Evolution and Biogeography of Buxus L. (Buxaceae) in Cuba and the Caribbean

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Biogeography of Buxus L. (Buxaceae) in Cuba and the Caribbean Evolution and biogeography of Buxus L. (Buxaceae) in Cuba and the Caribbean Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Pedro Alejandro González Gutiérrez aus Gibara, Kuba Berlin, Juni 2014 This work was carried out between 2009 and 2014 under the supervision of Prof. Dr. Thomas Borsch in Institut für Biologie, Systematische Botanik und Pflanzengeographie der Freien Universität Berlin. 1st Reviewer: Prof. Dr. Thomas Borsch 2nd Reviewer: Prof. Dr. Kurt Zoglauer Date of defense: 17. Juli 2014 II Acknowledgements Herewith I would like to thank Prof. Dr. Thomas Borsch and the institution led by him, the Botanical Garden and Botanical Museum Berlin-Dahlem (BGBM), for the support during the last five years. Prof. Borsch accepted me as doctoral student in 2009 and from that date to the present I have always had his support and advice. Without his constant support and that of the BGBM this thesis would have remained a dream. Special thanks to the members of my dissertation committee for generously offering their time, for their attention and patience. For their encouragement and various kinds of help I thank Dr. Rosa Rankin Rodríguez (National Botanical Garden of Cuba), Prof. Dr. Egon Köhler (Humboldt University, HU) and Prof. Dr. Kurt Zoglauer (HU). Dr. Rankin provided valuable information about the cultivated species of Buxus in the National Botanical Garden of Cuba and about herbarium specimens. Dr. Köhler has shared with me his rich knowledge about the Cuban Buxus and Dr. Zoglauer suggested me to make my doctoral thesis on Buxus during my first visit to Berlin in 2005. I am deeply indebted to Dr. Susy Fuentes Bazan (BGBM), who kindly and patiently explained to me every detail regarding the work in the laboratory and who got me started with data analysis, for sharing with me her knowledge. Also I am grateful for her encouragement and her support in the organization of my last visit to Berlin. Further I thank Dr. Andrea Rupps (HU) for her help in organizing my previous visits to Berlin. My warmest thanks are extended to Dr. Angela T. Leyva Sánchez and the institution led by her, the National Botanical Garden of Cuba, for giving me the possibility of working with the living collection of Cuban Buxus and for her valuable support in many ways. I appreciate the advice of Prof. Dr. Werner Greuter on nomenclatural issues of the chapter 3 of this thesis. My thanks also go to the German Service of Academic Exchange (DAAD) for supporting me with scholarships (December/2009-May/2010, March/2011-June/2011). I III am grateful also to the Society of Friends of the Botanischer Garten und Botanisches Museum Berlin-Dahlem for supporting the fieldwork in Cuba and my stays in Berlin (2009-2010, 2010-2011, 2012 and 2013-2014). My thanks extend to the Cuban and Panamanian environmental authorities for providing permissions to collect samples included in this study. I am very grateful to the following people and institutions for collaborating with this work with samples, pictures and valuable information: Lic. Carmen Galdames (Smithsonian Tropical Research Institute, Panama), Dr. James C. Salomon (MO, USA), Dr. Lilian Ferrufino (TEFH, Honduras), Dr. Alberto Areces (Puerto Rico), Dr. Miguel Cházaro (University of Guadalajara, México), M. Sc. Sergio Avendaño (Institute of Xalapa, México), M. Sc. Yocupitzia Ramírez (Institute of Ecology, Michoacán, México), Dr. John Clark (University of Alabama, USA). To the curators and staff of the herbaria B, HAJB, IEB, MO, NY, TEFH, US, XAL. For their collaboration in the field, thanks go to Dr. Jorge Gutiérrez (National Botanical Garden of Cuba), Dr. Nils Köster (BGBM), M. Sc. Wilder Carmenate (Botanical Garden of Holguín, Cuba), M. Sc. Orestes