Distributed Propulsion Systems to Maximize the Benefits of Boundary Layer Ingestion

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Propulsion Systems to Maximize the Benefits of Boundary Layer Ingestion 1 ISABE-2015-20288 Distributed Propulsion Systems to Maximize the Benefits of Boundary Layer Ingestion Andrew Rolt Propulsion Engineering Centre, School of Aerospace, Transport & Manufacturing, Cranfield University Cranfield, Bedfordshire, MK43 0AL, United Kingdom John Whurr Rolls-Royce plc Derby, Derbyshire DE24 8BJ UK Abstract Introduction This paper reviews the merits of alternative aircraft Propulsion systems for advanced aircraft designs configurations and propulsion systems including featuring BLI and distributed propulsion (DP) will distributed propulsion (DP) and potential synergies need to address some major technical and economic with boundary layer ingestion (BLI). It compares the challenges to realize significant benefits relative to performance benefits of alternative propulsion more conventional evolutionary designs. If a third systems for tube and wing aircraft featuring rear main engine is added to a twin-engined aircraft and fuselage BLI and in particular considers adding a third the size of each engine is reduced, then only a small propulsion system to reenergize the rear fuselage reduction in thermal efficiency and a modest increase boundary layer and to improve the propulsive in maintenance costs would be acceptable, otherwise efficiency of an otherwise more conventional twin- the propulsive efficiency improvements are likely to engined aircraft. The BLI propulsor could be powered be outweighed. Alternatively, if power is transferred by a third engine, or by power transmitted just from to a centreline propulsor from just two main engines, the two other engines. Stored energy could also be then the transmission system will need to be highly integrated into a hybrid electric propulsion system to efficient and lightweight. boost the takeoff and climb performance. Improved If it is also desired to use stored electrical energy to propulsive efficiency, reduced drag and reduced noise boost power at critical conditions and for the engines are the major drivers for DP and BLI in civil aviation. to be optimally sized for cruise, then the batteries and Glossary their associated systems must have high power density and high energy density to show a benefit. ACARE Advisory Council for Aerospace Research in Europe Current Aircraft and Engine Configurations APU Auxiliary Power Unit BLI Boundary Layer Ingestion Aircraft performance is highly dependent on having BWB Blended Wing-Body (aircraft) efficient and right-sized propulsion systems that can COC Cash Operating Cost provide sufficient thrust for all phases of a design mission and in anticipated failure cases. The levels of core The power generating part of an engine thrust demanded depend on the weight of the aircraft, DEAP Distributed Electrical Aerospace Propulsion its lift/drag ratio and its required rates of takeoff DP Distributed Propulsion acceleration, climb and descent, throughout the flight Extended-range Twin-engine ETOPS envelope, but the maximum takeoff weight also Operational Performance Standards depends on the design payload-range mission and the FAA Federal Aviation Administration performance, weight, nacelle drag and overall Leading Edge Asynchronous Propeller LEAPTech efficiency of the propulsion systems. Technology For a new aircraft design with new engines, both the LEBU Large-Eddy Break-Up (device) airframe and the propulsion system should be scaled LP Low Pressure to find the optimised combination. This process is A high speed propulsor or propulsion system open rotor complicated if it is desired to develop a family of with one or two rows of propeller blades aircraft having different payload-range combinations propulsion All of the components needed to provide while maintaining greater or lesser commonality in the system thrust, integrated with the aircraft airframe, engines and systems, and meeting noise A fan, propeller, open rotor or any other propulsor targets etc. The aircraft designers would also want to thrust producing device be able to take advantage of potential improvements SFC Specific Fuel Consumption to the propulsion systems when considering future TeDP Turbo-electric Distributed Propulsion developments of their new aircraft. Copyright 2015 by Rolls-Royce plc. Published by the University of Cincinnati, with permission. 2 Performance of turbofan aero-engines has improved highly innovative aircraft designs is that they are significantly since the first high bypass ratio designs likely to take longer to bring to market, by which time were introduced around 1970 and there is every evolutionary developments of more conventional air- indication that it will continue for many years to frames and propulsion systems could catch them up, come, but the rate of improvement is not matching the or market conditions and drivers could have changed. ambitious long-term targets set for the industry by The industry has a long track record of more advanced ACARE and NASA. Therefore more revolutionary aircraft designs being cancelled or taking far longer step changes in powerplant and aircraft design should than anticipated to enter service. be considered. Over the life of a commercial aircraft its operating The general configuration of most commercial and costs exceed its ownership costs, so it will always be business aircraft has changed little since the advent of possible to develop more efficient and sophisticated twin-turbofan low-wing aircraft. Small business jet designs and to sell them at a premium, but this aircraft have retained rear-fuselage mounted turbofan strategy has its risks. For example, the cost of fuel installations, but larger commercial aircraft generally may not continue