Hearing Loss & Vestibular Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Hearing Loss & Vestibular Dysfunction NATIONALA RESOURCE CENTER GUIDE FOR FOR EARLY HEARING HEARING ASSESSMENT DETECTION & & MANAGEMENT INTERVENTION Chapter 7 Hearing Loss & Vestibular Dysfunction: A Common Comorbidity Violette Lavender, AudD; Gretchen Mueller, DPT; Michael Castiglione, AuD; & Katheryn Bachmann, PhD Early Development of Between the 12th and 24th weeks, neural The vestibular system is connections between the labyrinth the first of the sensory the Vestibular System & and oculomotor nuclei are finalized.1,2 systems to fully develop Associated Milestones Additional connections between the in utero . At birth, cerebellum, reticular formation, and spinal cord also develop.1 The vestibular nerve is the vestibular system is he vestibular system is the first of the first of the cranial nerves to complete complete in structure. the sensory systems to fully develop myelination with full function finalizing Tin utero.1,2 Embryonic ectoderm between the 8th and 9th month.1 develops into otic placodes, and as the otic placodes are surrounded by the embryonic At birth, the vestibular system is complete in mesoderm, they transition into otic pits.1,2 structure.1,2 It continues to mature in function Upon closure of the otic pits, otocysts over the next several weeks—demonstrating are formed, which then develop into the greatest response to environmental the membranous cochlea and vestibular stimuli between the 6th and 12th months of labyrinth.1,2 Beyond this, embryonic life.1,2 Sensory inputs from multiple systems— mesoderm then surrounds the vestibular including the visual system, somatosensory labyrinth to form the bony labyrinth. At system, and peripheral vestibular system— the completion of the 7th week in utero, converge within the vestibular nuclei and the vestibular apparatus is formed.1,2 The cerebellum.1,2 Connections to the muscles of vestibular apparatus consists of three the eyes and neck, as well as the spinal cord, semicircular canals, which are responsible produce nearly immediate responses within for detecting angular acceleration, as the body.1,2 The output from these afferent well as the utricle and saccule, which inputs result in the body’s ability to control are responsible for detecting linear posture, locomotion, spatial orientation, acceleration.1,2 and gaze stabilization.1 eBook Chapter 7 • Hearing Loss & Vestibular Dysfunction: A Common Comorbidity • 7-1 A RESOURCE GUIDE FOR EARLY HEARING DETECTION & INTERVENTION There are multiple developmental reflexes This is the communication between the that are pertinent to the maturation of visual and vestibular systems that results the vestibular system in the first 6 months in the maintenance of clear vision of an of life.2 Within the first 2 weeks of life, a object in front of one’s self during head doll’s eye response can be elicited.1,2 As the movements.1,2 Although the VOR is present infant’s head is rotated, movement of the at birth, maturation of the centrally- eyes opposite of the rotation is observed.1,2 mediated visual pathways is needed for This represents stimulation of the vestibular full functionality.2 This is typically present system. Beginning at 4 months of age, head by 2 months of age, reaching full maturity righting begins to emerge.1,2 As the infant between 6 and 12 months of age.2 It is is tipped horizontally when held, the infant considered abnormal if a VOR has not lifts the head so that the head and eyes align developed by the age of 10 months.2 vertically.1,2 This represents integration of vestibular and visual input.1,2 Head The second of the vestibular-specific righting continues to mature over the next reflexes is the vestibulo-spinal reflex (VSR), 2 months, and emergence of responses from which is responsible for body stabilization.1,2 the lower extremities are observed, as they Afferent signals are received from three lift opposite of the side that they have been main sensory systems, which coordinate tilted.1,2 This indicates additional integration within the central vestibular system to of the body’s proprioceptive response.1,2 maintain postural control.1,2 The eyes There are multiple Lastly, a parachute response can be produced provide visual input, while the vestibular developmental reflexes by 6 months of age. When the infant is held input from the inner ears provides that are pertinent to in ventral suspension and is quickly tipped information regarding the body’s linear forward toward a support surface, extension and angular acceleration through space.1,2 the maturation of the of the arms and splaying of the fingers are In addition, somatosensory receptors in vestibular system in the observed.3 This represents a protective various joints provide proprioceptive input first 6 months of life. response with resultant interaction to the central vestibular system.1,2 The between the visual and vestibular systems.3 resulting output of the central vestibular system is the brain’s ability to send There are three vestibular-specific reflexes signals to anti-gravity muscles activating necessary for functional vestibular balance equilibrium and protective responses to control. The vestibulo-ocular reflex (VOR) maintain balance control. 1,2. These muscles is responsible for gaze stabilization.1,2 counteract the downward pull of gravity, activating equilibrium and protective responses to maintain balance control with an upright posture and prevent a fall. In addition to the VOR and VSR, the vestibulo-collic reflex (VCR) assists with both visual and body stabilization.1,2 The VCR utilizes co-contraction of the cervical muscles in the neck to stabilize the head while the body is moving.1,2 This is most notable during predictable movements, as is demonstrated while one is ambulating.1,2 However, the VCR is also functional during movements that are unpredictable.1,2 The functionality of the vestibular system in a growing child is dependent on the integration of the physiologic performance of the above vestibular reflexes.1,2 Balance control develops in a cephalo-caudal Photo courtesy of NCHAM fashion, with head control maturing eBook Chapter 7 • Hearing Loss & Vestibular Dysfunction: A Common Comorbidity • 7-2 NATIONAL CENTER FOR HEARING ASSESSMENT & MANAGEMENT first followed by the ability to sit, stand, independently, the interpretation of Multiple studies have and walk independently.2 Head control somatosensory input proves to be very looked at the integration progresses throughout the first 4 months valuable. Even slight somatosensory input of the sensory systems of life. This is demonstrated as the infant to the infant’s hand on a support surface by age utilizing both progresses from holding the head in line improves upright posture by decreasing with the body, to holding the head above postural sway, which is why infants rely computerized dynamic the plane of the body, and finally holding on holding onto furniture prior to hands- posturography as well as the head steady while rotating the neck to free standing.5 The ability to stand while foam posturography. visualize the environment around him.1,2 having hand(s) on a support surface develops between 10 to 12 months of The ability to sit independently is age.5 Independent walking is attained in normally achieved by 6 months of age the typically-developing child between in the typically developing child. It is 12 to 15 months of age. It is during these most definitely a building block for the months that the child’s balance transitions attainment of more advanced gross motor from static to dynamic, which molds the skills, including standing and eventually functional balance control of the child.5 walking. It is also of utmost importance in Responses to sensory input build upon that it allows the infant to reach and play, past experiences. This allows the infant to which is necessary for the development of transition from being reactive to proactive fine motor and cognitive skills.4 In order to with balance control while ambulating.5 maintain balance while sitting, the infant must demonstrate the ability to integrate Multiple studies have looked at the sensory input from all three systems integration of the sensory systems (visual, vestibular, and somatosensory) by age utilizing both computerized for proper execution of protective and dynamic posturography as well as foam equilibrium responses when stimulated. posturography.6-8 As stated earlier, the The ability to maintain this upright visual system is the primary sensory posture is challenged by the: system utilized by infants, which continues through the toddler and preschool ages • Surrounding environment. up to age 5.5-8 Per posturography testing, • Infant’s own biomechanics. it appears that the visual system is fully • Task the infant is trying to complete integrated for balance at age 5, as the (i.e., play)4. child can adapt to changes in the visual surround at this age.7 At 7 years of age, The infant who has developed the skill of the child has fully integrated individual independent sitting is constantly weight visual and somatosensory input; however, shifting and utilizing degrees of freedom continues to have difficulty maintaining to maintain an upright posture.4 Studies balance during conditions that create a show that infants are most dependent on sensory-conflict for the vestibular system. visual input for maintenance of postural This occurs when vision is occluded control during this time.4,2 In fact, a (eyes closed) and somatosensory cues change in somatosensory input (sitting are inaccurate (surface is responsive to on compliant foam vs. even ground)
Recommended publications
  • Vestibular Sensory Dysfunction: Neuroscience and Psychosocial Behaviour Overview
