Noqvitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

Noqvitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y AMERICAN MUSEUM Noqvitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3083, 27 pp., 13 figures, 4 tables December 27, 1993 Enantiornithine (Aves) Tarsometatarsi from the Cretaceous Lecho Formation of Northwestern Argentina LUIS M. CHIAPPE1 ABSTRACT Enantiornithine tarsometatarsi from the Maas- metatarsal II forms a sharp edge (convergent with trichtian Lecho Formation at the locality of El those of L. bretincola). Brete (northwestern Argentina) are described to- The relationships among these three species, and gether with their associated material. Three new their interrelationships with respect to other Late species, namely Yungavolucris brevipedalis, Lec- Cretaceous enantiornithine taxa, are explored. A tavis bretincola, and Soroavisaurus australis, are character analysis based on tarsometatarsal fea- recognized. Y. brevipedalis is distinguished by hav- tures is presented. This analysis supports the hy- ing a short and broad tarsometatarsus with a pul- pothesis that Soroavisaurus australis is the sister leylike trochlea of metatarsal II, and equally long group of a clade formed by Avisaurus archibaldi metatarsals III and IV with the distal end of the and a new form from the Two Medicine Forma- former laterally curved. The long and slender tar- tion of Montana. This clade is in turn the sister sometatarsus of L. bretincola is characterized, group of Neuquenornis volans. These four taxa among other features, for bearing a hypotarsus de- compose the monophyletic taxon Avisauridae. In veloped primarily over the metatarsal II. In turn, the present analysis, the relationships among Lec- S. australis exhibits a long and narrow fenestra tavis bretincola, Yungavolucris brevipedalis, and between the proximal halves ofmetatarsals III and Avisauridae remain unresolved. IV, and the plantar surface ofthe proximal half of RESUMEN Se describen los tarsometatarsos, y material aso- nuevas especies: Yungavolucris brevipedalis, Lec- ciado, de Enantiornithes del Maastrichtiano de la - tavis bretincola, y Soroavisaurus australis. Y. bre- Formacion Lecho en la localidad de El Brete (no- vipedalis se distingue por poseer un tarsometatarso roeste de Argentina). Se reconocen y nombran tres corto y ancho, la tr6clea del metatarso II en forma ' Frick Research Fellow, Department of Vertebrate Paleontology, American Museum of Natural History. Copyright C American Museum of Natural History 1993 ISSN 0003-0082 / Price $3.60 2 AMERICAN MUSEUM NOVITATES NO. 3083 de polea, los metatarsos III y IV de longitud equi- otros Enantiornithes del Cretacico tardio. Se pre- valente, y el extremo distal del metatarso III cur- senta un analisis de caracteres basado en caracteres vado lateralmente. El delgado y largo tarsometa- del tarsometatarso. Este an'alisis sustenta la hi- tarso de L. bretincola se caracteriza, entre otros potesis que Soroavisaurus australis es el grupo her- rasgos, por poseer un hipotarso desarrollado prin- mano de un clado formado por Avisaurus archi- cipalmente sobre el metatarso II. A su vez, S. aus- baldi y una nueva forma de la Formacion Two tralis exhibe una larga y angosta fenestra entre las Medicine de Montana. Este clado es a su vez el mitades proximales de los metatarso III y IV, y la grupo hermano de Neuquenornis volans. Estos superficie plantar de la mitad proximal del me- cuatro taxones comprenden el taxon monofiletico tatarso II formando un borde filoso (convergente Avisauridae. El presente an'alisis no resuelve las con aquel de L. bretincola). relaciones entre Lectavis bretincola, Yungavolucris Se exploran las relaciones filogeneticas entre es- brevipedalis y Avisauridae. tas tres especies, y sus relaciones con respecto a INTRODUCTION The Enantiornithes is a Cretaceous group limb elements is known (contra Walker, of volant birds originally recognized by 1981). Walker (1981) on the basis of the large as- In this paper the enantiornithine tarso- semblage of bones from the Maastrichtian metatarsi from El Brete, and the material as- Lecho Formation at the locality of El Brete sociated with them, are described. Three new (southern Province of Salta, northwestern species are recognized and their phylogenetic Argentina) (fig. 1). In this paper Walker il- relationships analyzed. The rest ofthe El Brete lustrated several bones from El Brete, in- collection will be described