to increase as anticipated. now have under-wing mounted engines. Only a few Future Airframes regional and commuter aircraft have retained high wings and/or turboprop engines. Higher cruise speed Though many aircraft designers since the 1930s have open rotor powerplants have yet to be adopted. considered flying wing or blended wing body (BWB) designs, all in-service commercial and business The most obvious changes to twin-turbofan aircraft aircraft are “tube and wing” designs. However, over the years have been increasing fan diameters. several of the more recently proposed DP aircraft Table 1 lists some good reasons why the industry has designs have been BWBs or intermediate designs with standardised on these designs. Only the very largest flattened or “double bubble” fuselage cross-sections. aircraft now need to have more than two engines, and Table 2 lists some different cabin arrangements used with the advent of 330 and 370 minute ETOPS in tube and wing aircraft. Most aircraft have a mostly approvals, there are no long-range commercial routes constant fuselage cross-section, though a continuous that cannot be flown by a twin-engined aircraft. curvature design is more aerodynamically efficient Table 1: Twin-Engined Aircraft Pros and Cons and is for example used in the Piaggio Avanti aircraft. Pros: Table 2: Alternative Cabin Arrangements A second engine enables safe operation with one engine inoperative Low wing with cabin floor above wing centre section: High reliability in comparison with a three or four engined aircraft • Turbofans under wings Higher rate of climb and climb ceiling with both engines operating • Turboprops or turbofans above wings High core mass flow gives high component and thermal efficiencies • Turbofans or open rotors aside the rear fuselage Minimum number of engines reduces servicing and maintenance High wing with centre section above cabin and a T-tail: Cons: • Turbofans under wing Two large engines will be heavier than three or more smaller ones • Tractor turboprops or open rotors ahead of wing Very large new or spare engines will be more difficult to transport • Pusher turboprops or open rotors aft of the wing Larger diameter fans and nacelles present installation challenges Mid-height wing with passenger cabin ahead of wing: Cores may be oversized for cruise, reducing thermal efficiency, in • A canard with pusher turboprops or open rotors order to meet one engine inoperative takeoff thrust requirements ________________________________________ High thrust and drag asymmetry with one engine inoperative leads to larger control forces and bigger tail surfaces with increased drag A key design choice is whether to keep the low wing __________________________________________________ configuration. The Piaggio Avanti is a rare example Nevertheless, having more than two propulsors does of a passenger aircraft with a wing at mid-height have benefits and it can be argued that in the near within the fuselage, made possible because all of the future some more complex DP arrangements could passenger cabin space is ahead of the wing spars. challenge the predominance of conventional twin- engined aircraft. A few turboprop aircraft have had low wings with the engines mounted above them, but high wings provide For DP aircraft and propulsion systems to win sales increased ground clearance and better protection of relative to conventional twin-engined aircraft they will the engines from the ingestion of sand and other need to offer their buyers affordability, high dispatch debris that may be encountered particularly if the reliability and reduced operating costs, as well as aircraft is operated from less well prepared runways. reductions in noise, CO2 and other emissions. Figure 1 considers the potential benefits of a high Significant performance improvement and thorough wing configuration, and takes the Avro Regional Jet demonstration of the
Recommended publications
  • A Numerical Approach for Implementing Air Intakes in a Canard Type Aircraft for Engine Cooling Purposes
    https://doi.org/10.1590/jatm.v13.1192 ORIGINAL PAPER A Numerical Approach for Implementing Air Intakes in a Canard Type Aircraft for Engine Cooling Purposes Odenir de Almeida1,* , Pedro Correa Souza1 , Erick Cunha2 1.Universidade Federal de Uberlândia – Faculdade de Engenharia Mecânica – Centro de Pesquisa em Aerodinâmica Experimental – Uberlândia/MG – Brazil. 2.Fábrica Brasileira de Aeronaves – Uberlândia/MG – Brazil *Corresponding author: [email protected] ABSTRACT This work presents selected results of an unconventional aircraft development campaign. Engine installation at the rear part of the fuselage imposed design constraints for air intakes that should be used for cooling purposes. Trial and error flight tests increased the development cost and time which required a more sophisticated analysis through computational fluid dynamics (CFD) techniques and robust semiempirical approach. The carried-out investigation of the air intakes started with an empirical approach from guidelines for designing NACA and scoops. Numerical studies via computational fluid dynamics were performed with the air intakes installed in the aircraft fuselage. An analysis based on the air intake efficiency, drag and the effect of angle of attack are detailed in this work. Different air intakes designs, such as scoops of different shapes, were evaluated seeking for improved air intake efficiency and low drag while providing enough air for cooling the engine compartment. The results showed that the numerical approach used herein decreased the development cost and time of the aircraft, providing a reasonable low-cost approach and leading to a design selection more easily. Based on the current approach the canard airplane geometry was changed to account for the new selected air intake for engine cooling purposes.
