Information Theoretic Results on Exact Distributed Simulation and Information Extraction

Total Page:16

File Type:pdf, Size:1020Kb

Information Theoretic Results on Exact Distributed Simulation and Information Extraction INFORMATION THEORETIC RESULTS ON EXACT DISTRIBUTED SIMULATION AND INFORMATION EXTRACTION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Gowtham Ramani Kumar August 2014 © 2014 by Gowtham Kumar Ramani Kumar. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- 3.0 United States License. http://creativecommons.org/licenses/by/3.0/us/ This dissertation is online at: http://purl.stanford.edu/sy415my4619 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Abbas El Gamal, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ayfer Ozgur Aydin I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Tsachy Weissman Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract In the first part of the thesis we will introduce the notion of exact common infor- mation, which is the minimum description length of the common randomness needed for the exact distributed generation of two correlated random variables (X,Y ). We introduce the quantity G(X; Y ) = minX→W →Y H(W ) as a natural bound on the ex- act common information. We then introduce the exact common information rate, which is the minimum description rate of the common randomness for the exact gen- eration of correlated sources (X,Y ). We give a multiletter characterization for it as n n the limit G(X; Y ) = limn→∞(1/n)G(X ; Y ). While in general G¯(X; Y ) is greater than or equal to the Wyner common information, we show that they are equal for the Symmetric Binary Erasure Source. We then discuss the computation of G(X; Y ). In the second part, we will introduce a conjecture regarding the maximum mutual information a Boolean function can reveal about noisy inputs. Specifically, let (X,Y ) be a doubly symmetric binary source with cross-over probability α. For any boolean function b : 0, 1 n 0, 1 , we conjecture that I(b(Xn); Y n) 1 H(α). While the { } →{ } ≤ − conjecture remains open, we provide substantial evidence supporting its validity. iv Acknowledgements First of all, I like to thank my parents for all they have done for me. If not for their numerous sacrifices, I won’t be a Stanford student in the first place. I am from a lesser developed city in India. We lacked qualified teachers to help me get in to the Indian Institutes of Technology (IIT), premier engineering colleges in India with an acceptance ratio less than 1%. My parents made for that gap by over-spending on books and creating a personal library of all great science text-books in my home. When I was preparing for the IIT entrance examination, my school teachers in fact discouraged me by stating that they haven’t seen anyone ever clear the exam. In spite of these difficulties, my parents constantly believed in my ability to clear the IIT entrance exam. They were there for financial and moral support throughout my struggle. I would also like to take this opportunity to thank my family. In particular, I like to thank my wife for her moral support and for making a video of my PhD defense. Before I thank my Stanford colleagues, I would love to thank Prof. Andrew Thangaraj from IIT Madras, who served as my undergraduate final year project ad- visor. He believed in me and encourage me to publish early even in my undergraduate years. I would also like to thank all my professors and fellow students at IIT Madras who were instrumental in imparting knowledge through various fundamental courses that would later get me admitted to Stanford university. Next, I would like to give a special thanks to the late Prof. Thomas Cover who was my first PhD advisor at Stanford. I read Tom’s wonderful book on Information theory before I even obtained an admit from Stanford. Tom believes that puzzles lead to interesting research problems. When any new student first approaches Tom v for a PhD position, he is asked to attend the Wednesday puzzle meetings and wait for something interesting to happen. These meetings go from elementary high school puzzles to deep research topics in information theory. It keeps everyone engaged, from novices to experts. In addition to puzzles, Tom loved theory. Tom didn’t care about practical problems as much. His only criterion in evaluating a research problem is if it is an interesting or elegant problem. I like to recall one favorite quote from Tom: “Theory is the first term in the Taylor series for practice”. Finally, I like to comment on Tom’s dedication to teaching. We all remember the unfortunate day when Tom passed away on March 26, 2012. Now that I know he chose to teach until his last moments, even after retirement and even after his health was low, I feel truly gifted to have had him as my advisor and be his 26-th PhD student (if you start counting from 0). Next, I would like to thank my advisor, Prof. Abbas El Gamal. My first in- teraction with Abbas is during my first quarter at Stanford when I took his course on Network Information Theory (NIT). The course taught me the fundamentals of NIT that every researcher needs to know. One only has to read the unreadable in- formation theory papers before 1980 to appreciate the simplicity with which Abbas explains concepts. Later in my PhD career, when my original advisor Tom passed away, I turned to Abbas for support. He then took over as my primary advisor and kept the ball rolling. He helped me through the herculean task of solving my PhD thesis problem with his amazing ability to simplify the questions and ask the most fundamental questions. He took over Tom’s challenging problem and distilled it into the concept of exact common information, one of my primary thesis topics. Abbas is also known for his ability to give great presentations. He spends hours with his students in preparing for presentations and in writing papers. I still remember going through numerous dry runs of our ISIT presentations. We started our rehearsals 2 months before the conference and were doing our 10th rehearsal when the other in- formation theory students haven’t yet made the first draft. We all learnt the value of hard work. No great speaker is born great; great speakers are made. Next, I would like to thank Prof. Tsachy Weissman who served as my associate advisor. He taught me the course on universal schemes in information theory, topics vi that every researcher in the field must be familiar with. I attended a lot of his research meetings and interacted with his students throughout my career. Next, I would like to thank Prof. Ayfer Ozgur, Prof. Thomas Courtade and Prof. Amir Dembo, who served as committee members of my PhD oral defense and provided valuable insight and feedback on my research. Next, I would like to thank Yeow Khiang Chia, whose discussions resulted in my formulation of the Boolean functions conjecture. I would also like to thank Prof. Chandra Nair and Prof. Thomas Courtade for their help in making progress on the conjecture. Next, I would like to thank all my collaborators and everyone from the informa- tion theory community I interacted with, including Lei Zhao, Paul Cuff, Haim Per- muter, Idoia Ochoa Alvarez, Mikel Hernaez, Kartik Venkat, Vinith Misra, Alexandros Manolakos, Albert No, Bernd Bandemer, Cheuk Ting Li, Hyeji Kim, Jiangtao and Young-Han-Kim who helped me at various stages of my PhD career and added to the richness of my PhD experience. Next I would like to thank every professors who taught me interesting courses at Stanford and created a unique Stanford experience. I would especially like to thank Prof. Stephen Boyd for his course on convex optimization, Prof. Andrew Ng for his course on Machine Learning and Matt Vassar for his course on public speaking. I would also love to thank Stanford for teaching me various unique skills, one of which is a circus art named aerial fabrics. I like to thank my aerial fabrics teachers Elizabeth, Rachel, Erica, Kristin and Graham. Next, I would like to thank the support staff at Stanford, including Denise Murphy, Karin Sligar, Katt Clark, Andrea Kuduk, Douglas Chaffee, Vickie Carrilo and IT expert John DeSilva. Their efficiency and expertise saved a lot of precious time and helped me focus on my research. Finally, I would love to thank almighty for guiding me in a successful path. At this point, I would love to point out an incident that explains a butterfly effect in my life. During my early years, my dad wanted to enroll me in a school where the medium of instruction is our local language Tamil rather than English. If he had proceeded with his plan, my life and career would be completely different from what vii it is now.
Recommended publications
  • Digital Communication Systems 2.2 Optimal Source Coding
    Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L.
    [Show full text]
  • Principles of Communications ECS 332
    Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: Check Google Calendar on the course website. Dr.Prapun’s Office: 6th floor of Sirindhralai building, 1 BKD 2 Remark 1 If the downloaded file crashed your device/browser, try another one posted on the course website: 3 Remark 2 There is also three more sections from the Appendices of the lecture notes: 4 Shannon's insight 5 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 6 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD- TV, and the California Institute for Telecommunic ations and Information Technology 7 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) Hello. I'm Claude Shannon a mathematician here at the Bell Telephone laboratories He didn't create the compact disc, the fax machine, digital wireless telephones Or mp3 files, but in 1948 Claude Shannon paved the way for all of them with the Basic theory underlying digital communications and storage he called it 8 information theory. C. E. Shannon (1916-2001) 9 https://www.youtube.com/watch?v=47ag2sXRDeU C. E. Shannon (1916-2001) One of the most influential minds of the 20th century yet when he died on February 24, 2001, Shannon was virtually unknown to the public at large 10 C.