Méndez (University of Las Villas, Cuba), M. Sc. Idelfonso Castañeda (Botanical Garden of Santa Clara, Cuba). For their advice and valuable support: Dr. Federico Luebert (University of Bonn, Germany), Dr. Marc Appelhans (University of Göttingen, Germany), Dr. Angélica Cervantes (México), Dr. Natalia Filipowicz (Gdansk, Poland), Dr. Rocío Santos (University of Sevilla, Spain). For his support and supervision in the laboratory I appreciate the collaboration of Ing. Kim Govers. Also for their support and collaboration in the laboratory I thank Bettina Giesicke (Institute for Biology of the Free University of Berlin, IB-FU), Dipl. Biol. Doreen Weigel (FU) and Dr. Markus Ackermann. Ramona Henkel (HU) and her supervisor Prof. Dr. Gert Dudel (Technic University of Dresden) helped with the determination of nickel concentrations. Lic. David Lambert identified the species of insects seen in the flowers of Cuban Buxus. I thank Dr. Nadja Korotkova (BGBM), Dr. Sasha Ismail (BGBM), Dr. Lars Nauheimer (IB-FU), Dr. Ludo Muller (IB-FU) and Dipl. Biol. Virginia Duwe for their useful commentaries on early versions of chapters and summaries of this thesis. Thanks go also to Mrs Margitta Hielscher (HU), Michael Rodewald (BGBM) and Tamara Freyer-Dohlus for their assistance in the microscopy and the preparation of the IV illustrations, respectively. I thank Dipl. Geogr. Bastian Stößel for his help with editing of maps. I also appreciate the assistance and support of my colleagues in Berlin: Dipl. Biol. Vanessa Di Vincenzo and Christina Grüber; and of my colleagues of Centro de Investigaciones y Servicios Ambientales y Tecnológicos de Holguín (CISAT): Elier, Tony, Carmen, Sara Ilse, Sara, Alejandro, Carlos, Sergio, José Alberto, Elena, Frank, David, Yanier, Beatriz, Jacobo and Osvaldo, for their constant support. Special thanks go to the departments of International collaboration of CISAT, of the Delegation of Ministry of Sciences, Technology and Environment in Holguín and to Lucia Pérez in the office of protocol of CITMA in Havana for their valuable help and support. I am endlessly grateful to my family, in a wide sense, for their support in all ways. I specially thank my mother Miriam and my sister María, for their constant effort and love which helped me to achieve this goal. My deep gratitude goes to my wife Zaharaí and my children Carlitos and Sandra for being my inspiration and the most important reason to continue. To my family in Berlin, Gila and Rolf Hamacher for adopting me as a true member of their family and for their valuable help and sincere friendship in all circumstances. I thank to Marco and Tanja Hamacher, and Prof. Dr. Max Steller for their support. Thanks go also to my sister- in- law Lynn Woolfrey for helping me with corrections to my English and to my brother Omar for his support. I am indebted to my friends Octavio and Martina, Mandy and Yudith, Claribel and Rene, Elke and Dörthe for nice moments in Berlin and for their valuable support. Thanks go to Lucy and Maikel for their support in Havana, to Lino Céspedes and Nelida Abarca for their valuable help in decisive moments. I am grateful to Cuba and its nature for being an endless source of inspiration in my work. Final thanks go to my professor Dr. Jorge Sierra Calzado for showing me the way to Botany through his wonderful lectures on Systematic Botany in 1994-1995 at the University of Oriente in Santiago de Cuba, and to my father Pedro Emilio for encouraging me to continue my studies to obtain my doctorate. To my professor and friend Jorge Sierra and to my father Pedro to whom I dedicate this work. V Summary González Gutiérrez, Pedro Alejandro. 