    [Show full text]
  • The Design and Development of a Human-Powered
    THE DESIGN AND DEVELOPMENT OF A HUMAN-POWERED AIRPLANE A THESIS Presented to the Faculty of the Graduate Division "by James Marion McAvoy^ Jr. In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering Georgia Institute of Technology June _, 1963 A/ :o TEE DESIGN AND DETERMENT OF A HUMAN-POWERED AIRPLANE Approved: Pate Approved "by Chairman: M(Ly Z7. /q£3 In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institution shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may he granted by the professor under whose direction it was written, or, in his absence, by the dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this disser­ tation which involves potential financial gain will not be allowed without written permission. i "J-lW* 11 ACKNOWLEDGMENTS The author wishes to express his most sincere appreciation to Pro­ fessor John J, Harper for acting as thesis advisor, and for his ready ad­ vice at all times. Thanks are due also to Doctor Rohin B. Gray and Doctor Thomas W. Jackson for serving on the reading committee and for their help and ad­ vice . Gratitude is also extended to,all those people who aided in the construction of the MPA and to those who provided moral and physical sup­ port for the project.
    [Show full text]
  • Design Study of Technology Requirements for High Performance Single-Propeller- Driven Business Airplanes
    3 1176 01346 2362 ! NASA Contractor Report 3863 NASA-CR-386319850007383 Design Study of Technology Requirements for High Performance Single-Propeller- Driven Business Airplanes David L. Kohlman and James Hammer CONTRACT NAS1-16363 JANUARY 1985 N/ A NASA Contractor Report 3863 Design Study of Technology Requirements for High Performance Single-Propeller- Driven Business Airplanes David L. Kohlman and James Hammer Flight Research Laboratory University of Kansas Center for Research, Inc. Lawrence, Kansas Prepared for Langley Research Center under Contract NAS1-16363 N/ A National Aeronautics and Space Administration Scientific and Technical InformationBranch 1985 TABLE OF CONTENTS Page i. INTRODUCTION .............................................. 1 2. NOMENCLATURE .............................................. 5 3. BASELINE CONFIGURATION ANALYSIS ........................... 7 3.1 Description of Baseline Configuration ................ 7 3.2 Effect of Aspect Ratio ............................... ii 3.3 Effect of Wing Loading ............................... 12 3.4 Effect of Wing Natural Laminar Flow .................. 15 3.5 Effect of Fuselage Drag .............................. 19 4. PROPULSION SYSTEM ANALYSIS ................................. 31 4.1 GATE Engine ........................................... 32 4.1.1 Description of Engine .......................... 32 4.1.2 GASP Engine Routine ............................ 33 4.2 Very Advanced Reciprocating Engine (Spark Ignited), (SIR) ............................... 36 4.3 Very Advanced Diesel
    [Show full text]
  • Design and Development of a Multi- Mission UAS Through Modular Component Integration and Additive Manufacturing
    Design and Development of a Multi- Mission UAS through Modular Component Integration and Additive Manufacturing A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Kim Lau August, 2018 approved by Dr. Nikos Mourtos Faculty Advisor 2 Table of Contents 1. Introduction ........................................................................................................................5 1.1. Motivation .................................................................................................................5 1.2. Literature Review .....................................................................................................5 1.2.1. UAV Design and Development Trends ...........................................................5 1.2.2. Push for Modularity .........................................................................................7 1.2.3. Additive Manufacturing ...................................................................................8 1.3. Project Proposal ........................................................................................................11 1.4. Methodology .............................................................................................................11 2. Design Process ...................................................................................................................12 2.1. Mission Specification and
    [Show full text]
  • The Voisin Biplane by Robert G
    THE VOISIN BIPLANE BY ROBERT G. WALDVOGEL A single glance at the Voisin Biplane reveals exactly what one would expect of a vintage aircraft: a somewhat ungainly design with dual, fabric-covered wings; a propeller; an aerodynamic surface protruding ahead of its airframe; and a boxy, kite-resembling tail. But, by 1907 standards, it had been considered “advanced.” Its designer, Gabriel Voisin, son of a provincial engineer, was born in Belleville, France, in 1880, initially demonstrating mechanical and aeronautical aptitude through his boat, automobile, and kite interests. An admirer of Clement Ader, he trained as an architect and draftsman at the Ecole des Beaux-Arts in Lyon, and was later introduced to Ernest Archdeacon, a wealthy lawyer and aviation enthusiast, who subsequently commissioned him to design a glider. Using inaccurate and incomplete drawings of the Wright Brothers’ 1902 glider published in L’Aerophile, the Aero-Club’s journal, Voisin constructed an airframe in January of 1904 which only bore a superficial resemblance to its original. Sporting dual wings subdivided by vertical partitions, a forward elevating plane, and a two-cell box-kite tail, it was devoid of the Wright-devised wing- warping method, and therefore had no means by which lateral control could be exerted. Two-thirds the size of the original, it was 40 pounds lighter. Supported by floats and tethered to a Panhard-engined racing boat, the glider attempted its first fight from the Seine River on June 8, 1905, as described by Voisin himself. “Gradually and cautiously, (the helmsman) took up the slack of my towing cable…” he had written.
    [Show full text]
  • The Modern Resurgence of a Misunderstood Machine
    FEATURE THE MODERN RESURGENCE OF A MISUNDERSTOOD MACHINE STORY BY BETH E. STANTON PHOTOGRAPHY BY CHRIS MILLER AT FIRST GLANCE, GYROPLANES LOOK LIKE A FUNKY CROSS BETWEEN A HELICOPTER AND AN AIRPLANE. While sharing aspects of both, they combine a unique blend of flight characteristics into one exhilarating-to-fly package. There is a standard in the industry known as the Gyroplane Grin. After his first flight in a gyroplane at EAA AirVenture Oshkosh 2018, Jim Antes, EAA Lifetime 1170562, was hooked. 78 March 2019 Alvee has no pilot experience but loved his gyroplane ride. www.eaa.org 79 “ALL IT TOOK WAS ONE FLIGHT, AND I HAD TO BUY THAT GYRO,” HE SAID. “I COULDN’T GET THE SMILE OFF MY FACE.” Gyroplanes can take off and land in short distances and fly in wind and turbulence that keeps fixed-wing aircraft on the ground. They can fly low and slow or cruise along at around 100 mph. They are highly maneuverable, can- not stall or spin, and, since they’re always in auto-rotation, they gradually descend to a land- ing spot in the event of an engine failure. Gyroplanes are a niche within a niche of rotorcraft and have been the outcasts of general aviation for decades. “We’re always sort of outcasts anyway being a rotorcraft,” gyroplane pilot Paul Minear said. “Then“ flying this thing that’s really unusual, we’re reallyr on the fringe of things.” MISCONCEPTIONS MISCONCEPTIONS ABOUT GYROPLANES span GYROPLANEGYROPLANE GEMSGEMS ROTOR FLIGHT DYNAMICS DOMINATOR / N559RD opposite ends of the spectrum, from so easy you can teach yourself to fly to the notion that they are difficult and dangerous.
