Determination of Denatonium Benzoate (Bitrex) in Denatured Spirit Preparations

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Denatonium Benzoate (Bitrex) in Denatured Spirit Preparations © by the Institute of Forensic Research Problems of Foren sic Science s 2005, LXIII, 275–287 ISSN 1230-7483 DETERMINATION OF DENATONIUM BENZOATE (BITREX) IN DENATURED SPIRIT PREPARATIONS Dariusz ZUBA, Czes³awa ŒWIEGODA, Bogumi³a BYRSKA, Wojciech LECHOWICZ In sti tute of Fo ren sic Re search, Krakow Ab stract The aim of the study was to elab o rate a chro matographic method for de ter mi nation of denatonium ben zoate (Bitrex) in spir its in- tended for in dustrial pur poses as well as in products prepared on the basis of dena tured spirit, such as windscreen washers, dis in - fec tants, al co holic sol vents, or bar be cue light ing fluid. High-per for mance liq uid chro ma tog ra phy (HPLC) was ap plied to detec tion and quanti ta tive analy sis of denatonium benzo ate in spirit prod ucts. Sepa ra tion was performed on a Chromolith Perfor - mance RP-18e (100 ´ 4.6 mm) col umn, in gra di ent condi tions, with the use of 0.01% aque ous solu tion of phos phoric acid and acetonitrile as the elu ents. Iden ti fi ca tion of com po nents was car ried out us ing a spec tro pho to met ric de tec tor with a di ode-ar ray matrix (DAD). The presence of denatonium benzo ate in spirits was confirmed by mass spectrom e try (MS). Liq uid sam ples were in tro duced directly into the ion isation cham ber of the spectrom e ter. Both pos i tive (ES+) and neg ative (ES–) ion isation mode were applied. The cap il lary volt age was 3.0 kV and the CID zone voltage was 15 V. The worked-out pro cedure of spir its exam i - nation for the denatonium benzo ate content is straightfor ward and fast. It en ables exam i nation of colour less liquids without pre - lim i nary sample prep ara tion, or, pos sibly, just with centrifugation of the sam ple. The de ter mined limit of quantitation was 0.3 mg/l, i.e. ten times lower than the min i mal amount of denatonium benzo ate, which the dena tured spir its should contain ac- cord ing to the decree of the Minis try of Agri cul ture and Rural De velop m ent (0.3 g/100 l of 100% al cohol). The above method is used in rou tine ex am i na tions per formed at the In sti tute of Fo ren sic Re search. Key words De na tured spirit; Denatonium ben zo ate; Pu ri fi ca tion. Re ceived 9 De cem ber 2005; ac cepted 30 De cem ber 2005 1. In tro duc tion benzo ate is highly solu ble in metha nol (69.0 g per 100 ml at 20°C), etha nol (33.5), chloro form (33.0) and Denatonium benzo ate (Bitrex) is descri bed in the iso-propanol (10.5), whereas sol u bility in water is lo- Guinness Book of Records as the bitter est com pound wer (4.5). It was syn thesised in 1958 during resear ch known to man. Adding as little as thirty parts of de - on lo cal an aes thet ics. Denatonium ben zo ate is closely natonium benzo ate to one million parts of a liquid related to one such sub stance – lidocaine. Its chem i cal makes it too bit ter to be toler ated by most hum an sub- struc ture dif fers only in the addi tion of a benzyl group jects. to the amino nitro gen. The chem ical structure of de- The chem i cal name of Bitrex is N-benzyl-2-(2,6- natonium benzo ate is shown in Figure 1. dimethylphenylamino)-N,N-di ethyl-2-oxoethanami- Tox i co log i cal data in di cate its low tox ic ity [10]. The nium benzo ate (CAS Regis try Num ber: 3734-33-6). It de ter mined LD50 af ter intragastric ap pli ca tion to an i - occurs as white odourless granules of neutral pH mals are as fol lows: LD50 rat – 820 mg/kg, LD50 mouse – (6.5–7.5), with melting point 163–170°C. Denatonium 865 mg/kg, LD50 rabbit – 580 mg/kg, LD50 Guinea 276 D. Zuba, C. Œwiegoda, B. Byrska et al. quired the ad dition of denatonium benzo ate at a con- centra tion of 30–50 ppm with the in tention of reduc ing the fre quency of se ri ous pae di at ric in tox i ca tions with these prod ucts [11]. Since that time many papers showing the preven ta tive action of denatonium benzo - ate have been published [3, 9, 15]. Denatonium ben zo ate is a qua ter nary am mo nium, which makes its analy sis diffi cult. In 1991, a poly(vinyl chloride) matrix mem brane Fig. 1. The chemi cal structure of denatonium benzo ate ion-se lec tive elec trode for the de ter mi na tion of the (Bitrex). denatonium ion based on the denatonium salt of tetra- phenylborate was described. The response charac teris - pig – 800 mg/kg, LD50 rainbow trout – 1000 mg/kg. tics of the electrode for the denatonium ion and for How ever, one should rem em ber that there are signif i - several other com pounds that were quater nary am mo - cant gaps in knowledge in this field, espe cially relat ing nium, were studied. The results of potentiometric mea- to chronic tox ic ity in hu mans, tera to ge nici ty, and hu - surem ents of denatonium benzo ate content in rapeseed man hy per sen si tiv ity po ten tial. oil in the range of 1–10 ppm agreed to within ±5% of Use of denatonium benzo ate is linked to its bitter - the spiked amounts [10]. ness. It is used to dena ture ethyl alco hol that it is not The most com mon method used in practice for its taxed as an al co holic bev erage. In fact, the com mon de ter mi na tion in con sumer prod ucts is high-per for- name for this chem ical, denatonium, alludes to this ap- mance liq uid chro ma tog ra phy (HPLC) [5, 8]. Anal y sis pli cation. The in ten sity of its taste, its low tox icity and of stan dard solu tions showed a linear ity in the range of lack of car ci no ge nic ity make denatonium ben zo ate an 1.25 to 50 ppm (produc ers usu ally add from 10 to ideal addi tive to prevent people from ingest ing harm - 30 ppm). The eluate from the range corre spond ing to ful liq uids such as de ter gents, dis in fec tants, clean ing the recorded peak is col lected and the pres ence of dena - flu ids and gar den and hor ti cul tural prod ucts. Be cause tonium ben zo ate is ver i fied by mass spec trom e try. of the aver sion it engen ders, denatonium benzo ate is The aim of another study concern ing denatonium increas ingly being used as an aversion addi tive. The benzo ate was to elabo rate a quick method for the isola - addi tion of denatonium is credited with saving chil- tion and enrich m ent of this com pound from low-solid - dren and ani m als, who (which) might other wise drink i fi ca tion flu ids ap plied to cool ing of in ter nal-com - sweet anti freeze or wiper fluid and get eth ylene glycol bustion engines (liquids based on ethyl ene and propyl - or meth a nol poi son ing re spec tively. Other uses in - ene glycol). Solid phase extrac tion (SPE) was used for clude deer repel lant, “nail polish” – to dis courage sam ple prep a ra tion and de ter mi na tion was car ried out nail-biting, paints, coat ing of electri cal cables to pre- by means of high per for mance liq uid chro ma tog ra phy vent rodents from eating the insu la tion. Very dilute so- in reverse d phase mode (RP HPLC). Thanks to opti m i- lutions are also used to coat children’ s thumbs to sation of the sam ple prepa ra tion method, high re cover - prevent thumb sucking. It should be noted that ani m als ies (about 90%) as well as reproducibility of quan- are known to have differ ent sensi tiv ity to the effects of titative and qual i ta tive re sults of de ter mined analyte denatonium ben zo ate. Dif fer ences in per cep tion of its con cen tra tion (RSD = ±1%) were obtained [6]. bitter taste have also been observe d in children, adults The cap il lary elec tro pho re sis (CE) tech nique has and elderly persons [14]. The data indi cate that addi - also been ap plied to stud ies. Op ti mised sep a ra tion was tion of denatonium benzo ate would be expected to sig - carried out in 0.025 mol/l Tris-phos phate electro lyte nif i cantly re duce the prob a bil ity of ac ci den tal (pH 7.0) using direct UV detec tion at 214 nm. Cali bra - inges tion [2].