    DOI: 10.21277/sw.v2i6.263 VESTIBULAR SENSORY DYSFUNCTION: NEUROSCIENCE AND PSYCHOSOCIAL BEHAVIOUR OVERVIEW Brigita Kreivinienė Dolphin Assisted Therapy Center, Klaipėda University, Lithuania Abstract The objective of the submitted contribution is to describe one of the sensory dysfunctions – the dysfunction of the vestibular system. The vestibular system is a crucial sensory system for other sensory systems such as tactile and proprioception, as well as having tight connection to the limbic system. Vestibular sensory system has a significant role for further physical, emotional and psychosocial development. Descriptive method and case analysis are applied in literature based research methodology. These methods are most appropriate as far the vestibular dysfunctions are not always recognized in young age even though they are seen as high psychoemotional reactions (psychosocial behavior). The vestibular dysfunctions in young age can be scarcely noticeable as far more often they tend to look like “just high emotional reactions” as crying, withdrawal, attachment to mother etc. which could be sensed as a normal reaction of a young child. Detailed vestibular sensory dysfunction analysis is presented, as well as the explanation of the neurological processes, and predictions are made for the further possible interventions. Keywords: vestibular dysfunction, neuroscience, psychosocial behavior. Introduction Some problems, such as broken bones, cerebral palsy or poor eyesight are obvious. Others, such as underlying poor behavior or slow learning are not so obvious. The issues, such as awkward walking, fear of other children, complicated socialization, unsecured feeling at school, avoidance of swings or climbing, slapping on the floor or to any other object, attachment to mother, sensitivity to changes in walking surfaces, preference on the same footwear (if changed, often falling/takes time to adapt), aggression to others, stimulation of head rotation, hyperactivity or constant distraction by light, smell, sound etc., and any others can have underlying sensory issues.
    [Show full text]
  • How Does the Balance System Work?
    How Does the Balance System Work? Author: Shannon L.G. Hoffman, PT, DPt Sara MacDowell PT, DPT Fact Sheet Many systems work together to help you keep your balance. The goal is to keep your body and vision stable Peripheral Sensory Systems: 1) Vision: Your vision helps you see where your head and body are in rela- tion to the world around you. 2) Somatosensory/Proprioception: We use the feeling from our feet against the ground as well as special sensors in our joints to know where our feet and legs are positioned. It also tells how your head is oriented to your neck and shoulders. Produced by 3) Vestibular system: Balance organs in the inner ear tell the brain about the movements and position of your head. There are 3 canals in each ear that sense when you move your head and help keep your vision clear. Central Processing: Information from these 3 systems is sent to the brain for processing. The brain stem also gets information from other parts of the brain called the cerebellum and cerebral cortex, mostly about past experiences that have A Special Interest affected your sense of balance. Your brain can control balance by using Group of the information that is most important for a certain situation. For example, in the dark, when you can’t use your vision, your brain will use more information from your legs and feet and your inner ear. If you are walking on a sandy beach during the day, you can’t trust your feet on the ground and your brain will use your eyes and inner ear more.
    [Show full text]
  • Direct Sagittal CT in the Evaluation of Temporal Bone Disease
    371 Direct Sagittal CT in the Evaluation of Temporal Bone Disease 1 Mahmood F. Mafee The human temporal bone is an extremely complex structure. Direct axial and coronal Arvind Kumar2 CT sections are quite satisfactory for imaging the anatomy of the temporal bone; Christina N. Tahmoressi1 however, many relationships of the normal and pathologic anatomic detail of the Barry C. Levin2 temporal bone are better seen with direct sagittal CT sections. The sagittal projection Charles F. James1 is of interest to surgeons, as it has the advantage of following the plane of surgical approach. This article describes the advantages of using direct sagittal sections for Robert Kriz 1 1 studying various diseases of the temporal bone. The CT sections were obtained with Vlastimil Capek the aid of a new headholder added to our GE CT 9800 scanner. The direct sagittal projection was found to be extremely useful for evaluating diseases involving the vertical segment of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, sinodural angle, carotid canal, jugular fossa, external auditory canal, middle ear cavity, infra- and supra labyrinthine air cells, and temporo­ mandibular joint. CT has contributed greatly to an understanding of the complex anatomy and spatial relationship of the minute structures of the hearing and balance organs, which are packed into a small pyramid-shaped petrous temporal bone [1 , 2]. In the past 6 years, high-resolution CT scanning has been rapidly replacing standard tomography and has proved to be the diagnostic imaging method of choice for studying the normal and pathologic details of the temporal bone [3-14].