    [Show full text]
  • Design of an Unmanned Aerial Vehicle for Long-Endurance Communication Support
    AIAA 2017-4148 AIAA AVIATION Forum 5-9 June 2017, Denver, Colorado 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference Design of an Unmanned Aerial Vehicle for Long-Endurance Communication Support Berk Ozturk,∗ Michael Burton,∗ Ostin Zarse,y Warren Hoburg,z Mark Drela,x John Hansmanx A long-endurance, medium-altitude unmanned aerial vehicle (UAV) was designed to provide communication support to areas lacking communication infrastructure. Current solutions involve larger, more costly aircraft that carry heavier payloads and have maximum flight durations of less than 36 hours. The presented design would enable a 5.6 day mission with a 10 lb, 100 W communications payload, providing coverage over an area 100 km in diameter. A geometric program was used to size the aircraft, which is a piston-engine unmanned aircraft with a 24 ft wingspan, and a takeoff weight of 147 lbs. The airframe is designed to be modular, which allows for fast and easy transportation and assembly for an operating crew of four to six. The aircraft can station-keep in 90% of global wind conditions at an altitude of 15,000 ft. Nomenclature ADS-B Automatic Dependent LOS line-of-sight Surveillance-Broadcast MSL mean sea level BLOS beyond line-of-slight MTOW maximum takeoff weight BSFC brake specific fuel consumption PMU power management unit CG center of gravity RC remote control GP geometric program RPM revolutions per minute ECU engine control unit STP standard temperature and pressure FAA Federal Aviation Administration UAV unmanned aerial vehicle FAR Federal Aviation Regulations UHF ultra-high frequency GPS Global Positioning System IC internal combustion I.
    [Show full text]
  • Conceptual and Preliminary Design of a Long Endurance Electric UAV
    Conceptual and Preliminary Design of a Long Endurance Electric UAV Luís Miguel Almodôvar Parada Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. André Calado Marta Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. André Calado Marta Member of the Committee: Dr. José Lobo do Vale November 2016 ii Pela minha fam´ılia, por ter permanecido. iii iv Acknowledgments First of all, I would like to express my gratitude to my thesis supervisor, professor Andre´ Calado Marta, for all technical guidance, patience and moral support throughout the period of time it took me to write this document. Moving on to the extracurricular plan, a word of appreciation is due to the Autonomous Section of Applied Aeronautics (S3A). It was thanks to the work developed at this hands-on organization of students that I started gaining interest in model aircraft, which made me look at this thesis subject twice. Furthermore, I want to thank a few friends and acquaintances that helped me through my academic life. Borrowed class notes, car rides, sleepless nights working for course projects, miraculous pieces of code, etc... all genuine contributions mattered. Finally, I must dedicate this work to my family, the foundation that allowed me to harvest a higher education level. To my parents, for supporting me financially and emotionally, while respecting my decisions and daily struggles. To my grandparents, for diligently nurturing me over the years with all the resilience they could possibly seed. And last but not least, to my brother and to my sister, for being the best distractions of my life.
    [Show full text]
  • Airplane Design(Aerodynamic) Prof. EG Tulapurkara Chapter-1
    Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 Chapter 1 Lecture 2 Introduction - 2 Topics 1.5 Classification of airplanes according to configuration 1.5.1 Classification of airplanes based on wing configuration 1.5.2 Classification of airplanes based on fuselage 1.5.3 Classification of airplanes based on horizontal stabilizer 1.5.4 Classification of airplanes based on number of engines and their location 1.6 Factors affecting the configuration 1.6.1 Aerodynamic considerations – drag, lift and interference 1.6.2 Low structural weight 1.6.3 Layout peculiarities 1.6.4 Manufacturing processes 1.6.5 Cost and operational economics - Direct operating cost (DOC) and Indirect operating cost (IOC) 1.6.6 Interaction of various factors 1.7 Brief historical background 1.7.1 Early developments 1.5 Classification of airplanes according to configuration This classification is based on the following features of the configuration. a) Shape, number and position of wing. b) Type of fuselage. c) Location of horizontal tail. d) Location and number of engines. Dept. of Aerospace Engg., Indian Institute of Technology, Madras 1 Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 The different types of configurations are shown in Fig.1.2. As an exercise the student is advised to study, at this stage, various types of airplanes from Jane's all the world aircraft (Ref.1.21). Fig.1.2 Types of airplanes(cont.) Dept. of Aerospace Engg., Indian Institute of Technology, Madras 2 Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 Fig.1.2 Types of airplanes 1.5.1 Classification of airplanes based on wing configuration Early airplanes had two or more wings e.g.