Recommended publications
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • S. 1110, the Engine Coolant and Antifreeze Bittering Agent Act of 2005
    S. HRG. 109–377 S. 1110, THE ENGINE COOLANT AND ANTIFREEZE BITTERING AGENT ACT OF 2005 HEARING BEFORE THE SUBCOMMITTEE ON CONSUMER AFFAIRS, PRODUCT SAFETY, AND INSURANCE OF THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED NINTH CONGRESS FIRST SESSION JULY 18, 2005 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PRINTING OFFICE 27–356 PDF WASHINGTON : 2006 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 VerDate 0ct 09 2002 12:59 May 08, 2006 Jkt 027356 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\WPSHR\GPO\DOCS\27356.TXT JACKF PsN: JACKF SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED NINTH CONGRESS FIRST SESSION TED STEVENS, Alaska, Chairman JOHN MCCAIN, Arizona DANIEL K. INOUYE, Hawaii, Co-Chairman CONRAD BURNS, Montana JOHN D. ROCKEFELLER IV, West Virginia TRENT LOTT, Mississippi JOHN F. KERRY, Massachusetts KAY BAILEY HUTCHISON, Texas BYRON L. DORGAN, North Dakota OLYMPIA J. SNOWE, Maine BARBARA BOXER, California GORDON H. SMITH, Oregon BILL NELSON, Florida JOHN ENSIGN, Nevada MARIA CANTWELL, Washington GEORGE ALLEN, Virginia FRANK R. LAUTENBERG, New Jersey JOHN E. SUNUNU, New Hampshire E. BENJAMIN NELSON, Nebraska JIM DEMINT, South Carolina MARK PRYOR, Arkansas DAVID VITTER, Louisiana LISA J. SUTHERLAND, Republican Staff Director CHRISTINE DRAGER KURTH, Republican Deputy Staff Director DAVID RUSSELL, Republican Chief Counsel MARGARET L. CUMMISKY, Democratic Staff Director and Chief Counsel SAMUEL E.
    [Show full text]
  • Denatonium Capsaicinate and Methods of Producing the Same
    Europäisches Patentamt *EP001015418B1* (19) European Patent Office Office européen des brevets (11) EP 1 015 418 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 237/04, A01N 37/44, of the grant of the patent: A61K 31/165, C09D 7/12 26.05.2004 Bulletin 2004/22 (86) International application number: (21) Application number: 98937289.1 PCT/US1998/015836 (22) Date of filing: 31.07.1998 (87) International publication number: WO 1999/015495 (01.04.1999 Gazette 1999/13) (54) DENATONIUM CAPSAICINATE AND METHODS OF PRODUCING THE SAME DENATONIUM CAPSAICINAT UND VERFAHREN ZU IHRER HERSTELLUNG DENATONIUM CAPSAICINATE ET SES METHODES DE PRODUCTION (84) Designated Contracting States: • ROITBERG, Michael AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Highland Park, NJ 08904 (US) MC NL PT SE (74) Representative: Guerre, Dominique et al (30) Priority: 19.09.1997 US 929621 Cabinet Germain et Maureau, 12, rue Boileau, (43) Date of publication of application: BP 6153 05.07.2000 Bulletin 2000/27 69466 Lyon Cedex 06 (FR) (73) Proprietor: Burlington Bio-Medical & Scientific (56) References cited: Corp. EP-A- 0 458 177 WO-A-94/02558 Farmingdale, NY 11735-1718 (US) GB-A- 2 097 791 US-A- 4 005 038 US-A- 4 661 504 US-A- 4 997 853 (72) Inventors: US-A- 5 008 289 • BLUM, Melvin Wantagh, NY 11794 (US) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,150,782 B2 Lee Et Al
    US009 150782B2 (12) United States Patent (10) Patent No.: US 9,150,782 B2 Lee et al. (45) Date of Patent: Oct. 6, 2015 (54) FLUORESCENT TRACER FOR (56) References Cited WATER-SOLUBLE FILMS, RELATED METHODS, AND RELATED ARTICLES U.S. PATENT DOCUMENTS (71) Applicant: MONOSOL, LLC, Merrillville,- - - - IN (US) 2.477,3832,220,099 A 11/19407, 1949 GuentherLewis et al. (72) Inventors: David M. Lee, Crown Point, IN (US); (Continued) Stephen Bullock, Chicago, IL (US); Nicholas Zeese, Michigan City, IN (US) FOREIGN PATENT DOCUMENTS (73) Assignee: MONOSOL, LLC, Merrillville,- - - - IN (US) EP OO791680 197434 A2 10,8, 19971986 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Dye Tracing, Wikipedia Entry, downloaded from the Internet at (21) Appl. No.: 14/562,148 <http://en.wikipedia.org/wiki/Dye tracing> (page last modifed Apr. 26, 2014). (22) Filed: Dec. 5, 2014 (Continued) (65) Prior Publication Data Primary Examiner — Kiho Kim US 2015/O159082 A1 Jun. 11, 2015 (74) Attorney, Agent, or Firm — Marshall, Gerstein & Borun LLP Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 61/912,689, filed on Dec. Disclosed herein are fluorescent tracer compositions and 6, 2013. water-soluble polymer compositions containing fluorescent s compounds for tracing one or more components in the poly (51) Int. Cl. mer compositions. More particularly, the disclosure relates to GOIN 2L/64 (2006.01) fluorescent tracer compositions including a fluorophore and a C09K II/02 (2006.01) bitterant aversive component to be incorporated into a water soluble polymer composition Such as a water-soluble film.