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 63, No. 3, September 2013 Editor: Tara Javidi ISSN 1059-2362 Editorial committee: Ioannis Kontoyiannis, Giuseppe Caire, Meir Feder, Tracey Ho, Joerg Kliewer, Anand Sarwate, Andy Singer, and Sergio Verdú Annual Awards Announced The main annual awards of the • 2013 IEEE Jack Keil Wolf ISIT IEEE Information Theory Society Student Paper Awards were were announced at the 2013 ISIT selected and announced at in Istanbul this summer. the banquet of the Istanbul • The 2014 Claude E. Shannon Symposium. The winners were Award goes to János Körner. the following: He will give the Shannon Lecture at the 2014 ISIT in 1) Mohammad H. Yassaee, for Hawaii. the paper “A Technique for Deriving One-Shot Achiev - • The 2013 Claude E. Shannon ability Results in Network Award was given to Katalin János Körner Daniel Costello Information Theory”, co- Marton in Istanbul. Katalin authored with Mohammad presented her Shannon R. Aref and Amin A. Gohari Lecture on the Wednesday of the Symposium. If you wish to see her slides again or were unable to attend, a copy of 2) Mansoor I. Yousefi, for the paper “Integrable the slides have been posted on our Society website. Communication Channels and the Nonlinear Fourier Transform”, co-authored with Frank. R. Kschischang • The 2013 Aaron D. Wyner Distinguished Service Award goes to Daniel J. Costello. • Several members of our community became IEEE Fellows or received IEEE Medals, please see our web- • The 2013 IT Society Paper Award was given to Shrinivas site for more information: www.itsoc.org/honors Kudekar, Tom Richardson, and Rüdiger Urbanke for their paper “Threshold Saturation via Spatial Coupling: The Claude E.
    [Show full text]
  • Sharp Threshold Rates for Random Codes∗
    Sharp threshold rates for random codes∗ Venkatesan Guruswami1, Jonathan Mosheiff1, Nicolas Resch2, Shashwat Silas3, and Mary Wootters3 1Carnegie Mellon University 2Centrum Wiskunde en Informatica 3Stanford University September 11, 2020 Abstract Suppose that P is a property that may be satisfied by a random code C ⊂ Σn. For example, for some p 2 (0; 1), P might be the property that there exist three elements of C that lie in some Hamming ball of radius pn. We say that R∗ is the threshold rate for P if a random code of rate R∗ + " is very likely to satisfy P, while a random code of rate R∗ − " is very unlikely to satisfy P. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably \symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property P above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general. arXiv:2009.04553v1 [cs.IT] 9 Sep 2020 ∗SS and MW are partially funded by NSF-CAREER grant CCF-1844628, NSF-BSF grant CCF-1814629, and a Sloan Research Fellowship.
    [Show full text]
  • Reflections on ``Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes
    Reflections on \Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes" Venkatesan Guruswami∗ Madhu Sudany March 2002 n A t-error-correcting code over a q-ary alphabet Fq is a set C ⊆ Fq such that for any received n vector r 2 Fq there is at most one vector c 2 C that lies within a Hamming distance of t from r. The minimum distance of the code C is the minimum Hamming distance between any pair of distinct vectors c1; c2 2 C. In his seminal work introducing these concepts, Hamming pointed out that a code of minimum distance 2t + 1 is a t-error-correcting code. It also pointed out the obvious fact that such a code is not a t0-error-correcting code for any t0 > t. We conclude that a code can correct half as many errors as its distance and no more. The mathematical correctness of the above statements are indisputable, yet the interpretation is quite debatable. If a message encoded with a t-error-correcting code ends up getting corrupted in t0 > t places, the decoder may simply throw it hands up in the air and cite the above paragraph. Or, in an alternate notion of decoding, called list decoding, proposed in the late 1950s by Elias [10] and Wozencraft [43], the decoder could try to output a list of codewords within distance t0 of the received vector. If t0 is not much larger than t and the errors are caused by a probabilistic (non-malicious) channel, then most likely this list would have only one element | the transmitted codeword.
    [Show full text]
  • Digital Communication Systems ECS 452
    Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Digital Communication Systems Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40 1 Thursday 14:20-15:30 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 2 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD-TV, and the California Institute for Telecommunications and Information Technology Won a Gold award in the Biography category in the 2002 Aurora Awards. 3 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) 1938 MIT master's thesis: A Symbolic Analysis of Relay and Switching Circuits Insight: The binary nature of Boolean logic was analogous to the ones and zeros used by digital circuits. The thesis became the foundation of practical digital circuit design. The first known use of the term bit to refer to a “binary digit.” Possibly the most important, and also the most famous, master’s thesis of the century. It was simple, elegant, and important. 4 C. E. Shannon: Master Thesis 5 Boole/Shannon Celebration Events in 2015 and 2016 centered around the work of George Boole, who was born 200 years ago, and Claude E. Shannon, born 100 years ago. Events were scheduled both at the University College Cork (UCC), Ireland and the Massachusetts Institute of Technology (MIT) 6 http://www.rle.mit.edu/booleshannon/ An Interesting Book The Logician and the Engineer: How George Boole and Claude Shannon Created the Information Age by Paul J.
