ISAE-Supaero's Open-Source Software Tool for Teaching Classical Orbital
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orbit Determination
Transiting Exoplanet Survey Satellite Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences ( . - -~ . ' : .•. ' Joel J. K. Parker NASA Goddard Space Flight Center ', ~Qi Ryan L. Lebois L3 Applied Defense Solutions .•.-· e, • i Stephen Lutz L3 Applied Defense Solutions ,/,#· Craig Nickel L3 Applied Defense Solutions Kevin Ferrant Omitron, Inc. Adam Michaels Omitron, Inc. August 22, 2018 Contents Mission Overview Flight Dynamics Ground System TESS Commissioning . Launch . Phasing Loops & Maneuver Execution . PAM & Extended Mission Design . Commissioning Results Orbit Determination Conclusions 2 Mission Overview—Science Goals Primary Goal: Discover Transiting Earths and Super-Earths Orbiting Bright, Nearby Stars . Rocky planets & water worlds . Habitable planets Discover the “Best” ~1000 Small Exoplanets . “Best” means “readily characterizable” • Bright Host Stars • Measurable Mass & Atmospheric Properties Unique lunar-resonant mission orbit provides long view periods without station-keeping 27 days 54 days Large-Area Survey of Bright Stars . F, G, K dwarfs: +4 to +12 magnitude . M dwarfs known within ~60 parsecs . “All sky” observations in 2 years . All stars observed >20 days . Ecliptic poles observed ~1 year (JWST Continuous Viewing Zone) 3 s Mission Overview—Spacecraft LENS HOOD THERMAL . LENSES BLANKETS SUN SHADE REACTION WHEELS DETECTORS ELECTRONICS SOLAR ARRAYS MASTER ANTENNA COMPUTER PROPULSION TANK STRUCTURE Northrop Grumman LEOStar-2/750 bus Attitude Control: Propulsion: -
A Software Package to Support Mission Analysis and Orbital Mechanics Calculations
A Software Package to Support Mission Analysis and Orbital Mechanics Calculations Jorge Tiago Melo Barbosa da Silva e Vila Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. Paulo Jorge Soares Gil Examination Committee Chairperson: Prof. João Manuel Lage de Miranda Lemos Supervisor: Prof. Paulo Jorge Soares Gil Members of the Committee: Prof. Bertinho Manuel D'Andrade da Costa July of 2015 Dedicated to the loving memory of my grandfather Joaquim Barbosa, whom I shall always remember. Acknowledgements Firstly, I would like to express my gratitude to my supervisor Prof. Paulo Gil for the ideas, remarks, comments, and many engaging conversations which not only saw me through the learning process of this thesis, but also helped me personally. I want to thank Dr. Carlos del Burgo Díaz for the confidence shown in future applications of the software and the help provided with the star map alignment. I want to acknowledge Patrice-Emmanuel Schmitz, from the Open Source Observatory and Repository, for his legal opinions regarding the EUPL licensing. Furthermore, I want to thank Pavel Holoborodko for the excellent MPFR C++ interface class and the professionalism, sympathy, and cooperation displayed while resolving licensing issues. I would also like to thank my parents for the care and interest shown throughout the years in my education, and for the support given in pursuing the interests which led me here. Lastly, I want to express my deepest gratitude to Ana Morais for the love, patience, and continuous support during the development of this thesis. Without you none of this would have been possible. -
Sg423finalreport.Pdf
Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites -
1 James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation Using Task Parallelism Jeremy Petersen
James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism Jeremy Petersen(1), Jason Tichy(2), Geoffrey Wawrzyniak(3), and Karen Richon(4) (1,2,3)a.i. solutions, Inc., 10001 Derekwood Lane, Lanham, MD 20706, 301-306-1756, [email protected]. (4)Code 595.0, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt MD, 20771. 301-286-8845, [email protected]. The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth/Moon L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system. Keywords: James Webb Space Telescope, Task Parallelism, Monte Carlo, Mid-Course Correction, Libration Point Orbit 1. Introduction The James Webb Space Telescope (JWST) is the scientific successor of the Hubble Space Telescope and the Spitzer Space Telescope. -
The Virginia Space Thinsat Program: Maiden Voyage and Future Progressions
SSC18-WKVIII-01 The Virginia Space ThinSat Program: Maiden Voyage and Future Progressions Dale Nash, Sean Mulligan, Regan Smith, Susannah Miller Virginia Commercial Space Flight Authority 4111 Monarch Way #303, Norfolk, VA 23508; 757-440-4020 [email protected] Robert Twiggs, Matt Craft, Jose Garcia Twiggs Space Lab, LLC 2340 Old Hickory Lane, Suite 100, Lexington, KY 40515; 859-312-6686 [email protected] Brenda Dingwall NASA GSFC Wallops Flight Facility Wallops Island, VA; 757-824-2969 [email protected] ABSTRACT Science, technology, engineering, and mathematics (STEM) focus is rapidly being integrated into the modern-day classroom. This focus is essential for developing both the technical minds and creativity of the next generation. The education industry cannot push STEM activities to the next level without the help of outside partners who have industry insight and experience. This is why Virginia Commercial Space Flight Authority (Virginia Space), Twiggs Space Laboratory, LLC (TSL), Northrop Grumman (NG), NASA Wallops