    [Show full text]
  • Evaluation of the Fate and Transport of Methanol in the Environment
    EVALUATION OF THE FATE AND TRANSPORT OF METHANOL IN THE ENVIRONMENT Prepared For: American Methanol Institute 800 Connecticut Avenue, NW, Suite 620 Washington, DC 20006 Prepared By: Malcolm Pirnie, Inc. 180 Grand Avenue, Suite 1000 Oakland, California 94612 JANUARY 1999 3522-002 TABLE OF CONTENTS Page EXECUTIVE SUMMARY .............................................................................................ES-1 1.0 BACKGROUND .................................................................................................... 1 1.1 Purpose and Scope of Report........................................................................ 1 1.2 Introduction and History of Use ................................................................... 1 1.3 Methanol Production..................................................................................... 3 1.4 Chemical and Physical Properties................................................................. 4 1.5 Release Scenarios ......................................................................................... 5 1.6 Fate in the Environment ............................................................................... 7 2.0 PARTITIONING OF METHANOL IN THE ENVIRONMENT........................... 9 2.1 Methanol Partitioning Between Environmental Compartments .................. 9 2.2 Air/Water Partitioning.................................................................................. 9 2.3 Soil/Water Partitioning................................................................................
    [Show full text]
  • Based Hand Sanitizer Products During the Public Health Emergency (COVID-19)
    Contains Nonbinding Recommendations Temporary Policy for Manufacture of Alcohol for Incorporation Into Alcohol- Based Hand Sanitizer Products During the Public Health Emergency (COVID-19) Guidance for Industry March 2020 Updated February 10, 2021 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Pharmaceutical Quality/Manufacturing Standards (CGMP)/Over-the-Counter (OTC) Preface Public Comment This guidance is being issued to address the Coronavirus Disease 2019 (COVID-19) public health emergency. This is being implemented without prior public comment because FDA has determined that prior public participation for this guidance is not feasible or appropriate (see section 701(h)(1)(C)(i) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) and 21 CFR 10.115(g)(2)). This guidance document is being implemented immediately, but it remains subject to comment in accordance with the Agency’s good guidance practices. Comments may be submitted at any time for Agency consideration. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. Submit electronic comments to https://www.regulations.gov. All comments should be identified with the docket number FDA-2020-D-1106 and complete title of the guidance in the request. Additional Copies Additional copies are available from the FDA web page titled “ COVID-19-Related Guidance Documents for Industry, FDA Staff, and Other Stakeholders,” available at https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/coronavirus-disease- 2019-covid-19, and from the FDA web page “Hand Sanitizers | COVID-19” available at: http://wcms-internet.fda.gov/drugs/coronavirus-covid-19-drugs/hand-sanitizers-covid-19.