2014. Evolution and biogeography of Buxus L. (Buxaceae) in Cuba and the Caribbean. Doctoral thesis, Fachbereich Biologie, Chemie, Pharmazie. Institut für Biologie/Botanik, Freie Universität Berlin, Germany. Buxus L. is the largest genus of the family Buxaceae, with c. 100 species distributed in all continents except Australia and Antarctica. The centres of morphological and ecological diversity of Buxus are the Caribbean, East Asia and Africa including Madagascar. Cuba is the territory with the highest number of Buxus taxa in the world. In Cuba a total of 37 species and seven subspecies of this genus occur, 95% of which are endemic. Most Cuban Buxus are endemic to the serpentine outcrops in east, central and west Cuba while a smaller number of species inhabits limestone areas of the island. About 50% of the Cuban Buxus accumulate or hyperaccumulate nickel (Ni), being the only members of the family Buxaceae with such ability. The adaptation to growth on serpentines and their capacity to accumulate or hyperaccumulate Ni appeared among the factors triggering the evolution of Buxus and other groups in the Cuban flora. For the reasons exposed above the Cuban and Caribbean Buxus are an appealing group for biogeographical and evolutionary studies. This study uses them as a model to address the following questions: (1) Are the Cuban and the other Caribbean Buxus a monophyletic group? (2) When did Buxus arrive in the Caribbean and when occurred the diversification of the genus on the islands? (3) What are now the closest relatives and were then the ancestors of Cuban and Caribbean Buxus and where did they occur? (4) Are there specific migration routes of Buxus in the Caribbean? and (5) Which factors have triggered the speciation of Buxus in Cuba? Following a detailed introduction that summarizes our current state of knowledge and reviews the existing literature, Chapter 2 of this thesis focuses on the phylogeny and biogeography of Buxus including a total of 53 species of Buxus, where 34 species and 5 subspecies are from Cuba (c. 90% of taxa known), several also from different localities, and also species from the Bahamas, Hispaniola, Jamaica, Mexico, Panama and Puerto Rico. Buxus representatives from Eurasia and Africa were also included. The outgroup includes all other genera of Buxales and representatives of VI Trochodendrales, Proteales, Sabiales and Ranunculales.
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
    Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion ..........................................................................................................................................
    [Show full text]
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Buxus Sempervirens1
    Fact Sheet FPS-80 October, 1999 Buxus sempervirens1 Edward F. Gilman2 Introduction Long a tradition in colonial landscapes, Boxwood is a fine- textured plant familiar to most gardeners and non-gardeners alike (Fig. 1). Eventually reaching 6- to 8-feet-tall (old specimens cab be much taller), Boxwood grows slowly into a billowing mound of soft foliage. Flowers are borne in the leaf axils and are barely noticeable to the eye, but they have a distinctive aroma that irritates some people. General Information Scientific name: Buxus sempervirens Pronunciation: BUCK-sus sem-pur-VYE-renz Common name(s): Common Boxwood, Common Box, American Boxwood Family: Buxaceae Plant type: shrub USDA hardiness zones: 6 through 8 (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Origin: not native to North America Figure 1. Common Boxwood. Uses: border; edging; foundation; superior hedge Availablity: generally available in many areas within its Growth rate: slow hardiness range Texture: fine Description Foliage Height: 8 to 20 feet Spread: 10 to 15 feet Leaf arrangement: opposite/subopposite Plant habit: round Leaf type: simple Plant density: dense Leaf margin: entire 1.This document is Fact Sheet FPS-80, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu. 2.Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611. The Institute of Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap, or national origin.