Flight Facility (WFF), and Near Space Launch Corp (NSL) have all partnered together to develop the Virginia Space ThinSat Program. With our primary focus being on STEM outreach, the program has developed a new way to bridge the gap between satellite development and the education industry. By utilizing this platform, we have already seen development of beneficial research potential from numerous institutions that shows the promise of a bright future for the Virginia Space ThinSat Program and Extreme Low Earth Orbit (ELEO) research. PROGRAM OVERVIEW National Aeronautics and Space Administration STEM advancement is on the forefront of (NASA). The ThinSat Program was developed with the most technical educator’s minds as the next generation vision to allow students to design and build their own of students are being molded to become the future payloads in order to be challenged with an engineering technical minds of the world. -
Trajectory Optimization for Spacecraft Collision Avoidance
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 9-1-2013 Trajectory Optimization for Spacecraft olC lision Avoidance James W. Sales Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerospace Engineering Commons Recommended Citation Sales, James W., "Trajectory Optimization for Spacecraft oC llision Avoidance" (2013). Theses and Dissertations. 842. https://scholar.afit.edu/etd/842 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. TRAJECTORY OPTIMIZATION FOR SPACECRAFT COLLISION AVOIDANCE THESIS James W Sales, Jr. Lieutenant, USN AFIT-ENY-13-S-01 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Navy, United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-13-S-01 TRAJECTORY OPTIMIZATION FOR SPACECRAFT COLLISION AVOIDANCE THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering James W Sales, Jr., B.S. -
Modeling & Simulation of Cubesat Mission
Photo Credit: Derek Dalle Modeling & Simulation of CubeSat Mission Model-Based Systems Engineering (MBSE) Behavioral Modeling and Execution Integration of MagicDraw, Cameo Simulation Toolkit, STK, and Matlab using ModelCenter Sara Spangelo1 Jet Propulsion Laboratory (JPL), California Institute of Technology Hongman Kim2 Grant Soremekun3 Phoenix Integration, Inc. May 29/30, 2013 1 [email protected], 2 [email protected], [email protected] System Engineering Challenges Conventional approaches: • Focus on subset of subsystems Motivation – Over-simplified, low fidelity Overview – Neglect subsystem interactions Modeling • Requirements verification using average/best/worst-cases Simulating – Fail to capture realistic “dynamic” nature of missions Design Trades • Models and simulations are not integrated! Reflections – “Hacked” together for one-off cases Future Work – Not modular, extensible, reusable Why? Lack of integrated modeling/simulation tools to enable system-level engineering design/analysis. 2 1Type of miniature spacecraft (1U = 10cm3, <1 kg) Image Credit: www.cubesatkit.com System Engineering Challenges Particularly an issue for CubeSats1 because: • Physical components physically integrated Motivation • Extremely constrained: Overview – Limited ability to collect and store energy (e.g. batteries) Modeling • Operational constraints/ decisions coupled Simulating – When to collect data versus download data? Design Trades • Obits are unknown/ dynamic Reflections – Little/ no control over launch orbit Future Work – Experience variation in eclipse duration, may de-orbit • Operate in inefficient/ stochastic environments Integrated models and tools are critical to design and plan for these missions! 1 3 Type of miniature spacecraft (1U = 10cm , <1 kg) 3 Image Credit: www.cubesatkit.com Model-Based Systems Engineering (MBSE1) Why MBSE? 1) Enables system-level model capture Motivation • Formal, accurate, authoritative single source Overview • Contains elements, relationships, interactions Modeling • Multiple compatible views, e.g. -
Aas 98-306 a Modernized Approach to Meet Diversified Earth Observing System (Eos) Am-1 Mission Requirements
AAS 98-306 A MODERNIZED APPROACH TO MEET DIVERSIFIED EARTH OBSERVING SYSTEM (EOS) AM-1 MISSION REQUIREMENTS Lauri Kraft Newman NASA GSFC, Code 572 L Mark E. Hametz, Darrei J. Conway AI Solutions, Inc. From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Hight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer TM software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. -
Modelling a C-Band Space Surveillance Radar Using Systems Tool Kit
UNCLASSIFIED Modelling a C-Band Space Surveillance Radar using Systems Tool Kit Mark Graham and Stephen Bocquet Joint Operations Division Defence Science and Technology Organisation DSTO-TN-1164 ABSTRACT A model of the AN/FPQ-14 C-Band radar was developed using Analytical Graphics, Inc. (AGI) STK software to support studies investigating the operational performance of the system for surveillance of Space and the contribution it could make to the Space situational awareness mission. STK scenarios were developed to assess the detection performance of the radar model against a satellite target with a given orbital altitude, radar cross section (RCS) and minimum signal to noise ratio (SNR) required for detection. These results were compared to those obtained by evaluating the radar range equation. A comparison was also made on the effects of refraction using the effective radius method and