    [Show full text]
  • Delft University of Technology Aerodynamic Installation Effects Of
    Delft University of Technology Aerodynamic installation effects of lateral rotors on a novel compound helicopter configuration Stokkermans, Tom; Soemarwoto, Bambang; Voskuijl, Mark; Fukari, Raphaël; Veldhuis, Leo; Eglin, Paul Publication date 2018 Document Version Accepted author manuscript Published in Annual Forum Proceedings - AHS International Citation (APA) Stokkermans, T., Soemarwoto, B., Voskuijl, M., Fukari, R., Veldhuis, L., & Eglin, P. (2018). Aerodynamic installation effects of lateral rotors on a novel compound helicopter configuration. Annual Forum Proceedings - AHS International, 2018-May. Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Aerodynamic Installation Effects of Lateral Rotors on a Novel Compound Helicopter Configuration Tom Stokkermans Mark Voskuijl Leo Veldhuis PhD Candidate Assistant Professor Full Professor Delft University of Technology Delft University of Technology Delft University of Technology Delft, the Netherlands Delft, the Netherlands Delft, the Netherlands Bambang Soemarwoto Raphael¨ Fukari Paul Eglin Senior Scientist Engineer Aeromechanics senior expert Netherlands Aerospace Centre NLR Airbus Helicopters Airbus Helicopters Amsterdam, the Netherlands Marignane, France Marignane, France ABSTRACT Installation effects of the lateral rotors for a compound helicopter were investigated by means of unsteady CFD sim- ulations.
    [Show full text]
  • Wind-Tunnel Investigation of the Flight Chasacteristics of a Canard
    ., , -. / ~ ,a ~ i t 1 1 / I -1 I' I , ,Wind-TunnelInvestigation of the Flight Chasacteristics of a Canard Genera1:Aviation Airplane Coniiguration - I Dale R. Satran j . iNA3A-22-2623 ) UIND- TUNKEL INVESTIGkTION OE 138 7 - 1 d 0 3 j IHZ ELIGHT Cii Ait ACiEiiI STILS C F A CANAtiD Fig32 AVI - G AL- A T iUN AIRP LANE CC NEPGUEATION I 60 [NASA) p csci 01A Ullcla s I H1/02 44247 , NASA NASA Technical Paper 2623 1986 Wind-Tunnel Investigation of the Flight Characteristics of a Canard General-Aviation Airplane Configuration Dale R. Satran Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Information Branch Summary figuration. A 0.36-scale model was used in the free- flight investigation and was also used to obtain static A 0.36-scale model of a canard general-aviation and dynamic force data to aid in the interpretation airplane with a single pusher propeller and winglets of the free-flight test results. The free-flight tests was tested in the Langley 30- by 60-Foot Wind Tun- were conducted for angles of attack ranging from 7O nel to determine the static and dynamic stability and to 14O. The investigation included tests of the model control and free-flight behavior of the configuration. with high and low canard positions, three center-of- Model variables made testing of the model possible gravity locations, outboard wing leading-edge droop, with the canard in high and low positions, with in- winglets and a center vertical tail, and several roll- creased winglet area, with outboard wing leading- and yaw-control systems.
    [Show full text]
  • Red Bull Air Racer
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2011 Senior Design II Final Report: Red Bull Air Racer Eric H. Kirchoff University of Tennessee - Knoxville, [email protected] Chad Sutton University of Tennessee - Knoxville Andrew Kail University of Tennessee - Knoxville Sydney Fears University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Other Aerospace Engineering Commons Recommended Citation Kirchoff, Eric H.; Sutton, Chad; Kail, Andrew; and Fears, Sydney, "Senior Design II Final Report: Red Bull Air Racer" (2011). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1455 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Senior Design II Final Report: Red Bull Air Racer Chad H. Sutton, Eric Kirchoff, Andrew Kail, Sydney Fears Department of Mechanical, Aerospace and Biomedical Engineering University of Tennessee, Knoxville, TN, 37916 Submitted to Dr. Robert Bond May 2, 2011 1 Abstract The preliminary design process of modern aircraft is a very important process for aerospace engineers to learn. To expand on previous assignments, this capstone design project aims to be a full and in-depth analysis of the design process. The objective of this project was to design a theoretical, full-scale, pusher configuration air racer capable of competing in the Red Bull Air Race, specifically on the Budapest track.
    [Show full text]