Orbit Determination
Total Page:16
File Type:pdf, Size:1020Kb
Transiting Exoplanet Survey Satellite Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences ( . - -~ . ' : .•. ' Joel J. K. Parker NASA Goddard Space Flight Center ', ~Qi Ryan L. Lebois L3 Applied Defense Solutions .•.-· e, • i Stephen Lutz L3 Applied Defense Solutions ,/,#· Craig Nickel L3 Applied Defense Solutions Kevin Ferrant Omitron, Inc. Adam Michaels Omitron, Inc. August 22, 2018 Contents Mission Overview Flight Dynamics Ground System TESS Commissioning . Launch . Phasing Loops & Maneuver Execution . PAM & Extended Mission Design . Commissioning Results Orbit Determination Conclusions 2 Mission Overview—Science Goals Primary Goal: Discover Transiting Earths and Super-Earths Orbiting Bright, Nearby Stars . Rocky planets & water worlds . Habitable planets Discover the “Best” ~1000 Small Exoplanets . “Best” means “readily characterizable” • Bright Host Stars • Measurable Mass & Atmospheric Properties Unique lunar-resonant mission orbit provides long view periods without station-keeping 27 days 54 days Large-Area Survey of Bright Stars . F, G, K dwarfs: +4 to +12 magnitude . M dwarfs known within ~60 parsecs . “All sky” observations in 2 years . All stars observed >20 days . Ecliptic poles observed ~1 year (JWST Continuous Viewing Zone) 3 s Mission Overview—Spacecraft LENS HOOD THERMAL . LENSES BLANKETS SUN SHADE REACTION WHEELS DETECTORS ELECTRONICS SOLAR ARRAYS MASTER ANTENNA COMPUTER PROPULSION TANK STRUCTURE Northrop Grumman LEOStar-2/750 bus Attitude Control: Propulsion: . 4x reaction wheel assemblies (RWAs), 2x star . 1x 22N ΔV reaction engine assembly (REA) tracker assemblies, 10x coarse sun sensors . 4x 4.5N REA for attitude control Keep-out zones associated with all sensors Instrument: Communications: . 2x S-band omnidirectional antennas 4x camera assemblies . 1x Ka-band high-gain antenna (HGA) 30° by ± 50° rectangular keep-out zone 4 Mission Overview—Trajectory Design Earth-Moon rotating frame Inertial frame Overall mission design: 3.5 phasing loops → lunar flyby → transfer orbit → mission orbit Mission orbit features 2:1 lunar resonance (“P/2”), or 13.67 d mean orbit period 5 Mission Overview—Commissioning TCM3 r . = 478,000 km • IN Burn (75 Rel • Optional Burn • Perigee Passage r3 = 378,000 km (59 Re) Lunar flyby /,\-- --- ( A2M },\.----- 'I I I ra = 270,000_..~i:!! __ ~ 1M Eng ! r,, Bum: backup : : I :I :I :I 250 km all lnj PAM (Per Adjust) Phasi ng Phasing Phasing Transfer Orbit Science Orbit 0 Science Orbit 1 Science Orbit2 Loop 1 Loop 2 Loop 3 (17 d) (14 cl) (6 d) (9 d) (9 d) Ascent and Commissioning (S60 days) Science Operations Overall commissioning is ≤60d process 6 planned maneuvers + 5 optional/backup maneuvers 6 Mission Overview—Navigation Measurement Summary by Altitude Separation through PAM 70 60 lunar 50 flyby 40 30 Altitude (Re)Altitude 20 PAM 10 0 22 Sun 1 Tue 8 Tue 15 Tue 22 Tue 1 Fri Apr 2018 Time (UTCG) Tess Tracking• Tess= No Tracking Navigation support provided by NASA Deep Space Network (DSN) and Space Network (SN) SN post-separation acquisition at +1 min Handover to DSN by +1.5 hr Near-continuous tracking through first phasing loop, then scheduled to cover maneuvers and meet OD accuracy requirements Post-launch SN support scheduled around perigee maneuvers only 7 Flight Dynamics Ground System Tracking Data NASA FDF TESS Flight Dynamics .