    [Show full text]
  • Coagulation Treatment to Remove Denatonium Benzoate
    COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Hussein Alaydamee Dayton, Ohio May 2017 COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Name: Alaydamee, Hussein Hantoosh APPROVED BY: ___________________________ _________________________ Kenya Crosson, Ph.D. Kevin J. Myers, D.Sc., P.E. Advisory Committee Chairman Professor, Graduate Chemical Associate Professor Engineering Program Coordinator Department of Civil and Department of Chemical and Environmental Engineering and Materials Engineering Engineering Mechanics ________________________ Erick S. Vasquez, Ph.D. Assistant Professor Department of Chemical and Materials Engineering ________________________ ________________________ Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas Ph.D., M.A, P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Hussein Hantoosh Alaydamee All rights reserved 2017 iii ABSTRACT COAGULATION TREATMENT TO REMOVE DENATONIUM BENZOATE FROM WATER Name: Alaydamee, Hussein Hantoosh University of Dayton Advisor: Dr. Kenya Crosson The bittering agent denatonium benzoate, DB, was mandated by the U.S. House of Representatives (H.R. 615) to be added to antifreeze containing more than 10% ethylene glycol at 30-50ppm in order to prevent accidental poisoning. 30-ppm DB concentration in water makes it unpalatable. This research addressed the optimal doses of alum and ferric chloride, and impact of water quality conditions such as pH, ionic strength, turbidity, and alkalinity on DB removal from water. Coagulation aids such as kaolin and bentonite were studied for their impact on DB removal.
    [Show full text]
  • AVMA Guidelines for the Euthanasia of Animals: 2020 Edition*
    AVMA Guidelines for the Euthanasia of Animals: 2020 Edition* Members of the Panel on Euthanasia Steven Leary, DVM, DACLAM (Chair); Fidelis Pharmaceuticals, High Ridge, Missouri Wendy Underwood, DVM (Vice Chair); Indianapolis, Indiana Raymond Anthony, PhD (Ethicist); University of Alaska Anchorage, Anchorage, Alaska Samuel Cartner, DVM, MPH, PhD, DACLAM (Lead, Laboratory Animals Working Group); University of Alabama at Birmingham, Birmingham, Alabama Temple Grandin, PhD (Lead, Physical Methods Working Group); Colorado State University, Fort Collins, Colorado Cheryl Greenacre, DVM, DABVP (Lead, Avian Working Group); University of Tennessee, Knoxville, Tennessee Sharon Gwaltney-Brant, DVM, PhD, DABVT, DABT (Lead, Noninhaled Agents Working Group); Veterinary Information Network, Mahomet, Illinois Mary Ann McCrackin, DVM, PhD, DACVS, DACLAM (Lead, Companion Animals Working Group); University of Georgia, Athens, Georgia Robert Meyer, DVM, DACVAA (Lead, Inhaled Agents Working Group); Mississippi State University, Mississippi State, Mississippi David Miller, DVM, PhD, DACZM, DACAW (Lead, Reptiles, Zoo and Wildlife Working Group); Loveland, Colorado Jan Shearer, DVM, MS, DACAW (Lead, Animals Farmed for Food and Fiber Working Group); Iowa State University, Ames, Iowa Tracy Turner, DVM, MS, DACVS, DACVSMR (Lead, Equine Working Group); Turner Equine Sports Medicine and Surgery, Stillwater, Minnesota Roy Yanong, VMD (Lead, Aquatics Working Group); University of Florida, Ruskin, Florida AVMA Staff Consultants Cia L. Johnson, DVM, MS, MSc; Director,
    [Show full text]
  • Ethylene Glycol Poisoning in a Child Treated with 4-Methylpyrazole
    Ethylene Glycol Poisoning in a Child Treated With 4-Methylpyrazole Patrick Harry, MD*; Eric Jobard, PhD‡; Maryvonne Briand, MD§; Alain Caubet, MDi; and Alain Turcant, PhD‡ ABSTRACT. Objective. The alcohol dehydrogenase acidosis. Another metabolite, oxalic acid, precipi- inhibitor 4-methylpyrazole (4-MP) is a new antidote of tates with calcium, leading to the formation of ethylene glycol (EG) intoxication. The purpose of the oxalate crystals and is responsible for the organ present case report was to demonstrate 4-MP efficiency toxicity of EG that results from the deposition of in EG poisoning in a 4-year-old child. oxalate crystals in tissues. EG poisoning is usually Method and Results. 4-MP Treatment was performed treated by gastric lavage performed promptly after 7 hours after EG ingestion. Plasma EG and 4-MP concen- trations were measured 2 hours after each infusion of the ingestion, alkalization, and administration of 4-MP. Plasma 4-MP concentrations were in the range of ethanol. In severe cases with acute renal failure, the values reported to block EG metabolism. The effi- the treatment include ethanol administration and ciency of 4-MP treatment was confirmed by the rapid hemodialysis to remove EG and its toxic metabo- correction of metabolic acidosis without alkalization and lites.2 The disadvantages of ethanol treatment are by the increase in EG half-life. No adverse effect of 4-MP the difficulty of maintaining ethanol blood levels was observed. in the range of 1 to 2 g/L by frequent adjustments Conclusion. This child ingested a potentially lethal of dosage2 and also the fact that ethanol may lead dose of EG despite a high concentration of bittering to a central nervous system depression, especially agent in antifreeze.
