The Sky This Week

Total Page:16

File Type:pdf, Size:1020Kb

The Sky This Week The sky this week April 13 to April 19, 2020 By Joe Grida, Technical Informaon Officer, ASSA ([email protected]) elcome to the third edion of The Sky this Week. It is designed to keep you looking up during these rather uncertain mes. We can’t get together for Members’ Viewing Nights, so I thought I’d write this W to give you some ideas of observing targets that you can chase on any clear night this coming week. As I said in my recent Starwatch* column in The Adverser newspaper: “Even with the restricons in place, stargazing is something that you can do easily on your own. It helps to relieve stress and will keep your sense of perspecve. It’s prey hard to walk away from a night under the stars without a jusfiable sense of awe. And also without sensing a real, albeit tenuous, connecon with the cosmos at large”. * Published on the last Friday of each month Naked eye star walk - Goodbye Orion, hello Scorpius The crisp autumn evenings of April offer an ideal opportunity to explore the majesty of the southern sky. However, make sure you dress warmly, because aer a few short minutes in the night air, you’ll begin to feel the cold bite. Go find yourself a nice dark spot in the back-garden, now that the Moon is rising later each evening, and let your eyes become accustomed to the darkness. Noce how many more stars you can see, even aer a few minutes, as the pupils of your eyes expand to let as much light in as possible. Some of the brightest stars in the whole sky can be seen at this me of the year. As red Betelgeuse and blue Rigel set with Orion, the Hunter in the west, fiery red Antares rises in the east. For me, I don't think there are any other constellaons in the sky, that herald the coming of the seasons so well as these two do. Orion in the east, signals summer is around the corner, whilst Scorpius in the east, brings the chill winds of winter with it. Antares, is a star of gargantuan proporons. If we replaced our Sun with it, then all the planets from Mercury through to Jupiter would all find themselves engulfed within it! Just below the tail of Scorpius, you can find the star clusters designated M6 and M7. Take the trouble to observe these with binoculars. They make a beauful sight, with many bright stars sparkling like diamonds against a background of gold dust. Over to the north, the constellaon of Leo, the lion is quite prominent. Many different cultures have seen a lion in this paern of stars. But others have seen a sickle, which forms the lion's head and shoulders, and a small triangle, which forms its hindquarters. The brightest star in the sickle is Regulus; the heart of the lion. The brightest star in the triangle is Denebola, also known as Beta Leonis because it's Leo's second-brightest star. It's about half as bright as Regulus. Denebola is an abbreviated form of an older Arabic name, Al Dhanab al Asad, which means "the lion's tail." Its name derives from the fact that Denebola is the easternmost star in Leo; at the tail end of the constellaon. Over in the northeast another star shines. This is Arcturus, in the constellaon Bootes, the herdsman. It's an orange -giant star, and it's unusually old as naked-eye stars go: about 10 billion years — roughly twice the age of the Sun, Earth, and solar system. Arcturus may thus be the oldest object you've ever seen. Arcturus is the third-brightest star in Earth's night sky. It appears so bright for a couple of reasons. First, Arcturus really is a bright star; it produces more visible light than most stars. If you placed Arcturus side by side with our own star, the Sun, it would appear more than a hundred mes brighter. And second, Arcturus is fairly close to us, at a distance of just 37 light-years. This nearness has another effect on how we see Arcturus. It moves across the sky faster than almost any other star. All stars are in constant moon as they orbit the centre of our Milky Way galaxy. But they're so far away that their moon is impercepble on human mescales. Astronomers must use sensive instruments to measure this moon. Arcturus is moving toward the constellaon Virgo, which is higher in the sky above Arcturus, at about half a degree every millennium — a distance equal to the width of the full Moon. Arcturus will move out of Bootes and into Virgo in about 20,000 years. As we turn our aenon to the south-east part of the sky, we find the Southern Cross. Just above the Southern Cross, the Milky Way is at it’s brightest. It’s here that we find a large cloud of gas and dust, known as the Eta Carinae Nebula. More about Eta Carinae the star, and the nebula next week. Get a star chart for the month of April here: hp://skymaps.com/downloads.html Passes of the ISS visible from Adelaide for the coming 10 days. In the first half of the week they are morning passes, and then they switch to evening passes for the second half of the week. Get more details at: heavens-above.com The Solar System The closest planet to the Sun, Mercury is lost in the glow of sunrise, as is the farthest planet, Neptune. Venus (magnitude –4.6, in north-central Taurus) is the dazzling white "Evening Star" low in the north-west during and aer dusk. Make sure you have a clear horizon as by 7:15pm, it’s only 5 degrees in elevaon. In a telescope, Venus has enlarged to 30 arcseconds in diameter while waning in phase to become a thick crescent, 40% sunlit. See inset below. Venus will connue to enlarge and wane, becoming a dramacally thin crescent low in twilight in mid-May. Mars, Jupiter, and Saturn (magnitudes, +0.6, – 2.2, and +0.6, respecvely) are lined up in the east before and during early dawn, as shown at right. Each morning Mars moves a lile farther away from the other two. The waning crescent Moon joins the planetary trio on the morning of April 16th. Uranus is lost in the glare of the seng Sun. (Note: both diagrams created with Stellarium v0.19 soware). North-western horizon @ 7:15pm, 15 April 2020 The Moon Best me to observe the Moon this week comes in the morning. It rises at 10:07pm on April 13, but not unl 2:52am on April 19. Our lunar feature this week, Oceanus Procellarum (Ocean of Storms) reveals how extensive volcanism was in the Moon’s early history. • The broad dark plain of Procellarum is a vast basalt field laid down over several billion years of intermient erupons. • Aristarchus crater is even visible in Earthshine. 450 million years old, 40 kms wide, 3000m deep • Intense volcanic acvity pushed up the elevated Aristarchis Plateau and dusted it with metres-deep layer of volcanic ash. • Lava flows also washed through the snake-like rille of Schroter’s Valley arcing across the plateau. (160 kms long, 1000m deep) • The dimples of the Marius Hills are a collecon of several hundred volcanic domes and cinder cones. The domes and cones are fairly low, so are best seen around sunrise & sunset when shadows display their shallow relief. Best me to observe this area is on Saturday morning, 18 April when the low rays of sunset on the Moon create the great shadows and contrast that bring the features into great relief. Deep Sky Challenge - The Antlia Galaxy Cluster High up in the sky these autumn evenings, you’ll find the small 3.0 minutes of arc it’s reasonably large, and relavely easy to faint constellaon of Antlia, the air pump. Never heard of it? see in a 10” telescope. The other bright galaxy, NGC 3271 lies It’s between Vela and Hydra. It was created by Lacaille in the 15 minutes ESE of NGC 3268. The 11.8 mag barred spiral 18th century. galaxy is of similar size to NGC 3268. Use the labeled DSS image below to assist you at the eyepiece. Probably best known for the iconic image of NGC 2997, the beauful face-on spiral photographed by David Malin at the Located 6 minutes North of NGC 3268, is the barred spiral NGC AAO. 3269. At 12.3 mag it is sll well within reach of smaller scopes. You observe these objects under dark skies. Going out in a However our target this month is the Antlia Galaxy Cluster. suburban sky is not going to auger well for you. This is the third closest to our Local Group, with only the Fornax Cluster and Virgo Cluster lying closer. The Antlia Cluster Just 2.5 minutes west of NGC 3268 is the 12.5 mag NGC 3267. contains about 234 galaxies and is dominated by two massive At 1.0 x 1.7 minutes in size, this spiral is the smallest of the ellipcal galaxies, NGC 3258 and NGC 3268. quartet. The Northern subgroup of galaxies inside the cluster gravitate A number of fainter PGC galaxies also complete the view in around NGC 3268, while the Southern subgroup is centered larger scopes. around NGC 3258. Each of the two giant ellipcals contain It is an easy target in a dark sky.
Recommended publications
  • XMM–Newton Observations of NGC 3268 in the Antlia Galaxy Cluster: Characterization of a Hidden Group of Galaxies at Z ≈ 0.41
    MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1401 Advance Access publication 2018 May 28 XMM–Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ≈ 0.41 I. D. Gargiulo,1,4‹ F. Garc´ıa,2,3,4,5 J. A. Combi,2,3,4 J. P. Caso1,2,4 and L. P. Bassino1,2,4 1Instituto de Astrof´ısica de La Plata (CCT La Plata, CONICET, UNLP), Paseo del Bosque s/n, B1900FWA La Plata, Argentina 2Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 3Instituto Argentino de Radioastronom´ıa (CCT-La Plata, CONICET; CICPBA), C.C. No. 5, 1894 Villa Elisa, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, Ciudad Autonoma´ de Buenos Aires, C1033AAJ Buenos Aires, Argentina 5Laboratoire AIM (UMR 7158 CEA/DRF-CNRS-Universite´ Paris Diderot), Irfu/Departament´ d’Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette, France Accepted 2018 May 25. Received 2018 May 25; in original form 2016 December 1 ABSTRACT We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268 in the Antlia Cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM–Newton satellite, complemented with optical images of Cerro Tololo Inter-American Observatory (CTIO) Blanco telescope, to attain for associations of the optical sources with the X-ray emission.
    [Show full text]
  • The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
    Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Early-Type Galaxies in the Antlia Cluster: Catalogue and Isophotal Analysis
    MNRAS 477, 1760–1771 (2018) doi:10.1093/mnras/sty611 Advance Access publication 2018 March 7 Early-type galaxies in the Antlia cluster: catalogue and isophotal analysis Juan P. Calderon,´ 1,2,3‹ Lilia P. Bassino,1,2,3 Sergio A. Cellone1,3,4 and Mat´ıas Gomez´ 5 1Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, Buenos Aires, Argentina 2Instituto de Astrof´ısica de La Plata (CCT La Plata - CONICET - UNLP), La Plata, Argentina 3Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina Downloaded from https://academic.oup.com/mnras/article-abstract/477/2/1760/4924514 by Universidad Andres Bello user on 28 May 2019 4Complejo Astronomico´ El Leoncito (CONICET - UNLP - UNC - UNSJ), San Juan, Argentina 5Departamento de Ciencias F´ısicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile Accepted 2018 February 26. Received 2018 February 26; in original form 2017 December 14 ABSTRACT We present a statistical isophotal analysis of 138 early-type galaxies in the Antlia cluster, located at a distance of ∼ 35 Mpc. The observational material consists of CCD images of four 36 × 36 arcmin2 fields obtained with the MOSAIC II camera at the Blanco 4-m telescope at Cerro Tololo Interamerican Observatory. Our present work supersedes previous Antlia studies in the sense that the covered area is four times larger, the limiting magnitude is MB ∼−9.6 mag, and the surface photometry parameters of each galaxy are derived from Sersic´ model fits extrapolated to infinity. In a companion previous study we focused on the scaling relations obtained by means of surface photometry, and now we present the data, on which the previous paper is based, the parameters of the isophotal fits as well as an isophotal analysis.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • Galaxy Populations in the Antlia Cluster – I
    Mon. Not. R. Astron. Soc. 386, 2311–2322 (2008) doi:10.1111/j.1365-2966.2008.13211.x Galaxy populations in the Antlia cluster – I. Photometric properties of early-type galaxies Anal´ıa V. Smith Castelli,1,2† Lilia P. Bassino,1,2† Tom Richtler,3† Sergio A. Cellone,1,2† Cristian Aruta‡ and Leopoldo Infante4† 1Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 2 Instituto de Astrof´ısica de la Plata (CONICET-UNLP) Downloaded from https://academic.oup.com/mnras/article-abstract/386/4/2311/1467775 by guest on 18 December 2018 3Departamento de F´ısica, Universidad de Concepcion,´ Casilla 160-C, Concepcion,´ Chile 4Departamento de Astronom´ıa y Astrof´ısica, Pontificia Universidad Catolica´ de Chile, Casilla 306, Santiago 22, Chile Accepted 2008 March 7. Received 2008 March 6; in original form 2007 November 16 ABSTRACT We present the first colour–magnitude relation (CMR) of early-type galaxies in the central region of the Antlia cluster, obtained from CCD wide-field photometry in the Washington photometric system. Integrated (C − T1) colours, T1 magnitudes, and effective radii have been measured for 93 galaxies (i.e. the largest galaxies sample in the Washington system till now) from the FS90 Antlia Group catalogue. Membership of 37 objects can be confirmed through new radial velocities and data collected from the literature. The resulting colour– magnitude diagram shows that early-type FS90 galaxies that are spectroscopically confirmed Antlia members or that were considered as definite members by FS90, follow a well-defined σ ∼ .
    [Show full text]
  • Cold Gas, Star Formation, and Substructure in the Nearby Antlia Cluster
    University of Groningen KAT-7 science verification Hess, Kelley M.; Jarrett, T. H.; Carignan, Claude; Passmoor, Sean S.; Goedhart, Sharmila Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/stv1372 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hess, K. M., Jarrett, T. H., Carignan, C., Passmoor, S. S., & Goedhart, S. (2015). KAT-7 science verification: Cold gas, star formation, and substructure in the nearby Antlia Cluster. Monthly Notices of the Royal Astronomical Society, 452(2), 1617-1636. https://doi.org/10.1093/mnras/stv1372 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Spiral Galaxies Stripped Bare 27 October 2010
    Spiral galaxies stripped bare 27 October 2010 ISAAC, it has a greater sensitivity to faint infrared radiation. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its Six spectacular spiral galaxies are seen in a clear new pinwheel structure. It lies in the zodiacal light in pictures from ESO's Very Large Telescope at the constellation of Virgo (the Maiden). Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I The galaxy in the second image is Messier 100, camera to help astronomers understand how the also known as NGC 4321, which was discovered in remarkable spiral patterns in galaxies form and evolve. the 18th century. It is a fine example of a "grand From left to right the galaxies are NGC 5427, Messier design" spiral galaxy - a class of galaxies with very 100 (NGC 4321), NGC 1300, NGC 4030, NGC 2997 and prominent and well-defined spiral arms. About 55 NGC 1232.
    [Show full text]
  • Facultad De Ciencias Atronomicas Y Geofisicas
    Universidad Nacional de La Plata Facultad de ciencias Atronomicas y Geofisicas Tesis Doctoral Estudio de enanas ultra-compactas y c´umulos globulares en el c´umulo de Antlia Juan Pablo CASO Tesis presentada para optar por el t´ıtulo de Doctor en Astronom´ıa 3 de diciembre de 2015 Directora: Dra. Lilia Bassino (Universidad Nacional de La Plata) Co-Director: Dr. Thomas Richtler (Universidad de Concepci´on, Chile) Agradecimientos A mi familia, quienes siempre me apoyaron desde que decid´ıestudiar esta carrera, y en especial a mis padres, que han sido el motor de todos mis logros. A mis amigos, que han hecho el camino m´as ameno, compartiedo infinidad de momentos. A Lilia y Tom, por ense˜narme, y guiarme en mi Doctorado. Su ejemplo y dedicaci´on fueron fundamentales para que haya podido llegar hasta aqu´ı. v UNIVERSIDAD NACIONAL DE LA PLATA Facultad de Ciencias Astron´omicas y Geof´ısicas Resumen Estudio de enanas ultra-compactas y c´umulos globulares en el c´umulo de Antlia por Juan Pablo Caso En la presente Tesis se intenta aportar evidencias que ayuden a dilucidar el origen de las enanas ultra-compactas (UCDs). Las mismas fueron descu- biertas hace poco m´as de una d´ecada, y presentan propiedades que podr´ıan relacionarlas tanto con los c´umulos globulares (CGs), como con galaxias de baja masa. Esto ha resultado en un abanico de hip´otesis sobre su origen, que incluyen ser los miembros m´as brillantes de los sistemas de CGs, los resultantes de la fusi´on de varios c´umulos estelares masivos durante eventos de formaci´on estelar particularmente intensos, o los remanentes de galaxias enanas nucleadas, desmembradas por las fuerzas tidales de galaxias vecinas masivas.
    [Show full text]
  • 198 7MNRAS.226. .747J Mon. Not. R. Astr. Soc. (1987) 226
    Mon. Not. R. astr. Soc. (1987) 226, 747-768 and Microfiche MN 226/1 .747J 7MNRAS.226. CCD surface photometry of elliptical galaxies - I. 198 Observations, reduction and results Robert I. Jedrzejewski Institute of Astronomy, Madingley Road, Cambridge CB3 OH A and Mount Wilson and Las Campanas Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA Accepted 1987 January 29. Received 1987 January 26; in original form 1986 October 21 Summary. A programme of CCD surface photometry of elliptical galaxies is described. A sample of 49 nearby early-type galaxies has been observed in the B and R passbands, and the isophotes fitted by ellipses. The cos (Ad) component of the isophotes has also been measured to investigate the degree to which the isophotes may be boxy or contain an edge-on disc component. Comparison with other observers shows that the surface brightness profiles and geometrical profiles are accurate to a few per cent when sky subtraction and seeing effects are not important. A future paper will use these data to investigate some important aspects of elliptical galaxy structure and dynamics. 1 Background Our understanding of elliptical galaxies has experienced a profound change in the past few years. Prior to 1975, they were considered to be very simple objects, consisting of an ensemble of stars arranged in a shape that revealed the angular momentum of the system - the most rapidly rotating galaxies being the most flattened. The work of Tiller (1960, 1966) went almost unnoticed in this respect, as in the observation of ellipticity changes and isophote twisting more complex behaviour was indicated.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]