    [Show full text]
  • Understanding Sensory Processing: Looking at Children's Behavior Through the Lens of Sensory Processing
    Understanding Sensory Processing: Looking at Children’s Behavior Through the Lens of Sensory Processing Communities of Practice in Autism September 24, 2009 Charlottesville, VA Dianne Koontz Lowman, Ed.D. Early Childhood Coordinator Region 5 T/TAC James Madison University MSC 9002 Harrisonburg, VA 22807 [email protected] ______________________________________________________________________________ Dianne Koontz Lowman/[email protected]/2008 Page 1 Looking at Children’s Behavior Through the Lens of Sensory Processing Do you know a child like this? Travis is constantly moving, pushing, or chewing on things. The collar of his shirt and coat are always wet from chewing. When talking to people, he tends to push up against you. Or do you know another child? Sierra does not like to be hugged or kissed by anyone. She gets upset with other children bump up against her. She doesn’t like socks with a heel or toe seam or any tags on clothes. Why is Travis always chewing? Why doesn’t Sierra liked to be touched? Why do children react differently to things around them? These children have different ways of reacting to the things around them, to sensations. Over the years, different terms (such as sensory integration) have been used to describe how children deal with the information they receive through their senses. Currently, the term being used to describe children who have difficulty dealing with input from their senses is sensory processing disorder. _____________________________________________________________________ Sensory Processing Disorder
    [Show full text]
  • Electromagnetic Field and TGF-Β Enhance the Compensatory
    www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine.
    [Show full text]
  • Bachmann.Pdf
    Pediatric Vestibular Dysfunction: More Than a Balancing Act Kay Bachmann, PhD 1 2 Introduction Childhood Hearing Loss 1. The learner will be able to identify 3 causes of vestibular • 1.4 in 1,000 newborns have hearing loss (CDC) disorders in children. • 5 in 1,000 children have hearing loss ages 3-17 yrs (CDC) 2. The learner will be able to identify at least 3 common symptoms of vestibular dysfunction in children. 3. The learner will be able to administer a short screening to assess balance function in children. 3 4 1 Childhood Vestibular Loss • Balance disorders may make up .45% of chief complaints per chart review in a Pediatric ENT department. (O’Reilly et al 2010) • Children with hearing impairment are twice as likely to have vestibular loss than healthy children • Studies show vestibular loss in 30-79% of children with HL • There is 10% increase in vestibular loss as a result of trauma from receiving a CI (Jacot et al, 2009) 5 6 Common Disorders with Hearing Loss and Vestibular Abnormalities • Syndromes What Does a Typically Functioning Vestibular System Do? – Usher Syndrome Type 1 – Pendred Syndrome (also non syndromic Enlarged vestibular Aqueduct Syndrome) Two Main Reflexes: – Branchio-oto-renal Syndrome Vestibular Ocular Reflex- Helps hold an object – CHARGE association steady when the head/body are in motion. • Cochlear Malformations • VIII Nerve Defects • Cytomegalovirus (CMV) Vestibular Spinal Reflex- Helps keep our posture • Meningitis • Cochlear implant patients and body steady when it senses movement. 7 8 2 What Does an
    [Show full text]
  • Auditory System & Hearing
    Auditory System & Hearing Chapters 9 part II Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Cochlea: physical device tuned to frequency! • place code: tuning of different parts of the cochlea to different frequencies 2 The auditory nerve (AN): fibers stimulated by inner hair cells • Frequency selectivity: Clearest when sounds are very faint 3 Threshold tuning curves for 6 neurons (threshold = lowest intensity that will give rise to a response) Characteristic frequency - frequency to which the neuron is most sensitive threshold(dB) frequency (kHz) 4 Information flow in the auditory pathway • Cochlear nucleus: first brain stem nucleus at