---------.,----------,,..--------,,--.....---, ,...--"!---, i Ground System: MOC soc CARA DSN j CIL . NASA Flight Dynamics Incoming Facility (FDF) Directory . TESS Flight Dynamics System Message Gateway FDF responsibilities: r----- --------------------------------TESS FOS --------~ Common . Facility/infrastructure data . DSN/SN data interfaces . IOD external verification FDS responsibilities: ! . Maneuver planning GTDS (100) ---------------' . Orbit determination . Product generation . Maneuver reconstruction/calibration Software utilized: Software Use L3 ADS Flight Dynamics System (FDS) Procedure Execution, Data Management NASA General Mission Analysis Tool (GMAT) Maneuver Planning, Ephemeris Generation AGI Orbit Determination Tool Kit (ODTK) Primary Orbit Determination Goddard Trajectory Determination System (GTDS) Backup Orbit Determination SPICE Toolkit DSN Acquisition Generation AGI Systems Tool Kit (STK) Analysis, QA, Visualizations MATLAB Analysis, Plotting 8 Flight Dynamics Ground System Tracking Data NASA FDF TESS Flight Dynamics .---------.,----------,,..--------,,--.....---, ,...--"!---, i Ground System: MOC soc CARA DSN j CIL . NASA Flight Dynamics Incoming Facility (FDF) Directory . TESS Flight Dynamics System Message Gateway FDF responsibilities: r----- --------------------------------TESS FOS --------~ Common . Facility/infrastructure data . DSN/SN data interfaces . IOD external verification FDS responsibilities: ! . Maneuver planning GTDS (100) ---------------' . Orbit determination . Product generation . Maneuver reconstruction/calibration Software utilized: Software Use First end-to- L3 ADS Flight Dynamics System (FDS) Procedure Execution, Data Management end use of NASA General Mission Analysis Tool (GMAT) Maneuver Planning, Ephemeris Generation GMAT in AGI Orbit Determination Tool Kit (ODTK) Primary Orbit Determination Goddard Trajectory Determination System (GTDS) Backup Orbit Determination primary SPICE Toolkit DSN Acquisition Generation maneuver AGI Systems Tool Kit (STK) Analysis, QA, Visualizations planning role MATLAB Analysis, Plotting 9 Launch Performance Launch Date: April 18th 2018 Vehicle: SpaceX Falcon 9 Location: Cape Canaveral Air Force Station, SLC-40 Event Actual (UTC) Delta (s) Liftoff 22:51:30.498 -0.502 Separation 23:41:03.177 +2.177 Element* Pre-Launch BET OD Delta 3σ Requirement Sigma Apogee Altitude [km] 268,622.397 269,330.228 707.831 ± 20,000 0.11 Perigee Altitude [km] 248.456 248.755 0.299 ± 25 0.04 Inclination [deg] 29.563 29.579 0.016 ± 0.1 0.48 Argument of Perigee 228.111 228.088 -0.023 ± 0.3 -0.23 [deg] *All elements at epoch: 18 Apr 2018 23:45:30.666 UTC 10 Phasing Loops TESS Definitive Altitude Separation through PAM • All burns nominal /0 uo---= (A2M) • A2M waived as 50 - A1M (flyby) unnecessary 2 10 • Performance error ~o • <7% worst- 20 - case 10 - PAM • <1% for major P1M P2M P3M u 1 maneuvers 22Sun 1 l ue 8 l ue 1~ IU€ 2, l ue 1 1-n 1\p1? OIR (UTCG) Mean Dur. Calibrated Performance