International Telecommincations Union (ITU) model. RELEASE LIMITATION Approved for public release UNCLASSIFIED UNCLASSIFIED Published by Joint Operations Division DSTO Defence Science and Technology Organisation 506 Lorimer St Fishermans Bend, Victoria 3207 Australia Telephone: 1300 DEFENCE Fax: (03) 9626 7999 © Commonwealth of Australia 2013 AR-015-569 February 2013 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Modelling a C-Band Space Surveillance Radar using Systems Tool Kit Executive Summary The US Space Surveillance Network (SSN) is a collection of sensors dispersed around the world for surveillance of Space. These sensors are used to detect, track, identify and characterise objects in Space such as payloads, rocket bodies and debris to provide Space situational awareness information. The AN/FPQ-14 is a conventional (dish) radar used for surveillance of Space. -
Basilisk: a Flexible, Scalable and Modular Astrodynamics Simulation Framework
JOURNAL OF AEROSPACE INFORMATION SYSTEMS Vol. 17, No. 9, September 2020 Basilisk: A Flexible, Scalable and Modular Astrodynamics Simulation Framework Patrick W. Kenneally,∗ Scott Piggott,† and Hanspeter Schaub‡ University of Colorado, Boulder, Boulder, Colorado 80309-0431 https://doi.org/10.2514/1.I010762 The Basilisk astrodynamics framework is a spacecraft simulation tool developed with an aim of strict modular separation and decoupling of modeling concerns in regard to coupled spacecraft dynamics, environment interactions, and flight software algorithms. Modules, tasks, and task groups are the three core components that enable Basilisk’s modular architecture. These core components are described and their functionality demonstrated. The Basilisk message-passing system is a critical communications layer that facilitates the routing of input and output data between modules. Furthermore, this paper outlines Basilisk’s data logging and Monte Carlo simulation functionality. The implementation of Basilisk’s Python wrapped C++/C technology stack is described. Finally, a sample spacecraft attitude control simulation demonstrates the modularity and flexibility of the framework. I. Introduction (DARTS)/Dshell [9] software to simulate complex spacecraft behav- PACECRAFT simulation software tools are an indispensable iors and control solution using closed software, and NASA 42 [10] to S part of modern spacecraft design processes. The continual simulate spacecraft with open software. increase in complexity of spacecraft mission and maneuver design, Each tool is developed with a specific subset of space asset dynamical and kinematic design verification, and postlaunch telem- simulation purposes in mind. For example, the OreKit, GMAT, and etry analysis all heavily rely on software simulation tools. These STK tools were initially developed with a focus on high-fidelity orbit simulation tools provide engineers with the ability to increase the dynamics, orbit estimation, orbit propagation, and trajectory design. -
AGI Software and Solutions for Test and Evaluation (T&E)
AGI Software and Solutions for Test and Evaluation (T&E) Agenda . Introductions – Company Overview – Current Industry Test & Evaluation Challenges . AGI Software Support of T&E Workflow – Typcal Test & Evaluation Processes – Software Simulation/Coordination Efforts . Pre-Mission Planning Design – Using Commercial Software for Planning/Analysis/Simulation – Test Event Rehearsal & Replanning . Testing Operations – Real-Time Visualization & Support – Data Analysis & Situational Awareness . Post Flight Analysis – Flight Reconstruction – Analyze Test Data – Refine Procedures & Testing Processes . Q&A Wrap Up AGI Asia Introductions . Matt Halferty – Director, Asia Pacific – US Army Officer - West Point . Jim Head – Partner Manager, Asia Pacific – Masters Degree Strategic Studies – RSIS Singapore . Nate McBee – Systems Engineer Manager, International – Masters Aerospace Engineering - Univ. of Tennessee . Dan Honaker – Aerospace Systems Engineer, Asia Pacific – Masters Aerospace Engineering - Univ. of Colorado . Melissa Honaker – Aerospace Systems Engineer, Asia Pacific – Bachelors Aerospace Engineering - Univ. of Colorado . Alex Ridgeway – Aerospace Systems Engineer, Asia Pacific – Bachelors Aerospace Engineering – Pennsylvania State Univ. AGI Global Overview . Analytical Graphics, Inc. (USA): A Global Aerospace Standard – 45,000+ global software installs – 700+ user organizations worldwide . Provider of COTS software since 1989 – Space mission design & engineering – Satellite operations – Space situational awareness . Validated astrodynamics, -
(Preprint) AAS 16-117 ORION EXPLORATION FLIGHT TEST 1
(Preprint) AAS 16-117 ORION EXPLORATION FLIGHT TEST 1 (EFT-1) BEST ESTIMATED TRAJECTORY DEVELOPMENT Greg N. Holt,∗ and Aaron Browny The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approx- imately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions. INTRODUCTION Following Orion’s successful maiden flight in December 2014, the Orion navigation team com- bined all trajectory data from the mission into a Best Estimated Trajectory (BET) product as seen in Figure1. This product is important for verifying the flight test objectives as well as validating pre- flight simulations and models. The data for the BET included radar tracking for ascent/entry/orbit, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons.