Director's Report 5/02

Total Page:16

File Type:pdf, Size:1020Kb

Director's Report 5/02 Director's Report 5/02 Director's Report to the National Advisory Council on Drug Abuse May, 2002 Index Research Findings Basic Research Behavioral Research Treatment Research and Development Research on AIDS and Other Medical Consequences of Drug Abuse Epidemiology, Etiology and Prevention Research Services Research Intramural Research Program Activities Extramural Policy and Review Activities Congressional Affairs International Activities Meetings and Conferences Media and Education Activities Planned Meetings Publications Staff Highlights Grantee Honors https://archives.drugabuse.gov/DirReports/DirRep502/DirectorRepIndex.html[11/17/16, 10:02:17 PM] Director's Report 5/02 [Office of Director] [First Report Section] Archive Home | Accessibility | Privacy | FOIA (NIH) | Current NIDA Home Page The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , a component of the U.S. Department of Health and Human Services. Questions? _ See our Contact Information. https://archives.drugabuse.gov/DirReports/DirRep502/DirectorRepIndex.html[11/17/16, 10:02:17 PM] Director's Report 5/02 - Basic Research Director's Report to the National Advisory Council on Drug Abuse May, 2002 Research Findings Basic Research Dopamine Transport The human dopamine transporter (hDAT) serves to regulate the ratio of extracellular to intracellular levels of the neurotransmitter dopamine. Inward transport or influx involves binding of synaptic dopamine at the surface of a neuron, transport across the cell membrane, and release to the intracellular plasma. The process is saturable, and is coupled with the inward transport of sodium and chloride ions. In the reverse or efflux direction, dopamine or related monoamines can be released to the outside of the cell. For kinetic analysis of influx and efflux, useful models of the transporter have proposed an "outward-facing" DAT conformation(s), and an "inward-facing" conformation(s) which would allow external or internal binding of ligands, respectively. One feature of these models is that they might operate in a gated fashion, alternately providing binding sites at the extracellular side of the membrane while blocking the intracellular side, and vice versa. It is presently not known whether the same set of amino acid residues control such transporter conformations of the DAT in both directions, and mutational studies are being extensively carried out to identify the critical residues of dopamine and drugs of abuse. Transport and the DAT are of considerable significance in drug abuse research because monoamines such as amphetamine can be transported, the neurotoxic cation MPP+ can be internalized by transport, and cocaine is known to block or inhibit the uptake of dopamine, by binding to the DAT at one or more sites. Dr. Ulrik Gether and collaborators have previously identified an endogenous high affinity zinc binding site on the DAT which involves the close association in space of histidine at position 193 (extracellular loop 2), histidine 375 (transmembrane helix 7), and glutamate 396 (extracellular loop 4, top of transmembrane helix 8). This zinc binding site, which is largely extracellular, has been shown to act as a noncompetitive inhibitor of dopamine uptake at micromolar zinc concentrations. As an extension of this work, Dr. Gether's research group has now reported that when the intracellular loop 3 residue tyrosine 355 was mutated to alanine, dopamine uptake velocity (Vmax) was reduced to less than 1% of the DAT wild type velocity, and produced a twenty fold increase in the inhibition constant Ki for dopamine binding, all in the absence of zinc. In the presence of ten micromolar zinc, the velocity of uptake was 75% restored. This work was done with COS-1 cells transiently expressing the hDAT. Double mutations, such as mutating both histidine 335 and positions 193, 375, or 396, were not effective in promoting transport of dopamine. The authors have separately shown that the DAT mutated at position 355 appeared to be functional, in that it could be tagged with green fluorescent protein, expressed in HEK- 293 cells, and visualized at the cell surface, and then internalized by activating a protein kinase. It has also been possible to show that the binding of cocaine (which is not transported) was reduced over one hundred fold by the single mutation at position 355, in the absence of zinc, and this reduction was partially reversed in the presence of zinc. The authors have suggested a model in which histidine 355 is needed to stabilize conformations permitting inward transport, with zinc influencing the equilibrium distribution of these conformations. Loland, C.J., Norregaard, L., Litman, T., and Gether, U. Proceedings of the National Academy of Sciences, 99(3), pp. 1683-1688, 2002. Crystal Structure of Biphalin - Multireceptor Opioid Peptide The opioid system plays the most important role in pain signal modulation. This system combines transmembrane G- protein coupled receptors, and their endogenous ligands and opioid peptides released by neurocells. It is widely accepted that there are at least three opioid receptor types, μ, λ, and κ. All opioid receptors have binding sites for benzomorphan alkaloids. Extensive structure-activity studies have shown that recognition of benzomorphan tyramine moiety is a common feature of all opioid receptors. The same tyramine moiety is a part of N-terminal tyrosine, the https://archives.drugabuse.gov/DirReports/DirRep502/DirectorReport1.html[11/17/16, 10:02:21 PM] Director's Report 5/02 - Basic Research active site of endogenous opioid peptides. Large numbers of endogenous opioid peptides, which have been identified, could be divided into groups represented by the endomorphins (large peptide with preference to μ), enkephlins (with affinity with both μ and γ), dynorphins (with selectivity to K), and endomorphins (with selectivity to μ). Opioid analgesic drugs, like morphine, activate opioid receptors that initiate a cascade of events, which results in blocking the pain signal. However, the opioid system is involved in a number of homeostatic neurological and immunological functions. As a result, activation of the opioid system results in a number of side effects, including respiratory depression and dependency. Therefore, one of the most common ways of searching for new opioid analgesic drugs is developing the compounds that have the highest possible selectivity to the receptor and the least unwanted side effect(s). Nevertheless, all opioid receptors are involved in pain transmission modulation. Therefore, the contradictory approach of opioid analgesic development is to search for drugs with affinities to the very broad spectrum of receptors modulating the pain signals. The discovery of biphalin is the best example of the success of using this type of approach. This peptide expresses high affinity to all three opioid receptor types, with some preference for μ receptors. When administered directly into the brain, it has been shown to be more potent than morphine and etorphine at eliciting antinociception (pain relief). Currently biphalin is under intensive preclinical studies. Benzomorphan alkaloid analogues that express different receptor activity, as agonist or antagonist, all possess tyramine moiety in common freeze conformation. This may suggest that opioid peptides, during interaction with receptors, also adopt respective conformation of the tyramine part of N-terminal tyrosine. The presence of other functional groups in opioid peptide analogue and possibility of adopting specific topographical conformation(s) by these groups, determine receptor selectivity and potency. Topographical requirements of different opioid receptors are different even for the same group. Biphalin expresses high affinity to all opioid receptor types. This means that biphalin (i) possesses groups which guarantee high affinity to all types of opioid receptors, (ii) does not possess groups which could negatively interfere with particular receptor subtypes, and (iii) has a peptide chain that is flexible enough to adopt topographical requirements of all opioid receptor types. Flippen-Anderson, J.L., Deschamps, J.R., George, C., Hruby, V.J., Misicka, A., and Lipkowski, A.W. Journal of Peptide Research, 59, pp. 123-133, 2002. Epileptiform Events in CA3 Hippocampus Depressed by Activation of the Opioid-Receptor- like-1 Receptor The CA3 hippocampal region is important in the generation of hippocampal seizures. The opioid-receptor-like-1 (ORL- 1) shares a high sequence homology with opioid receptors and is highly expressed in rat hippocampus. Activation of the receptor robustly depressed spontaneous epileptiform bursting without desensitization, and this was reversed by application of the receptor antagonist. This depressive action is consistent with the general inhibitory nature that occurs as a result of the activation of the ORL-1 receptor as it reduces the spontaneous miniature excitatory post synaptic currents (EPSCs) as well as electro-stimulation induced EPSCs. These observations also indicate that both pre- and post-synaptic mechanisms are involved in the depressive effect of epileptiform activity in CA3. This is interesting as it was thought that in CA1, CA3 and dentate, the ORL-1 receptor had inhibitory postsynaptic actions and seemed to lack the disinhibitory actions. Two membrane currents (channels) activated by the ORL-1 receptor agonist nociceptin were found to mediate the depressive effect of this drug on the epileptiform activity. The relation of the cell
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen Et Al
    USOO9005660B2 (12) United States Patent (10) Patent No.: US 9,005,660 B2 Tygesen et al. (45) Date of Patent: Apr. 14, 2015 (54) IMMEDIATE RELEASE COMPOSITION 4,873,080 A 10, 1989 Bricklet al. RESISTANT TO ABUSEBY INTAKE OF 4,892,742 A 1, 1990 Shah 4,898,733. A 2f1990 DePrince et al. ALCOHOL 5,019,396 A 5/1991 Ayer et al. 5,068,112 A 11/1991 Samejima et al. (75) Inventors: Peter Holm Tygesen, Smoerum (DK); 5,082,655 A 1/1992 Snipes et al. Jan Martin Oevergaard, Frederikssund 5,102,668 A 4, 1992 Eichel et al. 5,213,808 A 5/1993 Bar Shalom et al. (DK); Joakim Oestman, Lomma (SE) 5,266,331 A 11/1993 Oshlack et al. 5,281,420 A 1/1994 Kelmet al. (73) Assignee: Egalet Ltd., London (GB) 5,352.455 A 10, 1994 Robertson 5,411,745 A 5/1995 Oshlack et al. (*) Notice: Subject to any disclaimer, the term of this 5,419,917 A 5/1995 Chen et al. patent is extended or adjusted under 35 5,422,123 A 6/1995 Conte et al. U.S.C. 154(b) by 473 days. 5,460,826 A 10, 1995 Merrill et al. 5,478,577 A 12/1995 Sackler et al. 5,508,042 A 4/1996 OShlack et al. (21) Appl. No.: 12/701.248 5,520,931 A 5/1996 Persson et al. 5,529,787 A 6/1996 Merrill et al. (22) Filed: Feb. 5, 2010 5,549,912 A 8, 1996 OShlack et al.
    [Show full text]
  • Identification of Channels Underlying the M-Like Potassium Current In
    Identification of channeis underiying the M-like potassium current in NG108-15 neurobiastoma-giioma ceiis A thesis submitted for the degree of Doctor of Philosophy University of London by Jennifer Kathleen Hadley Department of Pharmacology University College London Gower Street London WC1E 6BT ProQuest Number: U644085 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U644085 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract NG108-15 cells express a potassium current resembling the IVI-current found in sympathetic ganglia. I contributed to the identification of the channels underlying this NG108-15 current. I used patch-clamp methodology to characterise the kinetics and pharmacology of the M-like current and of three candidate channel genes, all capable of producing “delayed rectifier” currents, expressed in mammalian cells. I studied two Kvi .2 clones: NGK1 (rat Kvi .2) expressed in mouse fibroblasts, and MK2 (mouse brain Kvi .2) expressed in Chinese hamster ovary (OHO) cells. Kvi.2 showed relatively positive activation that shifted negatively on repeated activation, some inactivation, block by dendrotoxin and various cations, and activation by niflumic acid.
    [Show full text]
  • Drugs Influencing Cognitive Function
    Indian J Physiol Phannacol 1994; 38(4) : 241-251 RE\llEW ARTICLE DRUGS INFLUENCING COGNITIVE FUNCTION ALICE KURUYILLA* AND YASUNDARA DEYI Department ofPharmacology. Christian Medical College. Vellore - 632 002 DRUGS INFLUENCING COGNITIVE FUNCTION cerebrovascular disorders with dementias and reversible dementias. Drugs can inOuence cognitive function in several different ways. The cognitrve enhancers or nootropics Primary degenerative disorders include the have become a major issue in drug development during subgroups senile dementia of the Alzheimer's type the last decade. Nootropics arc defined as drugs that (SDAT), Alzheimer's disease, Picks disease and generally increase neuron metabolic activity, improve Huntington's chorea (4). Alzheimer's disease usually cognitive and ,'igilance level and are said to have occurs in individuals past 70 years old and appears to antidemcntia effect (I). These drugs are essential for be in part genetically determin'd (5). the treatment of geriatric disorders like Alzheimer's which have become one of the major problems socially Pathophysiology oj Alzheimer's disease : and medically. Considerable evidence has been gathered Extensive research in the recent years has made major in the last decade to support the observation that advances in understanding the pathogenesis of children with epilepsy have morc learning difficulties Alzheimer's disease (6). The hallmark lesions of than age matched controls (2, 3). Anti-epileptic drugs Alzheimer's disease are neuritic plaques and are useful in controlling the frequency and duration of neurofibrillary tangles. Two amyloid proteins seizures. These drugs can also be the source of side accumulate in Alzheimer's disease, these arc beta effects including cognitive impairment.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0304998 A1 Sem (43) Pub