Maneuver Epoch Pointing (sec) ΔV (m/s) Error (%) Error (deg) A1M 22 Apr 2018 01:59:06.628 50 3.915 -3.33 9.6 P1M 25 Apr 2018 05:36:42.053 449 32.265 -0.93 0.6 P2M 04 May 2018 08:05:46.650 7 0.430 -6.62 0.4 P3M 13 May 2018 11:37:48.648 29 1.862 +2.87 1.6 PAM 30 May 2018 01:20:23.149 923 53.409 -0.11 0.7 11 Maneuver Performance Maneuver Execution Error: Calibrated tiV vs. Reconstructed tiV 0 . PAM, -0.11% -1 • PlM, -0.93% 'ii: a -2 L • P3M, -2.28% L w -3 Q.J u • AlM, -3.33% C E-4 L 0 :.".":: P3M (predicted) 't: -5 Q.J 0.... ~ -6 +-' ro • P2M, -6.62% :e -7 ro u -8 -9 0 100 200 300 400 500 600 700 800 900 1000 Burn Duration [sec] Maneuver performance error trends with duration . Shorter duration correlated with underperformance . Trend explained as an artifact of thermal ramp-up of propulsion system Analysis through P2M was used to predict likely performance of P3M flyby- targeting maneuver . Maneuver thrust scaled by 95% during P3M planning to better target desired flyby 12 PAM Design & Extended Mission Design PAM: Period Adjust Maneuver . Goal: Lower apogee to achieve 2:1 lunar resonance (approx. 13.67 day orbit period) . Secondary objectives: • Improve long-term eclipse profile • Maintain long-term orbit stability . Long-term extended-mission analysis performed to 18–25 years of mission life (to extent of prediction capability) PAM was fine-tuned via parametric scanning process . PAM start epoch fixes eclipse “trade space” . PAM duration chooses specific eclipse profile within trade space Two major tools: . Eclipse profile plots (a.k.a. “Napolean plots”) . Mean orbit period plots 13 Extended Mission Eclipse Profile I 1.2 - 1.15 Unscaled PAM 1.1 - '- t50 1.05 - 0-1 hr u...«l 1-2 hr <I) 2- 3 hr tii hr ~ 0.95 - 3-3.5 3.5-4 hr ~ 0.9 - 4+ hr a.. o.85 - I Selected PAM 0.8 I (97% dur.) 0.75 - 0.7 ..___ ___.,_ __._____________ Gaps between long eclipses __,__ __ ___.._ ___ _.__ _____., ___ __.__ 2020 2022 2024 2026 2028 2030 2032 2034 2036 Eclipse Epoch “Napoleon plot”: Each row shows eclipses over time for a trajectory associated with a given PAM duration (scale factor from nominal). Plot trade space is fixed with PAM start epoch (chosen by targeter) . Selected profile (row) is fixed with choice of PAM duration (scale factor) Selected PAM duration was chosen to avoid 3+ hr eclipses in 2021 and 4+ hr eclipses in 2027 . Selected duration = 97% of nominal (923 s, 53.6 m/s) . Associated initial mission orbit period = 13.72 days 14 Extended Mission Stability Nominal LRP Angle= 37.41 deg 18 Each series = --Resonance Orbit Period = 13.67 days 17 --72.75% 1 PAM 87.3% --106.7% scaling value --121.25% --Nominal (97%) 25-year mean 13 (above) is represented 12 ~--~--~--~--~-~~-~--~--~--~--~-~~-~ 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039 2041 2043 as one value Time (UTC) (below) Mean should be approx. 13.67 days .,l5 13.5 ~ to indicate 13.4 stability 13.3 selected = 0.97 13.2 0.75 0.8 0.85 0.9 0.95 1.05 1. 1 1.15 1.2 Maneuver Scale Factor 15 Commissioning Results Eclipse Di.ration PAM execution nominal; achieved long-term eclipse 2Ye rs 4 Ye rs 6Y ars 8Y rs 10 Y rs 12Y 14 Y ars 16Y ars 18Y 0 to 1 hr profile shows no eclipses • 1 to 2 hr >3 hr