elsewhere. cluding the three types oftarsometatarsi here described, and briefly remarked on the pe- INSTITUTIONAL ABBREVIATIONS culiar anatomy of the group. After the erec- tion of the AMNH American Museum of Natural History Enantiornithes, several authors GI Geological Institute, Mongolian Academy of assigned previously described forms (Martin, Sciences, Ulaan Baatar 1983) as well as new taxa (Molnar, 1986; Nes- LH Universidad Aut6noma, Madrid sov and Jarkov, 1989; Chiappe, 1991a) to MACN Museo Argentino de Ciencias Naturales, Bue- this clade. To date, enantiornithine birds are nos Aires recorded in the Lower Cretaceous of Austra- MOR Museum of the Rockies, Bozeman lia (Molnar, 1986) and Spain (Sanz et al., in MUCPv Museo de Ciencias Naturales, Universidad press), and the Upper Cretaceous of South Nacional del Comahue, Neuquen America (Walker, 1981; Chiappe, 1991a, PU Princeton University, Princeton 1991b), North America (Martin, 1983; PVL Fundaci6n-Instituto Miguel Lillo, Tucumatn Chiappe, 1992a; Varricchio and in QM Queensland Museum, South Brisbane Chiappe, UCMP Museum of Paleontology, University of Cal- press), and Asia (Martin, 1983; Nessov, 1984; ifornia, Berkeley Nessov and Jarkov, 1989). Furthermore, a YPM Yale Peabody Museum, New Haven. putative member of this clade was recently discovered in the Lower Cretaceous ofChina (Zhou et al., 1992). LOCALITY AND GEOLOGICAL SETTING The discovery of the Enantiornithes The material described here was found in strongly influenced subsequent interpretation a small quarry (approximately 8 m wide) of of early avian evolution. Nevertheless, their the middle section of the Lecho Formation most significant evidence, the large assem- in the Estancia El Brete, in the southern tip blage of bones from El Brete, still remains ofthe Argentine province ofSalta (fig. 1). The mostly unstudied. Interpretation of the El Estancia El Brete is located within the dry, Brete enantiornithines is complex due to the forested, hilly landscape of the southern part poor association among the different speci- of the phytogeographic province of the Yun- mens. Few bones were found in articulation, ga. The first excavations ofthis quarry started and no association between hind and fore- in 1975, when a crew ofthe Fundacion-Insti- l1993 CHIAPPE: CRETACEOUS TARSOMETATARSI 3 65O21' 65'20'W £~~0.5kmN EX Subgroup Santa Barbara Subgroup Balbuena lEL BR EN E; | Subgroup Pirgua Fig. 1. Map indicating the locations of the different subgroups of the Salta Group in the lands of the Estancia El Brete and the quarry (black circle) of the Lecho Formation in where the specimens were found. The label "El Brete" shows the farm houses of the Estancia. tuto Miguel Lillo (Tucuman, Argentina) dis- coastal plain, with abundant vegetation and covered the fossiliferous locality, which was ponds. The age of the Lecho Formation is reported by Bonaparte et al. (1977). generally regarded as Maastrichtian on the The Lecho Formation is part ofthe Upper basis ofits fauna (Bonaparte et al., 1977) and Cretaceous Balbuena Subgroup (Salta Group), stratigraphic relationships (Go6mez Omil et a near-border stratigraphical unit of the An- al., 1989). dean sedimentary basin (Bonaparte et al., 1977; Bonaparte and Powell, 1980). Recent MATERIALS AND METHODS stratigraphical studies defined the Lecho For- Anatomical nomenclature follows Baumel mation as those clastic lithofacies ofthe Bal- et al. (1979), using the English equivalents of buena Subgroup deposited in subaerial, flu- the Latin terminology. In regard to the tax- vial, and eolian environments (Gomez Omil onomic names here applied, the term Aves et al., 1989). Lithologically, the Lecho For- is used in reference to a group including all mation consists of mainly reddish, fine to taxa descended from the most recent com- medium, with an occasional coarse, sand- mon ancestor ofArchaeopteryx lithographica stone (Bonaparte et al., 1977). and modem birds. It is relevant to mention, The avian assemblage from El Brete comes however, that this application has been re- from fine-grained sandstones. The vertebrate cently challenged by new theoretical asser- fauna associated with the avian remains is tions restricting the name of widely known composed of several specimens of the ar- taxa to the crown group (De Queiroz and mored titanosaurid Saltasaurus loricatus, the Gauthier, 1990, 1992). Under this new in- small nonavian theropod Noasaurus leali, and terpretation, the taxon