    US 20100304998A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0304998 A1 Sem (43) Pub. Date: Dec. 2, 2010 (54) CHEMICAL PROTEOMIC ASSAY FOR Related U.S. Application Data OPTIMIZING DRUG BINDING TO TARGET (60) Provisional application No. 61/217,585, filed on Jun. PROTEINS 2, 2009. (75) Inventor: Daniel S. Sem, New Berlin, WI Publication Classification (US) (51) Int. C. GOIN 33/545 (2006.01) Correspondence Address: GOIN 27/26 (2006.01) ANDRUS, SCEALES, STARKE & SAWALL, LLP C40B 30/04 (2006.01) 100 EAST WISCONSINAVENUE, SUITE 1100 (52) U.S. Cl. ............... 506/9: 436/531; 204/456; 435/7.1 MILWAUKEE, WI 53202 (US) (57) ABSTRACT (73) Assignee: MARQUETTE UNIVERSITY, Disclosed herein are methods related to drug development. Milwaukee, WI (US) The methods typically include steps whereby an existing drug is modified to obtain a derivative form or whereby an analog (21) Appl. No.: 12/792,398 of an existing drug is identified in order to obtain a new therapeutic agent that preferably has a higher efficacy and (22) Filed: Jun. 2, 2010 fewer side effects than the existing drug. Patent Application Publication Dec. 2, 2010 Sheet 1 of 22 US 2010/0304998 A1 augavpop, Patent Application Publication Dec. 2, 2010 Sheet 2 of 22 US 2010/0304998 A1 g Patent Application Publication Dec. 2, 2010 Sheet 3 of 22 US 2010/0304998 A1 Patent Application Publication Dec. 2, 2010 Sheet 4 of 22 US 2010/0304998 A1 tg & Patent Application Publication Dec. 2, 2010 Sheet 5 of 22 US 2010/0304998 A1 Patent Application Publication Dec.
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Dementia Summary
    Agency for Healthcare Research and Quality Evidence Report/Technology Assessment Number 97 Pharmacological Treatment of Dementia Summary Introduction 1. Does pharmacotherapy for dementia syndromes improve cognitive symptoms and The focus of this review is the pharmacological outcomes? treatment of dementia. Pharmacotherapy is often 2. Does pharmacotherapy delay cognitive the central intervention used to improve deterioration or delay disease onset of symptoms or delay the progression of dementia dementia syndromes? syndromes. The available agents vary with respect 3. Are certain drugs, including alternative to their therapeutic actions, and are supported by medicines (non-pharmaceutical), more varying levels of evidence for efficacy. This report effective than others? is a systematic evaluation of the evidence for 4. Do certain patient populations benefit more pharmacological interventions for the treatment from pharmacotherapy than others? of dementia in the domains of cognition, global 5. What is the evidence base for the treatment function, behavior/mood, quality of life/activities of ischemic vascular dementia (VaD)? of daily living (ADL) and caregiver burden. This review considers different types of Many medications have been studied in dementia populations (not just Alzheimer’s dementia patients. These agents can be classified Disease [AD]) in subjects from both community into three broad categories: and institutional settings. The studies eligible in 1. Cholinergic neurotransmitter modifying this systematic review were restricted to parallel agents, such as acetylcholinesterase inhibitors. RCTs of high methodological quality. 2. Non-cholinergic neurotransmitters/ neuropeptide modifying agents. Methods 3. Other pharmacological agents. A team of content specialists was assembled Although only five agents have been approved from both international and local experts.
    [Show full text]
  • KCNQ Channels in Nociceptive Cold-Sensing Trigeminal Ganglion
    Abd‑Elsayed et al. Mol Pain (2015) 11:45 DOI 10.1186/s12990-015-0048-8 RESEARCH Open Access KCNQ channels in nociceptive cold‑sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia Alaa A Abd‑Elsayed2,5†, Ryo Ikeda2,3†, Zhanfeng Jia2,7†, Jennifer Ling1,2, Xiaozhuo Zuo2, Min Li4,6 and Jianguo G Gu1,2* Abstract Background: Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K+ channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nociceptive cold-sensing trigeminal afferent fibers and if so, whether they are therapeutic targets for orofacial cold hyperalgesia, an intractable trigeminal neuropathic pain. Methods: Patch-clamp recording technique was used to study M-currents and neuronal excitability of cold-sensing trigeminal ganglion neurons. Orofacial operant behavioral assessment was performed in animals with trigeminal neuropathic pain induced by oxaliplatin or by infraorbital nerve chronic constrictive injury. Results: We showed that KCNQ channels were expressed on and mediated M-currents in rat nociceptive cold- sensing trigeminal ganglion (TG) neurons. The channels were involved in setting both resting membrane potentials and rheobase for firing action potentials in these cold-sensing TG neurons. Inhibition of KCNQ channels by linopir‑ dine significantly decreased resting membrane potentials and the rheobase of these TG neurons. Linopirdine directly induced orofacial cold hyperalgesia when the KCNQ inhibitor was subcutaneously injected into rat orofacial regions.
    [Show full text]
  • Functional Significance of M-Type Potassium Channels in Nociceptive
    ORIGINAL RESEARCH ARTICLE published: 14 May 2012 MOLECULAR NEUROSCIENCE doi: 10.3389/fnmol.2012.00063 Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings Gayle M. Passmore 1*, Joanne M. Reilly 1, Matthew Thakur 1, Vanessa N. Keasberry 1,2, Stephen J. Marsh 1, Anthony H. Dickenson 1 and David A. Brown 1 1 Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK 2 Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK Edited by: M-channels carry slowly activating potassium currents that regulate excitability in a Nikita Gamper, University of variety of central and peripheral neurons. Functional M-channels and their Kv7 channel Leeds, UK correlates are expressed throughout the somatosensory nervous system where they Reviewed by: may play an important role in controlling sensory nerve activity. Here we show that Nikita Gamper, University of Leeds, UK Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary Doug Krafte, Pfizer, USA afferents. Electrophysiological recordings from single afferents in vitro showed that *Correspondence: block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat Gayle M. Passmore, Department of stimulation and induced spontaneous, ongoing activity at 32◦CinmanyAδ-fibers. These Neuroscience, Physiology and observations were extended in vivo: intraplantar injection of XE991 selectively enhanced Pharmacology, University College London, Gower Street, London the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and WC1E 6BT, UK. higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral e-mail: [email protected] terminals.
    [Show full text]
  • 022345Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022345Orig1s000 OTHER REVIEW(S) SEALD LABELING: PI SIGN-OFF REVIEW APPLICATION NUMBER NDA 022345 APPLICANT Valeant Pharm N.A. PRODUCT NAME Potiga (ezogabine) SUBMISSION DATE 15 April 2011 PDUFA DATE 15 June 2011 SEALD SIGN-OFF DATE 10 June 2011 OND ASSOCIATE DIRECTOR Laurie Burke FOR STUDY ENDPOINTS AND LABELING This memo confirms that no critical prescribing information (PI) deficiencies were noted in the SEALD Labeling Review filed 8 June 2011 and no critical deficiencies have been found in the final agreed-upon PI reviewed today. SEALD has no objection to PI approval at this time. Reference ID: 2959126 --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- LAURIE B BURKE 06/10/2011 Reference ID: 2959126 NDA 22345 Potiga Potiga PMR/PMC Development Template: PREA Efficacy/Safety Study for Ezogabine PMR # 1 This template should be completed by the PMR/PMC Development Coordinator and included for each PMR/PMC in the Action Package. PMR/PMC Description: Prospective, randomized, placebo-control, double-blinded efficacy/ safety trial of Potiga (ezogabine) in children >12 years old. PMR/PMC Schedule Milestones: Final protocol Submission Date: 11/2012 Study/Clinical trial Completion Date: 01/2018 Final Report Submission Date: 05/2018 Other: MM/DD/YYYY 1. During application review, explain why this issue is appropriate for a PMR/PMC instead of a pre-approval requirement. Check type below and describe. Unmet need Life-threatening condition Long-term data needed Only feasible to conduct post-approval Prior clinical experience indicates safety Small subpopulation affected Theoretical concern Other This is part of a PREA requirement.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Currents by Endogenous Acetylcholine Reduces Spike-Frequency Adaptation and Network Correlation Edward D Cui, Ben W Strowbridge*
    RESEARCH ARTICLE Selective attenuation of Ether-a-go-go related K+ currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation Edward D Cui, Ben W Strowbridge* Department of Neurosciences, Case Western Reserve University, Cleveland, United States Abstract Most neurons do not simply convert inputs into firing rates. Instead, moment-to- moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-a`-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties. DOI: https://doi.org/10.7554/eLife.44954.001 *For correspondence: [email protected] Introduction Competing interests: The Understanding how modulatory systems function to govern neural circuits
    [Show full text]