck’s milkvetch. a diversity of habitat types including grasslands, riparian areas, sagebrush shrub steppe, wood- Wildlife lands, and forests. They also provide important This unique area provides essential habitat habitat for threatened summer steelhead and for a variety of wildlife, such as Western Chinook salmon. toads, lizards, snakes, Pygmy rabbits, bobcats, coyotes, cougar, mule deer, California bighorn Sutton Mountain The John Day River winds lazily around the sheep, and elk. A large number of birds base of Sutton Mountain, an iconic gem of also frequent the areas, including pileated the John Day Basin. This 29,000-acre potential woodpeckers, white-headed woodpeckers, wilderness area towers over steep ravines, native red-naped sapsuckers, ferruginous hawks, grasslands, and dramatic clay formations. -
Mountain Plants of Northeastern Utah
MOUNTAIN PLANTS OF NORTHEASTERN UTAH Original booklet and drawings by Berniece A. Andersen and Arthur H. Holmgren Revised May 1996 HG 506 FOREWORD In the original printing, the purpose of this manual was to serve as a guide for students, amateur botanists and anyone interested in the wildflowers of a rather limited geographic area. The intent was to depict and describe over 400 common, conspicuous or beautiful species. In this revision we have tried to maintain the intent and integrity of the original. Scientific names have been updated in accordance with changes in taxonomic thought since the time of the first printing. Some changes have been incorporated in order to make the manual more user-friendly for the beginner. The species are now organized primarily by floral color. We hope that these changes serve to enhance the enjoyment and usefulness of this long-popular manual. We would also like to thank Larry A. Rupp, Extension Horticulture Specialist, for critical review of the draft and for the cover photo. Linda Allen, Assistant Curator, Intermountain Herbarium Donna H. Falkenborg, Extension Editor Utah State University Extension is an affirmative action/equal employment opportunity employer and educational organization. We offer our programs to persons regardless of race, color, national origin, sex, religion, age or disability. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert L. Gilliland, Vice-President and Director, Cooperative Extension -
Crooked River Agricultural Water Quality Management Area Plan
Crooked River Agricultural Water Quality Management Area Plan February 2021 Developed by the Oregon Department of Agriculture and the Crooked River Local Advisory Committee with support from the Crook County Soil and Water Conservation District Oregon Department of Agriculture Crook County SWCD Water Quality Program 498 SE Lynn Blvd 635 Capitol St. NE Prineville, OR 97754 Salem, OR 97301 (41) 477-3548 Phone: (503) 986-4700 Website: oda.direct/AgWQPlans (This page is blank) Table of Contents Acronyms and Terms ....................................................................................................................................i Foreword ........................................................................................................................................................ iii Required Elements of Area Plans .......................................................................................................... iii Plan Content .................................................................................................................................................. iii Chapter 1: Agricultural Water Quality Program ........................................................................ 1 1.1 Purpose of Agricultural Water Quality Program and Applicability of Area Plans ..... 1 1.2 History of the Ag Water Quality Program .............................................................................. 1 1.3 Roles and Responsibilities ........................................................................................................ -
Of Beaver Dams Along Bridge Creek in Central Oregon
Rick Demmer, Bureau of Land Management, Prineville, Oregon 97554 and Robert L. Beschta1, College of Forestry, Oregon State University, Corvallis, Oregon 97330 Recent History (1988-2004) of Beaver Dams along Bridge Creek in Central Oregon Abstract Bridge Creek is a low-gradient stream in the John Day River basin of eastern Oregon. After decades of grazing, riparian vegetation along a 31.7 km reach was sparse and low in diversity, vegetated floodplains were typically narrow, and the stream was relatively wide and shallow. Cattle grazing within this reach was reduced in 1988, irrigation diversion ditches were replaced with culverts in 1989, and beaver (Castor canadensis) trapping was discontinued after 1991. Between 1988 and 2004, we inventoried beaver dams and ponds twice a year and estimated their dimensions. Field notes and photographs were used to document habitat use and better understand the potential role of beaver with regard to channel morphology and riparian plant communities. The an- nual number of beaver dams present in the study reach ranged from 9 to 103. On average, dams were nearly 8 m in length with ponds extending upstream 26 m. We also found that beaver dams/ponds, over time, typically accumulated sediment, improved conditions for establishment and growth of riparian plants, and altered channels. Dams that breached during periods of high flow often contributed to long-term increases in channel complexity through the formation of new meanders, pools, and riffles. Exposed sediment deposits associated with breached dams provided fresh seedbeds for regeneration of willows (Salix spp.), black cottonwood (Populus balsamifera ssp. trichocarpa), and other riparian plants. -