    [Show full text]
  • Cylindrocladium Buxicola Nom. Cons. Prop.(Syn. Calonectria
    I Promotors: Prof. dr. ir. Monica Höfte Laboratory of Phytopathology, Department of Crop Protection Faculty of Bioscience Engineering Ghent University Dr. ir. Kurt Heungens Institute for Agricultural and Fisheries Research (ILVO) Plant Sciences Unit - Crop Protection Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe II Bjorn Gehesquière Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences III Dutch translation of the title: Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) in Buxus: moleculaire karakterisering, epidemiologie, waardplantresistentie en chemische bestrijding. Please refer to this work as follows: Gehesquière B. (2014). Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide control. Phd Thesis. Ghent University, Belgium The author and the promotors give authorisation to consult and to copy parts of this work for personal use only. Any other use is limited by Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. The promotors, The author, Prof. dr. ir. M. Höfte Dr. ir. K. Heungens ir. B. Gehesquière IV Een woordje van dank…. Dit dankwoord schrijven is ongetwijfeld het leukste onderdeel van deze thesis, en een mooie afsluiting van een interessante periode. Terugblikkend op de voorbije vier jaren kan ik enkel maar beamen dat een doctoraat zoveel meer is dan een wetenschappelijke uitdaging. Het is een levensreis in al zijn facetten, waarbij ik mezelf heb leren kennen in al mijn goede en slechte kantjes.
    [Show full text]
  • A Visual Guide to Collecting Plant Tissues for DNA
    A visual guide to collecting plant tissues for DNA Collecting kit checklist Silica gel1 Permanent marker and pencil Resealable bags, airtight plastic container Razor blade / Surgical scissors Empty tea bags or coffee filters Ethanol and paper tissue or ethanol wipes Tags or jewellers tags Plant press and collecting book 1. Selection and preparation of fresh plant tissue: Sampling avoided. Breaking up leaf material will bruise the plant tissue, which will result in enzymes being released From a single plant, harvest 3 – 5 mature leaves, or that cause DNA degradation. Ideally, leaf material sample a piece of a leaf, if large (Picture A). Ideally should be cut into smaller fragments with thick a leaf area of 5 – 10 cm2 should be enough, but this midribs being removed (Picture C). If sampling robust amount should be adjusted if the plant material is leaf tissue (e.g. cycads, palms), use a razor blade or rich in water (e.g. a succulent plant). If leaves are surgical scissors (Picture D). small (e.g. ericoid leaves), sample enough material to equate a leaf area of 5 – 10 cm2. If no leaves are Succulent plants available, other parts can be sampled such as leaf buds, flowers, bracts, seeds or even fresh bark. If the If the leaves are succulent, use a razor blade to plant is small, select the biggest specimen, but never remove epidermal slices or scoop out parenchyma combine tissues from different individuals. tissue (Picture E). Cleaning Ideally, collect clean fresh tissues, however if the leaf or plant material is dirty or shows potential contamination (e.g.
    [Show full text]
  • Assessment of Forest Pests and Diseases in Native Boxwood Forests of Georgia Final Report
    Assessment of Forest Pests and Diseases in Native Boxwood Forests of Georgia Final report Dr. Iryna Matsiakh Forestry Department, Ukrainian National Forestry University (Lviv) Tbilisi 2016 TABLE OF CONTENT LIST OF TABLES AND FIGURES .................................................................................................................................. 2 ABBREVIATIONS AND ACRONYMS ........................................................................................................................... 5 EXECUTIVE SUMMARY .................................................................................................................................................. 6 INTRODUCTION .............................................................................................................................................................. 10 1. BACKGROUND INFORMATION ............................................................................................................................ 11 1.1. Biodiversity of Georgia ........................................................................................................................................ 11 1.2. Forest Ecosystems .................................................................................................................................................. 12 1.3. Boxwood Forests in Forests Habitat Classification ................................................................................. 14 1.4. Georgian Forests Habitat in the Context of Climate Change
