Identification of Micrornas and Their Targets Involved in Paeonia Rockii
J. AMER.SOC.HORT.SCI. 144(2):118–129. 2019. https://doi.org/10.21273/JASHS04395-18 Identification of MicroRNAs and Their Targets Involved in Paeonia rockii Petal Variegation Using High-throughput Sequencing Qianqian Shi1, Xiaoxiao Zhang1, Xiang Li, Lijuan Zhai, Xiaoning Luo, and Jianrang Luo College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, Shaanxi, China; and National Engineering Research Center for Oil Peony, Yangling 712100, Shaanxi, China Lixia He Gansu Engineering Research Center for Tree Peony, Lanzhou 730046, Gansu, China; and Gansu Forestry Science and Technology Extend Station, Lanzhou 730046, Gansu, China Yanlong Zhang2 College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, Shaanxi, China; and National Engineering Research Center for Oil Peony, Yangling 712100, Shaanxi, China Long Li2 College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China ADDITIONAL INDEX WORDS. tree peony, flower coloration, miRNA, MYB transcription factor, chalcone synthase, ABC transporters ABSTRACT. Tree peony (Paeonia sp.) is a popular traditional ornamental plant in China. Among the nine wild species, Paeonia rockii displays wide-ranging, deep purple variegation at the base of the petals, whereas Paeonia ostii exhibits purely white petals. Overall, the posttranscriptional regulation involved in tree peony flower opening and pigmentation remains unclear. To identify potential microRNAs (miRNAs) involved in flower variegation, six small RNA libraries of P. ostii and P. rockii petals at three different opening stages were constructed and sequenced. Using Illumina-based sequencing, 22 conserved miRNAs and 27 novel miRNAs were identified in P. rockii and P. ostii petals. Seventeen miRNAs were differentially expressed during flower development, and several putative target genes of these miRNAs belonged to transcription factor families, such as Myb domain (MYB), and basic helix-loop-helix (bHLH) transcription factors.
[Show full text]