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 66, No. 4, December 2016 Editor: Michael Langberg ISSN 1059-2362 Editorial committee: Frank Kschischang, Giuseppe Caire, Meir Feder, Tracey Ho, Joerg Kliewer, Parham Noorzad, Anand Sarwate, Andy Singer, and Sergio Verdú President’s Column Alon Orlitsky One should never start with a cliche. So let me that would bring and curate information the- end with one: where did 2016 go? It seems like oretic lectures for large audiences. yesterday that I wrote my first column, and it’s already time to reflect on a year gone by? • Jeff Andrews and Elza Erkip are heading a BoG ad-hoc committee exploring the cre- And a remarkable year it was! Each of earth’s ation of a new publication connecting corners and all of life’s walks were abuzz with information theory to other topics and activity and change, and information theory communities, with two main formats con- followed suit. Adding to our society’s regu- sidered: a special topics journal, and a larly hectic conference meeting/publication popular magazine. calendar, we also celebrated Shannon’s 100th anniversary with fifty worldwide centennials, • Christina Fragouli and Anna Scaglione are numerous write-ups in major journals and co-authoring a children’s book on informa- magazines, and a coveted Google Doodle on tion theory, the first chapter is completed Shannon’s birthday. For the last time let me and the rest are expected next year. thank Christina Fragouli and Rudi Urbanke for co-chairing the hyperactive Centennials Committee. As the holidays ushered in, twelve-shy-one society members received jolly good tidings.
    [Show full text]
  • IEEE Information Theory Society Newsletter
    IEEE Information Theory Society Newsletter Vol. 53, No. 1, March 2003 Editor: Lance C. Pérez ISSN 1059-2362 LIVING INFORMATION THEORY The 2002 Shannon Lecture by Toby Berger School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853 1 Meanings of the Title Information theory has ... perhaps The title, ”Living Information Theory,” is a triple enten- ballooned to an importance beyond dre. First and foremost, it pertains to the information its actual accomplishments. Our fel- theory of living systems. Second, it symbolizes the fact low scientists in many different that our research community has been living informa- fields, attracted by the fanfare and by tion theory for more than five decades, enthralled with the new avenues opened to scientific the beauty of the subject and intrigued by its many areas analysis, are using these ideas in ... of application and potential application. Lastly, it is in- biology, psychology, linguistics, fun- tended to connote that information theory is decidedly damental physics, economics, the theory of the orga- alive, despite sporadic protestations to the contrary. nization, ... Although this wave of popularity is Moreover, there is a thread that ties together all three of certainly pleasant and exciting for those of us work- these meanings for me. That thread is my strong belief ing in the field, it carries at the same time an element that one way in which information theorists, both new of danger. While we feel that information theory is in- and seasoned, can assure that their subject will remain deed a valuable tool in providing fundamental in- vitally alive deep into the future is to embrace enthusias- sights into the nature of communication problems tically its applications to the life sciences.