name Avialae (Gau- indeterminate nonavian theropod teeth thier, 1986) replaces Aves, and the latter sub- (Bonaparte and Powell, 1980). stitutes the taxon name Neomithes of the Bonaparte et al. (1977) suggested that the classical avian taxonomy. paleoenvironment of the Lecho Formation The three species erected in this paper are in the area ofEl Brete was a fluvial-lacustrine based on incomplete material, which is still 4 AMERICAN MUSEUM NOVITATES NO. 3083 sufficiently diagnostic. It should be noted that group for analyzing the enantiomithine in- these are not the first enantiomithine species terrelationships. M. olecranus (see Perle et named from El Brete. Walker (1981) applied al., 1993b for nomenclatural
Recommended publications
  • Late Cretaceous)
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 87 - 4 | 353 - 358 | 2008 Geo (Im) pulse Bird remains from the Maastrichtian type area (Late Cretaceous) G.J. Dyke1*, A.S. Schulp2 & J.W.M. Jagt2 1 School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland. 2 Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, NL-6211KJ Maastricht, the Netherlands. * Corresponding author. Email: [email protected] Manuscript received: June 2007; accepted: October 2008 Abstract Remains of Late Cretaceous birds are rare, which is especially true for Europe and the type area of the Maastrichtian Stage (southeast Netherlands, northeast Belgium) in particular. In the present paper, we record new remains (isolated tarsometatarsus and radius) that document the presence of both enantiornithine and ornithurine birds in the Maastrichtian area. These fossils, although fragmentary, are important in view of their stratigraphic age: all bird remains discovered to date in the Maastricht area are amongst the youngest 'non-modern' avians known, originating from strata deposited less than 500,000 years prior to the end of the Cretaceous Period. Keywords: Aves, Enantiornithes, Ornithurae, Maastrichtian, Late Cretaceous, the Netherlands, Belgium Introduction In general, the fossil record of birds from the latest stages of the Cretaceous is more scanty and less well understood than Despite more than 250 years of intensive collecting effort in that of the Lower and 'Middle' Cretaceous (Chiappe & Dyke, shallow marine sediments in the type area of the Maastrichtian 2002; Chiappe & Witmer, 2002; Fountaine et al, 2005). In Stage (southeast Netherlands, northeast Belgium; Fig. 1), the particular, Late Cretaceous birds are rare in Europe (see Dyke first bird remains to be recognised from this part of Europe et al, 2002; Rees & Lindgren, 2005): the bulk of the material have been described only relatively recently.
    [Show full text]
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Mini Page 1.28.15.Indd
    © 2015 Universal Uclick Roaming North America from The Mini Page © 2015 Universal Uclick Land of Dinosaurs Gigantic dinosaurs such as It wasn’t snowing then Tyrannosaurus rex (ty-RAN- Right now, in the middle of the oh-SORE-rus RECKS) and winter, if you look at the states where Triceratops (tri-SER-uh-tops) the Hell Creek Formation is, it is hard ruled western North America 66 to imagine that in the time of the million years ago. dinosaurs it was a rainy, subtropical Dinosaurs had been roaming forest. There were no cold winters. It the Earth for about 165 million would have been much like southern years. And then, in just a few Florida today. years, all dinosaurs but birds The Earth was much warmer 66 were wiped from the planet. million to 68 million years ago, at the Much of what we know end of the Cretaceous (kruh-TAY-shus) about these awesome animals Period. There were no polar ice caps. and the land they ruled comes The planet’s sea levels were much from fossil discoveries in one higher than today. The oceans had set of rocks, the Hell Creek flooded parts of North America, Formation. This layer of rocks creating a huge inland sea. Dinosaurs covers parts of Montana, North lived to the east and west of the sea. Dakota, South Dakota and Wyoming. (It is called the Lance At the top of the Formation in Wyoming.) art, Anzu In November 2014, the (the pink art by Mary Parrish, courtesy Smithsonian National Museum of Natural History Smithsonian’s National dinosaurs) Museum of Natural History in In the background, an Edmontosaurus (ed-MON- roam toh-SAW-rus) travels through a swamp in the through Washington, D.C., opened a new Hell Creek Formation area 66 million years ago.