    [Show full text]
  • US EPA, Inert
    Inert Ingredients ordered alphabetically by Chemical Name Updated August 2004 CAS PREFIX NAME 1 (POE) 6 Tridecyl ether phosphate, reaction prod3 68954-84-7 (Poly(oxy-1,2-ethanediyl), alpha-nonylphenyl)-o 3 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 64-19-7 Acetic acid 4B Acetic acid ethenyl ester, polymer with carbon 26337-35-9 monoxide and ethene 4B Acetic acid ethenyl ester, polymer with ethanol and alpha-2-propenyl-omega-hydroxypoly(oxy- 137091-12-4 1,2-ethandiyl) 4B Acetic acid, [(5-chloro-8-quinolinyl)oxy]-, 1- 99607-70-2 methylhexyl ester (9CI) 4B 631-61-8 Acetic acid, ammonium salt 4B 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 Acetic acid, C9-11-branched alkyl esters, C10- 108419-34-7 rich 4B 62-54-4 Acetic acid, calcium salt 4A 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 127-08-2 Acetic acid, potassium salt 4A 127-09-3 Acetic acid, sodium salt 4A 108-24-7 Acetic anhydride 4B 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 75-05-8 Acetonitrile 2 98-86-2 Acetophenone 4B 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 77-90-7 Acetyl tributyl citrate 4B 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 91994-94-4 Acetylated lanolin alcohol 4B 74-86-2
    [Show full text]
  • Chapter 5 Carboxylic Acids and Esters
    Chapter 5 Carboxylic Acids and Esters Chapter 5 Carboxylic Acids and Esters Chapter Objectives: • Learn to recognize the carboxylic acid, ester, and related functional groups. • Learn the IUPAC system for naming carboxylic acids and esters. • Learn the important physical properties of the carboxylic acids and esters. • Learn the major chemical reaction of carboxylic acids and esters, and learn how to predict the products of ester synthesis and hydrolysis reactions. • Learn some of the important properties of condensation polymers, especially the polyesters. Mr. Kevin A. Boudreaux Angelo State University CHEM 2353 Fundamentals of Organic Chemistry Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea Carboxylic Acids • Carboxylic acids are weak organic acids which contain the carboxyl group (RCO2H): O C O H O RCOOH RCO2H O condensed ways of RCOH writing the carboxyl group a carboxylic acid C H O the carboxyl group • The tart flavor of sour-tasting foods is often caused by the presence of carboxylic acids. 2 Chapter 5 Carboxylic Acids and Esters Nomenclature of Carboxylic Acids 3 Nomenclature of Carboxylic Acids • Select the longest carbon chain containing the carboxyl group. The -e ending of the parent alkane name is replaced by the suffix -oic acid. • The carboxyl carbon is always numbered “1” but the number is not included in the name. • Name the substituents attached to the chain in the usual way. • Aromatic carboxylic acids (i.e., with a CO2H directly connected to a benzene ring) are named after the
    [Show full text]
  • Revised Tentative Report of the Cosmetic Ingredient Review Expert Panel Safety Assessment of Alcohol Denat. Including SD Alcohol
    Revised Tentative Report of the Cosmetic Ingredient Review Expert Panel Safety Assessment of Alcohol Denat. including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C and the denaturants Denatonium Benzoate, Quassin, and Brucine Sulfate/Brucine April 22, 2005 All interested persons are provided 90 days from the above date to comment on this Revised Tentative Safety Assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings , will be available at the CIR office for review by any interested party, and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. F. Alan Andersen. This safety assessment will again be considered at the September 12-13, 2005 meeting of the CIR Expert Panel. The 2005 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 310 " Washington, DC 20036-4702 " ph 202.331.0651 " fax 202.331.0088 " [email protected] TABLE OF CONTENTS INTRODUCTION ...................................................................
    [Show full text]