    [Show full text]
  • Robust Coding Strategies and Physical Layer Service Integration for Bidirectional Relaying
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Theoretische Informationstechnik Robust Coding Strategies and Physical Layer Service Integration for Bidirectional Relaying Rafael Felix Wyrembelski Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. sc. techn. Gerhard Kramer Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Dr. rer. nat. Holger Boche 2. Prof. Dr. Vincent Poor (Princeton University, USA) Die Dissertation wurde am 06.10.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 22.03.2012 angenom- men. Zusammenfassung Aktuelle Forschungsergebnisse zeigen, dass Relaiskonzepte die Leistungsfähigkeit und Ab- deckung drahtloser Kommunikationssysteme deutlich erhöhen können. In dieser Disserta- tion betrachten wir bidirektionale Relais-Kommunikation in einem Netzwerk mit drei Statio- nen, in dem zwei Stationen mit Hilfe einer Relaisstation kommunizieren. Im ersten Teil der Dissertation analysieren wir die Auswirkungen ungenauer Kanalkennt- nis an Sender und Empfängern und betrachten den dazugehörigen diskreten gedächtnis- losen bidirektionalen Compound Broadcastkanal. Wir leiten die Kapazitätsregion her und analysieren die Szenarien, in denen zusätzlich entweder der Sender oder die Empfänger per- fekte Kanalkenntnis besitzen. Hierbei zeigt sich, dass Kanalkenntnis an den
    [Show full text]
  • Principles of Communications ECS 332
    Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 13:45-15:15 Friday 13:45-15:15 1 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 2 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD-TV, and the California Institute for Telecommunications and Information Technology Won a Gold award in the Biography category in the 2002 Aurora Awards. 3 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) 1938 MIT master's thesis: A Symbolic Analysis of Relay and Switching Circuits Insight: The binary nature of Boolean logic was analogous to the ones and zeros used by digital circuits. The thesis became the foundation of practical digital circuit design. The first known use of the term bit to refer to a “binary digit.” Possibly the most important, and also the most famous, master’s thesis of the century. It was simple, elegant, and important. 4 C. E. Shannon: Master Thesis 5 Boole/Shannon Celebration Events in 2015 and 2016 centered around the work of George Boole, who was born 200 years ago, and Claude E. Shannon, born 100 years ago. Events were scheduled both at the University College Cork (UCC), Ireland and the Massachusetts Institute of Technology (MIT) 6 http://www.rle.mit.edu/booleshannon/ An Interesting Book The Logician and the Engineer: How George Boole and Claude Shannon Created the Information Age by Paul J.
    [Show full text]
  • Channel Coding in Optical Communication Systems
    Transport and Communications, 2016; Vol. II. DOI: 10.26552/tac.C.2016.2.1 ISSN: 1339-5130 1 Channel Coding in Optical Communication Systems Viktor Durcek1, Michal Kuba2, Milan Dado3 1,2,3Dept. of Telecommunications and Multimedia, Faculty of Electrical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia Abstract In this paper, an overview of various types of error-correcting codes is present. Three generations of forward error correction methods used in optical communication systems are listed and described. Forward error correction schemes proposed for use in future high-speed optical networks can be found in the third generation of codes. Keywords FEC, channel coding, LDPC, Turbo codes JEL C690 Hamming codes are still used in some types of ECC 1. Introduction memories [2], [4-5]. In 1954 David E. Muller described a class of Forward Error Correction (FEC) is an important part of multiple-error-correcting codes [6] and Irving S. Reed modern communication systems. Throughout history new proposed the first algorithm for decoding these codes types of channel codes and FEC schemes with higher (known as majority decoding) [7]. Today this class of binary error-correcting performance were introduced. In section 2 linear block codes is called Reed-Muller codes. Their of this paper, an overview of different types of channel advantage is simple description and simple decoding codes is shown. Methods of error correction used in optical algorithm [2]. networks are described and divided into generations in Convolutional codes are a class of linear time-invariant section 3. FEC schemes proposed to be used in future tree codes and can be generated by a linear shift-register optical networks are also mentioned in section 3.
    [Show full text]
  • Digital Communication Systems ECS 452
    Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Digital Communication Systems Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40 1 Thursday 14:20-15:30 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 2 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD-TV, and the California Institute for Telecommunications and Information Technology Won a Gold award in the Biography category in the 2002 Aurora Awards. 3 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) 1938 MIT master's thesis: A Symbolic Analysis of Relay and Switching Circuits Insight: The binary nature of Boolean logic was analogous to the ones and zeros used by digital circuits. The thesis became the foundation of practical digital circuit design. The first known use of the term bit to refer to a “binary digit.” Possibly the most important, and also the most famous, master’s thesis of the century. It was simple, elegant, and important. 4 C. E. Shannon: Master Thesis 5 Boole/Shannon Celebration Events in 2015 and 2016 centered around the work of George Boole, who was born 200 years ago, and Claude E. Shannon, born 100 years ago. Events were scheduled both at the University College Cork (UCC), Ireland and the Massachusetts Institute of Technology (MIT) 6 http://www.rle.mit.edu/booleshannon/ An Interesting Book The Logician and the Engineer: How George Boole and Claude Shannon Created the Information Age by Paul J.
    [Show full text]