    [Show full text]
  • Hadley Circulation Shrinkage in the Mid-Cretaceous
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 7, 119–151, 2011 www.clim-past-discuss.net/7/119/2011/ Climate of the Past CPD doi:10.5194/cpd-7-119-2011 Discussions 7, 119–151, 2011 © Author(s) 2011. CC Attribution 3.0 License. Hadley circulation This discussion paper is/has been under review for the journal Climate of the Past (CP). shrinkage in the Please refer to the corresponding final paper in CP if available. mid-Cretaceous Drastic shrinking of the Hadley circulation H. Hasegawa et al. during the mid-Cretaceous supergreenhouse Title Page Abstract Introduction H. Hasegawa1,*, R. Tada1, X. Jiang2, Y. Suganuma1,3, S. Imsamut4, P. Charusiri5, Conclusions References N. Ichinnorov6, and Y. Khand6 Tables Figures 1Department of Earth and Planetary Science, the University of Tokyo, Tokyo, Japan 2 Chengdu Institute of Geology and Mineral Resources, Chengdu, China J I 3National Institute of Polar Research, Tokyo, Japan 4Department of Mineral Resources, Bureau of Geological Survey, Bangkok, Thailand J I 5Department of Geology, Chulalongkorn University, Bangkok, Thailand Back Close 6Paleontological Center, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia * now at: Department of Natural History Science, Hokkaido University, Full Screen / Esc Sapporo 060-0810, Japan Received: 14 September 2010 – Accepted: 7 December 2010 – Published: 13 January 2011 Printer-friendly Version Correspondence to: H. Hasegawa (hito [email protected]) Interactive Discussion Published by Copernicus Publications on behalf of the European Geosciences Union. 119 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract CPD Understanding the behaviour of the global climate system during extremely warm pe- riods is one of the major themes of paleoclimatology.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • 1 JOURNAL of VERTEBRATE PALEONTOLOGY a New
    JOURNAL OF VERTEBRATE PALEONTOLOGY A new caenagnathid (Dinosauria: Oviraptorosauria) from the Horseshoe Canyon Formation of Alberta, Canada, and a reevaluation of the relationships of Caenagnathidae GREGORY F. FUNSTON*,,PHILIP J. CURRIE Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta,Edmonton, Alberta, Canada T6G 2E9 [email protected]; [email protected] SUPPLEMENTARY DATA 1 1 CHARACTERS MODIFIED FROM LAMANNA ET AL. (2014) 78. Dentary: (0) elongate; (1) proportionally short and deep, with maximum depth of dentary between 25% and 50% of dentary length (with length measured from the tip of the jaw to the end of the posterodorsal process); (2) extremely short and deep, with maximum depth 50% or more of dentary length. [ORDERED] Modification—Removed [ORDERED] Justification—Mandibular variation through ontogeny in has not been qualified in oviraptorosaurs, nor has the degree of intraspecific variation. This character in particular is correlated with size in caenagnathids, such that larger specimens tend show state 0, and smaller specimens tend to show state 2, with a smooth gradient between. 84. Anterodorsal margin of dentary in lateral view: (0) straight; (1) concave; (2) broadly concave. [ORDERED] Modification—Removed [ORDERED] Justification—As above, though the opposite correlation to size is shown: large specimens tend to show state 2, and small specimens tend to show state 0. 176. Manual phalanx II-2: (0) longer than II-1; (1) subequal to or slightly shorter than II- 1; (2) distinctly shorter than II-1. [ORDERED] Modification—Removed [ORDERED] Justification—Caenagnathid manual proportions are highly variable, with a number of apparent reversals within clades. For example, Hagryphus giganteus, scored as character state 1 for this character, is consistently recovered as a basal caenagnathid, but within more derived caenagnathids, all three character states for this character are present, indicating that the character state can move both directions.
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]
  • 34 Abdala.Indd
    Ciencias de la Tierra y Recursos Naturales del NOA Relatorio del XX Congreso Geológico Argentino - Tucumán 2017 VERTEBRADOS FÓSILES DEL MESOZOICO DEL NOROESTE ARGENTINO Fernando ABDALA1,2, Sara BERTELLI1 1UEL, Unidad Ejecutora Lillo (CONICET-FML) Miguel Lillo 251, 4000, Tucumán, Argentina. Email: [email protected] 2Evolutionary Studies Institute, University of the Witwatersrand Johannesburgo, Sudáfrica RESUMEN En la presente contribución se detalla el registro de fósiles vertebrados mesozoicos en el noroeste de Argentina. El mismo se compone de una parte triásica y otra cretácica, pero hay también un registro puntual del Jurásico. El Triásico se presenta en la cuenca de Ischigualasto-Villa Unión en las provincias de San Juan y La Rioja y en la cuenca de Marayes-El Carrizal al sur de San Juan, mientras que el Jurásico Inferior existe en la última cuenca y en la Formación Cañón del Colorado en el centro de la provincia de San Juan. El Cretácico está documentado en la Formación Los Llanos de La Rioja y en la cuenca del Noroeste en Jujuy y Salta. El Triásico Superior es el mejor representado mostrando una buena diversidad de arcosauromorfos. El mejor registro de dinosauriformes no dinosaurianos es en la Formación Chañares, mientras que los dinosaurios más antiguos del mundo aparecen ya bien diversifi cados en la Formación Ischigualasto y se vuelven abundantes en Los Colorados. Dicinodontes son componentes residuales (poco diversos y abundantes), mientras que los cinodontes son abundantes en la Formación Chañares y abundantes y más diversifi cados en la fauna de Ischigualasto. Registros antiguos de tortugas existen en las formaciones Los Colorados y Quebrada del Barro, y en esta última hay también esfeno- dontes.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
    Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No.
    [Show full text]