Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Induction of a TRAIL Mediated Suicide Program by Interferon Alpha in Primary E€Usion Lymphoma
Oncogene (2001) 20, 7029 ± 7040 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Induction of a TRAIL mediated suicide program by interferon alpha in primary eusion lymphoma Ngoc L Toomey1,4, Vadim V Deyev2,4, Charles Wood3, Lawrence H Boise2, Duncan Scott1, Lei Hua Liu1, Lisa Cabral1, Eckhard R Podack2, Glen N Barber2 and William J Harrington Jr*,1 1Department of Medicine University of Miami School of Medicine, Miami, Florida, FL 33136, USA; 2Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, FL 33136, USA; 3School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, NE 68588, USA Gammaherpes viruses are often detected in lymphomas Virus (EBV) or Human Herpes Virus Type 8 (HHV-8) arising in immunocompromised patients. We have found have been isolated from lymphomas found in im- that Azidothymidine (AZT) alone induces apoptosis in munosuppressed organ transplant recipients, children Epstein Barr Virus (EBV) positive Burkitt's lymphoma with hereditary immunode®ciencies and patients with (BL) cells but requires interferon alpha (IFN-a) to induce acquired immunode®ciency (AIDS) (Swinnen, 1999; apoptosis in Human Herpes Virus Type 8 (HHV-8) Goldsby and Carroll, 1998; Knowles, 1999). Many of positive Primary Eusion Lymphomas (PEL). Our these tumors can be categorized into distinct subtypes analysis of a series of AIDS lymphomas revealed that based on a variety of morphologic and molecular IFN-a selectively induced very high levels of the Death criteria. For example, AIDS associated large cell Receptor (DR) tumor necrosis factor-related apoptosis- diuse or immunoblastic lymphomas (DLCL, IBL) inducing ligand (TRAIL) in HHV-8 positive PEL lines are often EBV positive while AIDS associated Burkitt's and primary tumor cells whereas little or no induction lymphomas (BL) less frequently contain EBV (Gaidano was observed in primary EBV+ AIDS lymphomas and et al., 1994). -
Correlation of Cytokine Level with the Severity of Severe Fever With
Liu et al. Virology Journal (2017) 14:6 DOI 10.1186/s12985-016-0677-1 RESEARCH Open Access Correlation of cytokine level with the severity of severe fever with thrombocytopenia syndrome Miao-Miao Liu1, Xiao-Ying Lei1, Hao Yu2, Jian-zhi Zhang3 and Xue-jie Yu1,4* Abstract Background: Severe fever with thrombocytopenia syndrome (SFTS) was an emerging hemorrhagic fever that was caused by a tick-borne bunyavirus, SFTSV. Although SFTSV nonstructural protein can inhibit type I interferon (IFN-I) production Ex Vivo and IFN-I played key role in resistance SFTSV infection in animal model, the role of IFN-I in patients is not investigated. Methods: We have assayed the concentration of IFN-α, a subtype of IFN-I as well as other cytokines in the sera of SFTS patients and the healthy population with CBA (Cytometric bead array) assay. Results: The results showed that IFN-α, tumor necrosis factor (TNF-α), granulocyte colony-stimulating factor (G-CSF), interferon-γ (IFN-γ), macrophage inflammatory protein (MIP-1α), interleukin-6 (IL-6), IL-10, interferon-inducible protein (IP-10), monocyte chemoattractant protein (MCP-1) were significantly higher in SFTS patients than in healthy persons (p < 0.05); the concentrations of IFN-α, IFN-γ, G-CSF, MIP-1α, IL-6, and IP-10 were significant higher in severe SFTS patients than in mild SFTS patients (p < 0.05). Conclusion: The concentration of IFN-α as well as other cytokines (IFN-γ, G-CSF, MIP-1α, IL-6, and IP-10) is correlated with the severity of SFTS, suggesting that type I interferon may not be significant in resistance SFTSV infection in humans and it may play an import role in cytokine storm. -
MST1 Is a Key Regulator of Beta Cell Apoptosis and Dysfunction in Diabetes
ARTICLES MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes Amin Ardestani1, Federico Paroni1,6, Zahra Azizi1,6, Supreet Kaur1,6, Vrushali Khobragade1, Ting Yuan1, Thomas Frogne2, Wufan Tao3, Jose Oberholzer4, Francois Pattou5, Julie Kerr Conte5 & Kathrin Maedler1 Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20–like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter’s ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes. Pancreatic beta cell death is the fundamental cause of type 1 diabetes of events, which makes the initiation of beta cell death complex and (T1D) and a contributing factor to the reduced beta cell mass in type 2 its blockade difficult to successfully achieve in vivo. -
Porvac® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection Against Classical Swine Fever Virus
Article Porvac® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus Yusmel Sordo-Puga 1, Marisela Suárez-Pedroso 1 , Paula Naranjo-Valdéz 2, Danny Pérez-Pérez 1, Elaine Santana-Rodríguez 1, Talia Sardinas-Gonzalez 1, Mary Karla Mendez-Orta 1, Carlos A. Duarte-Cano 1, Mario Pablo Estrada-Garcia 1 and María Pilar Rodríguez-Moltó 1,* 1 Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba; [email protected] (Y.S.-P.); [email protected] (M.S.-P.); [email protected] (D.P.-P.); [email protected] (E.S.-R.); [email protected] (T.S.-G.); [email protected] (M.K.M.O.); [email protected] (C.A.D.); [email protected] (M.P.E.) 2 Central Laboratory Unit for Animal Health (ULCSA), Havana 11400, Cuba; [email protected] * Correspondence: [email protected]; Tel.: +53-7-2504419 Abstract: Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent Citation: Sordo-Puga, Y.; classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In Suárez-Pedroso, M.; Naranjo-Valdéz, order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® P.; Pérez-Pérez, D.; subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged Santana-Rodríguez, E.; 3 intranasally at five, three, and one day post-vaccination with 2 × 10 LD50 of the highly pathogenic Sardinas-Gonzalez, T.; Mendez-Orta, Cuban “Margarita” strain of the classical swine fever virus. -
Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E
Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler, Katherine Lester, Giulia Della Pelle, Luc Jouneau, Armel Houel, Catherine Collins, Tatiana Dovgan, This information is current as Radek Machat, Jun Zou, Pierre Boudinot, Samuel A. M. of September 26, 2021. Martin and Bertrand Collet J Immunol published online 29 May 2019 http://www.jimmunol.org/content/early/2019/05/28/jimmun ol.1801376 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/05/28/jimmunol.180137 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 29, 2019, doi:10.4049/jimmunol.1801376 The Journal of Immunology Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells Carola E. Dehler,* Katherine Lester,† Giulia Della Pelle,‡ Luc Jouneau,‡ Armel Houel,‡ Catherine Collins,† Tatiana Dovgan,*,† Radek Machat,‡,1 Jun Zou,*,2 Pierre Boudinot,‡ Samuel A. -
A Molecular Switch from STAT2-IRF9 to ISGF3 Underlies Interferon-Induced Gene Transcription
ARTICLE https://doi.org/10.1038/s41467-019-10970-y OPEN A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription Ekaterini Platanitis 1, Duygu Demiroz1,5, Anja Schneller1,5, Katrin Fischer1, Christophe Capelle1, Markus Hartl 1, Thomas Gossenreiter 1, Mathias Müller2, Maria Novatchkova3,4 & Thomas Decker 1 Cells maintain the balance between homeostasis and inflammation by adapting and inte- grating the activity of intracellular signaling cascades, including the JAK-STAT pathway. Our 1234567890():,; understanding of how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. Here, we use an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and IFN-γ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA. 1 Max Perutz Labs (MPL), University of Vienna, Vienna 1030, Austria. 2 Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria. 3 Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria. 4 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria. -
Age- and Gender-Specific Modulation of Serum Osteopontin and Interferon-Α by Osteopontin Genotype in Systemic Lupus Er
Genes and Immunity (2009) 10, 487–494 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Age- and gender-specific modulation of serum osteopontin and interferon-a by osteopontin genotype in systemic lupus erythematosus SN Kariuki1, JG Moore1, KA Kirou2,MKCrow2, TO Utset1 and TB Niewold1 1Section of Rheumatology, University of Chicago, Chicago, IL, USA and 2Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA Osteopontin (OPN) is a multifunctional cytokine involved in long bone remodeling and immune system signaling. Additionally, OPN is critical for interferon-a (IFN-a) production in murine plasmacytoid dendritic cells. We have previously shown that IFN-a is a heritable risk factor for systemic lupus erythematosus (SLE). Genetic variants of OPN have been associated with SLE susceptibility, and one study suggests that this association is particular to men. In this study, the 3 0 UTR SLE-risk variant of OPN (rs9138C) was associated with higher serum OPN and IFN-a in men (P ¼ 0.0062 and P ¼ 0.0087, respectively). In women, the association between rs9138 C and higher serum OPN and IFN-a was restricted to younger subjects, and risk allele carriers showed a strong age-related genetic effect of rs9138 genotype on both serum OPN and IFN-a (Po0.0001). In African- American subjects, the 5 0 region single nucleotide polymorphisms, rs11730582 and rs28357094, were associated with anti- RNP antibodies (odds ratio (OR) ¼ 2.9, P ¼ 0.0038 and OR ¼ 3.9, P ¼ 0.021, respectively). Thus, we demonstrate two distinct genetic influences of OPN on serum protein traits in SLE patients, which correspond to previously reported SLE-risk variants. -
IL-12 Abrogates Calcineurin-Dependent Immune Evasion During Leukemia Progression
Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-18-3800 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. IL-12 abrogates calcineurin-dependent immune evasion during leukemia progression Jennifer L. Rabe,1* Lori Gardner,2* Rae Hunter,3 Jairo A. Fonseca,3 Jodi Dougan,3 Christy M. Gearheart,2 Michael S. Leibowitz,2 Cathy Lee-Miller,2 Dmitry Baturin,2 Susan P. Fosmire,2 Susan E. Zelasko,2 Courtney L. Jones,2 Jill E. Slansky,4 Manali Rupji,5 Bhakti Dwivedi,5 Curtis J. Henry,3,5,6 and Christopher C. Porter3,5,6 Affiliations: 1Molecular Biology Program, University of Colorado Denver, Aurora, CO. 2Department of Pediatrics, University of Colorado, Aurora, CO 3Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 4Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 5Winship Cancer Institute, Emory University, Atlanta, GA 6Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA JR and LAG contributed equally to this study. Corresponding Author: Christopher C. Porter, MD Emory University School of Medicine 1760 Haygood Drive, E370 Atlanta, GA 30322 Phone: 404-727-4881 Fax: 404-727-4455 [email protected] Running title: Leukemia-cell calcineurin drives immune evasion Conflict of interest statement The authors have declared that no conflicts of interest exist. Abstract: 199 words Main Text: 5797 words (excluding figure legends and references) Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 29, 2019; DOI: 10.1158/0008-5472.CAN-18-3800 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Human IL12A / NKSF1 Protein (His Tag)
Human IL12A / NKSF1 Protein (His Tag) Catalog Number: 10021-H08H General Information SDS-PAGE: Gene Name Synonym: CLMF; IL-12A; NFSK; NKSF1; P35 Protein Construction: A DNA sequence encoding the p35 subunit of human IL12, termed as IL12A (P29459) (Met 1-Ser 219) was expressed, fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 92 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to bind Human IL12B-his in functional ELISA. Interleukin-12 subunit alpha (IL12A/IL-12p35) is also known as Cytotoxic lymphocyte maturation factor 35 kDa subunit, cytotoxic lymphocyte Endotoxin: maturation factor 1, p35, NK cell stimulatory factor chain 1, and interleukin- 12 alpha chain. IL12A/IL-12p35 is a subunit of a cytokine that acts on T < 1.0 EU per μg of the protein as determined by the LAL method and natural killer cells, and has a broad array of biological activities. The cytokine is a disulfide-linked heterodimer composed of the 35-kD subunit Stability: encoded by this gene, and a 40-kD subunit that is a member of the Samples are stable for up to twelve months from date of receipt at -70 ℃ cytokine receptor family. IL12A/IL-12p35 is required for the T-cell- independent induction of IFN-gamma, and is important for the Predicted N terminal: Arg 23 differentiation of both Th1 and Th2 cells. The responses of lymphocytes to this cytokine are mediated by the activator of transcription protein STAT4. Molecular Mass: Nitric oxide synthase 2A (NOS2A/NOS2) is found to be required for the signaling process of this cytokine in innate immunity. -
Interferon-Γ Enhances Interleukin 12 Production in Rheumatoid Synovial
Interferon-γ Enhances Interleukin 12 Production in Rheumatoid Synovial Cells via CD40-CD154 Dependent and Independent Pathways MINETAKE KITAGAWA, HIROSHI SUZUKI, YOSHIHIRO ADACHI, HIROSHI NAKAMURA, SHINICHI YOSHINO, and TAKAYUKI SUMIDA ABSTRACT. Objective. To determine the role of interferon-γ (IFN-γ) in CD40-CD154 dependent production of interleukin 12 (IL-12) by synovial cells of patients with rheumatoid arthritis (RA). Methods. We examined the effects of IFN-γ, tumor necrosis factor-α (TNF-α), and granulocyte- macrophage colony stimulating factor (GM-CSF) on CD40 expression on CD68+ synovial macrophage-lineage cells (SMC). The effects of IFN-γ and soluble CD154 (sCD154) on IL-12 production by RA synovial cells were determined by ELISA. Results. CD68+ SMC expressed substantial levels of CD40. IFN-γ, but not TNF-α or GM-CSF, markedly upregulated CD40 expression on CD68+ SMC. IFN-γ also dose dependently increased IL- γ 12 production by synovial cells. The effects of IFN- on CD40 expression (EC50 = 127.4 U/ml) were observed at a concentration 19 times lower than the effects on IL-12 production (EC50 = 6.8 U/ml). Treatment with IFN-γ at a concentration low enough to augment CD40 expression but not IL-12 production enhanced spontaneous IL-12 production synergy with sCD154. The synergistic enhance- ment of spontaneous IL-12 production was abrogated by CD40-Fc. In contrast, IL-12 production induced by high concentration of IFN-γ was not neutralized by CD40-Fc. Conclusion. IFN-γ enhanced IL-12 production via both CD40-CD154 dependent and independent pathways in RA synovium. IFN-γ may play a crucial role in the development of RA synovitis through regulation of IL-12 production. -
Role of Perforin-2 in Regulating Type I Interferon Signaling
https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Role of Perforin-2 in Regulating Type I Interferon Signaling Gregory V Plano, Noula Shembade* Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center Miller School of Medicine, University of Miami, Miami, FL 33136, USA *Correspondence should be addressed to Noula Shembade; [email protected] Received date: November 21, 2020, Accepted date: February 02, 2021 Copyright: © 2021 Plano G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Sepsis is a systemic inflammatory response caused by a harmful host immune reaction that is activated in response to microbial infections. Infection-induced type I interferons (IFNs) play critical roles during septic shock. Type I IFNs initiate their biological effects by binding to their transmembrane interferon receptors and initiating the phosphorylation and activation of tyrosine kinases TYK2 and JAK1, which promote phosphorylation and activation of STAT molecules. Type I IFN-induced activation of JAK/STAT pathways is a complex process and not well understood. Improper regulation of type I IFN responses can lead to the development of infectious and inflammation-related diseases, including septic shock, autoimmune diseases, and inflammatory syndromes. This review is mainly focused on the possible mechanistic roles of the transmembrane Perforin-2 molecule in the regulation of type I IFN- induced signaling. Keywords: JAK/STAT, Interferons, TYK2, STATs, Perforin-2, IFNAR1, IFNAR2 and Signaling Introduction and activator of transcription 2), respectively, under normal physiological conditions [4,5]. -
Recombinant Human IL12 Protein,HEK293 Expressed Catalog # AMS.IL2-H4210 for Research and Further Cell Culture Manufacturing Use
Recombinant Human IL12 Protein,HEK293 Expressed Catalog # AMS.IL2-H4210 For Research and Further Cell Culture Manufacturing Use Description Source Recombinant Human IL12 Protein,HEK293 Expressed (Human IL12B & IL12A heterodimer) Ile 23 - Ser 328 (Accession # (AAH67499,IL12B) and Arg 23 - Ser 219 (P29459,IL12A)) was produced in human 293 cells (HEK293) Predicted N‐terminus Ile 23 (IL12B) and Arg 23 (IL12A) Molecular Human IL12B & IL12A heterodimer contains no "tag", and has a calculated MW of 36.6 kDa (IL12B) and 23.8 kDa (IL12A). The Characterization predicted N-terminus is Ile 23 (IL12B) and Arg 23 (IL12A). DTT-reduced Protein migrates as 33-47 kDa in SDS-PAGE due to glycosylation. Endotoxin Less than 1.0 EU per μg of the Human IL12B & IL12A heterodimer by the LAL method. Purity >95% as determined by SDS-PAGE. Bioactivity The bio-activity was determined by the dose-dependent release of IFN-gamma from the human NK92 cell line in presence of 20 ng/mL rhIL-2 (Catalog # IL2-H4216). The ED50 < 0.2 ng/mL, corresponding to a specific activity of >5,000,000 Unit/mg. Formulation and Storage Formulation Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally Mannitol or Trehalose are added as protectants before lyophilization. Contact us for customized product form or formulation. Reconstitution See Certificate of Analysis for reconstitution instructions and specific concentrations. Storage Lyophilized Protein should be stored at -20℃ or lower for long term storage. Upon reconstitution, working aliquots should be stored at -20℃ or -70℃. Avoid repeated freeze-thaw cycles. No activity loss was observed after storage at: ● 4-8℃ for 12 months in lyophilized state; ● -70℃ for 3 months under sterile conditions after reconstitution.