Porcupine Saddle Plant List
PPPLLLAAANNNTTTSSS AAALLLOOONNNGGG TTTRRRAAAIIILLL ###111999666 FFFOOORRRBBBSSS (((hhheeerrrbbbaaaccceeeooouuusss ppplllaaannntttsss ooottthhheeerrr ttthhhaaannn gggrrraaasssssseeesss aaannnddd ssseeedddgggeeesss))) 1. Achillea millefolium Yarrow N 2. Anaphalis margaritacea Pearly everlasting N 3. Antennaria sp. Pussy-toes N 4. Antennaria microphylla Rosy pussy-toes N 5. Antennaria racemosa Raceme pussy-toes N 6. Arabis holboellii Holboell’s rockcress N 7. Arenaria macrophylla Large-leaf sandwort N 8. Arnica cordifolia Heartleaf arnica N 9. Arnica latifolia Mountain arnica N 10. Aster sp. Aster N 11. Capsella bursa-pastoris Shepherd’s-purse I 12. Cerastium viscosum Sticky chickweed I 13. Chenopodium sp. Lamb’s quarters; goosefoot I? 14. Collinsia parviflora Blue-eyed Mary N 15. Delphinium occidentale Tall larkspur N 16. Dodecatheon jeffreyi Jeffrey’s shooting-star N 17. Epilobium angustifolium Fireweed N 18. Epilobium minutum Small-flowered willow-herb N 19. Epilobium watsonii Northern willow-herb N 20. Fragaria vesca Woods strawberry N 21. Fragaria virginiana Wild strawberry N 22. Gayophytum sp. Groundsmoke N? 23. Geum macrophyllum Large-leaved avens N 24. Gnaphalium viscosum Sticky cudweed N 25. Hieracium sp. Hawkweed N 26. Iliamna rivularis Mountain hollyhock N 27. Ligusticum canbyi Canby’s licorice-root N 28. Lupinus argenteus var. argenteus Silvery lupine N 29. Mitella pentandra Alpine mitrewort; bishops cap N 30. Osmorhiza purpurea Purple sweet-cicely N 31. Penstemon albertinus Albert’s penstemon N 32. Penstemon wilcoxii Wilcox’s penstemon N 33. Perideridia gairdneri Yampah N 34. Phacelia heterophylla Virgata phacelia N 35. Plantago major Common plantain I 36. Ranunculus uncinatus Little buttercup N 37. Rumex acetosella Sheep sorel I 38. Saxifraga arguta Brook saxifrage N 39. Senecio triangularis Arrowleaf groundsel N 40. -
This File Was Created by Scanning the Printed Publication
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions. -
Phylogenies and Secondary Chemistry in Arnica (Asteraceae)
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 392 Phylogenies and Secondary Chemistry in Arnica (Asteraceae) CATARINA EKENÄS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7092-0 2008 urn:nbn:se:uu:diva-8459 !"# $ % !& '((" !()(( * * * + , - . , / , '((", + 0 1# 2, # , 34', 56 , , 70 46"84!855&86(4'8(, - 1# 2 . * 9 10-2 . * . # 9 , * * 1 ! " #! !$ 2 1 2 .8 # * * :# 77 1%&'(2 . !6 '3, + . .8 ) / , ; < * . * ** # , * * * , 09 * . # * * 33 * != , 0- # 9 * * 1, , * 2 . * , 0 * * * * * . * , $ * 0- * % # , # 8 * * * * * * $8> # . * * !' , * * . ** , ? . 0- , +,- # # 7-0 -0 :+' 9 +# $8> ./0) . ) 1 ) 2 * 3) ) .456(7 ) , @ / '((" 700 !=5!8='!& 70 46"84!855&86(4'8( ) ))) 8"&54 1 );; ,/,; A B ) ))) 8"&542 List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals: I Ekenäs, C., B. G. Baldwin, and K. Andreasen. 2007. A molecular phylogenetic -
County Natural Resources Policy
Crook County Oregon Natural Resources Policy Crook County Board of County Commissioners CROOK COUNTY NATURAL RESOURCES PLAN REVISION 013 1 | Page Table of Contents Contents Introduction ................................................................................................................................................... 4 Purpose & Need ........................................................................................................................................ 4 Revision .................................................................................................................................................... 5 Severability ............................................................................................................................................... 5 Crook County Overview ............................................................................................................................... 6 Land Use & Management ......................................................................................................................... 8 Agriculture & Timber ............................................................................................................................... 9 Recreation & Tourism ............................................................................................................................. 10 Wilderness and Areas of Critical Environmental Concern ..................................................................... 10 Principles for Local Government