    [Show full text]
  • Vahl's Boxwood, (Buxus Vahlii Baill.): a Federally Endangered Tree of St
    Vahl’s Boxwood, (Buxus vahlii Baill.): A Federally Endangered Tree of St. Croix and Puerto Rico Michael Morgan and Thomas W. Zimmerman Agroforestry Research Specialist II, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands; Research Associate Professor, Biotechnology and Agroforestry, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands Abstract three other sites support populations with fewer than 500 individuals. There are also two known sites in Vahl’s boxwood (Buxus vahlii Baill.) is a federally en- Puerto Rico that support small populations of Vahl’s dangered tree that occurs on four sites in St Croix. It is boxwood (Carrera-Rivera 2001, Daley and Ray 2014, related to the European ornamental bush common box- Daley and Valiulis 2013). wood (Buxus sempervirens L.), which is often trimmed to make elaborate hedges or topiaries in temperate Vahl’s boxwood is threated by urban development climates around the world. The University of the Virgin resulting in habitat fragmentation and destruction, Islands produces containerized seedlings of Vahl’s competition with exotic plant species such as snake boxwood so they can be planted in protected areas on plant (Sansevieria trifasciata hort. ex Prain.) and the island of St. Croix. This nursery stock, once planted coral vine (Antigonon leptopus Hook. & Arn.), as well in permanent sites, will augment the number of plants as devastating human-caused wildfires. Moreover, the growing in the wild, thus reducing the possibility of species is threatened by its own reproductive biology. this rare plant species going extinct. This article de- Seed dispersion occurs when the seed capsules dry scribes the species’ characteristics and our techniques out and split.
    [Show full text]
  • (Simmondsia Chinensis (LINK) Schneider) to the Site of Cultivation at Egypt
    Arabian Journal of Medicinal & Aromatic Plants Response of growth and wax production of Jojoba Response of growth and wax production of Jojoba (Simmondsia Chinensis (LINK) Schneider) to the site of cultivation at Egypt. 1 2 . 1, 1 Salah M. Mahmoud , Saber F. Hendawy , Ibrahium M . F Mahmoud A. El Serafy , and Hussan A. Youssf 1 1El-Azhar Univ. Faculty of Agric, Dept of Horticulture, Nasr City Cairo, Egypt. 2Medicinal and Aromatic Plants Researches Dept., Pharmaceutical and Drug Industries Researches Division, National Research Center, Egypt Received: September 09th, 2016; Accepted: February 15th, 2017 Jojoba plant (Simmondsia Chinensis (link) Schneider), or Ho-Ho-ba or goat nut is a shrub belonging to the Simmondsiaceae family. It is well known as a useful medicinal plant and as a new crop of interest for many industrial purposes. The present study was carried out duringhe two successive seasons of 2012/ 2013 and 2013/ 2014 in private jojoba farms located as following: El-Kassasin city, El-Ismailia, Marsa Matroh, El-Sharkia, Asuite and El-Khanka governorates(Egypt). The study focused on studying the effect of the different local growing site of Egypt on the growth and wax production, and aiming to detect the best location for the suitable growing site to produce the best growth and wax yield. Nine jojoba female shrubs were selected in each farm from the growing shrubs depending on its obvious morphological growth characters and the different seeds shape and then they were marked by labels for data measurements. The monthly temperature and relative humidity average during the study seasons of culture were taken and recorded.
    [Show full text]
  • Preliminary Results on Climate Change Evidence from Coprolites of Myotragus Balearicus Bate 1909 (Artiodactyla, Caprinae)
    Preliminary results on climate change evidence from coprolites of Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae) Rivera L., Baraza E., Alcover J., Bover P., Retuerto C., Martínez X., Bartolomé J. in Acar Z. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.). New approaches for grassland research in a context of climate and socio-economic changes Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 102 2012 pages 65-68 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6833 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Rivera L., Baraza E., Alcover J., Bover P., Retuerto C., Martínez X., Bartolomé J. Preliminary results on climate change evidence from coprolites of Myotragus balearicus Bate 1909 (Artiodactyla, Caprinae). In : Acar Z. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.). New approaches for grassland research in a context of climate and socio-economic changes. Zaragoza : CIHEAM, 2012. p. 65-68 (Options Méditerranéennes : Série
    [Show full text]