which afferent auditory nerve fibers synapse • Superior olive: brainstem region thalamus MGN in the auditory pathway where inputs from both ears converge • Inferior colliculus: midbrain nucleus in the auditory pathway • Medial geniculate nucleus (MGN): part of the thalamus that relays auditory signals to the cortex 5 • Primary auditory cortex (A1): First cortical area for processing audition (in temporal lobe) • Belt & Parabelt areas: areas beyond A1, where neurons respond to more complex characteristics of sounds 6 Basic Structure of the Mammalian Auditory System Comparing overall structure of auditory and visual systems: • Auditory system: Large proportion of processing before A1 • Visual system: Large proportion of processing after V1 7 Basic Structure of the Mammalian Auditory System Tonotopic organization: neurons organized spatially in order of preferred frequency •
    [Show full text]
  • Common Vestibular Function Tests
    Common Vestibular Function Tests Authors: Barbara Susan Robinson, PT, DPT; Lisa Heusel-Gillig PT DPT NCS Fact Sheet The purpose of Vestibular Function Tests (VFTs) is to determine the health of the vestibular portion of the inner ear. These tests are commonly performed by ENTs, Audiologists, and Otolaryngologists Electronystagmography or Videonystagmography Electronystagmography (ENG test) or Videonystagmography (VNG test) evaluate the inner ear. Both record eye movements during a group of tests in light and dark rooms. During the ENG test, small electrodes are placed on the skin near the eyes to record eye movements. For the VNG test, eye movements are recorded by a video camera mounted inside of goggles that are worn during testing. ENG and VNG tests evaluate eye movements while following a visual target (tracking Produced by test) or during body and head position changes (positional test). The caloric test evaluates eye movements in response to cool or warm air (or water) placed in the ear canal. If there is no response to warm or cool air or water, ice water may be used in order to try to produce a response. The caloric test determines the difference between the function of the left and right inner ear. During this test, you may experience dizziness or nausea. You may be asked questions (math questions, city names, alphabet tasks) to distract you in order to get the best results. A Special Interest Group of Contact us: ANPT Other Common Vestibular Function Tests 5841 Cedar Lake Rd S. The rotary chair test is used along with the VNG to confirm the diagnosis and assess Ste 204 compensation of the vestibular system.
    [Show full text]
  • Sensory Change Following Motor Learning
    A. M. Green, C. E. Chapman, J. F. Kalaska and F. Lepore (Eds.) Progress in Brain Research, Vol. 191 ISSN: 0079-6123 Copyright Ó 2011 Elsevier B.V. All rights reserved. CHAPTER 2 Sensory change following motor learning { k { { Andrew A. G. Mattar , Sazzad M. Nasir , Mohammad Darainy , and { } David J. Ostry , ,* { Department of Psychology, McGill University, Montréal, Québec, Canada { Shahed University, Tehran, Iran } Haskins Laboratories, New Haven, Connecticut, USA k The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA Abstract: Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function. Keywords: motor learning; sensory plasticity; arm movements; proprioception; speech motor control; auditory perception. Introduction the human motor system and, likewise, to skill acquisition in the adult nervous system.
    [Show full text]
  • CONGENITAL MALFORMATIONS of the INNER EAR Malformaciones Congénitas Del Oído Interno
    topic review CONGENITAL MALFORMATIONS OF THE INNER EAR Malformaciones congénitas del oído interno. Revisión de tema Laura Vanessa Ramírez Pedroza1 Hernán Darío Cano Riaño2 Federico Guillermo Lubinus Badillo2 Summary Key words (MeSH) There are a great variety of congenital malformations that can affect the inner ear, Ear with a diversity of physiopathologies, involved altered structures and age of symptom Ear, inner onset. Therefore, it is important to know and identify these alterations opportunely Hearing loss Vestibule, labyrinth to lower the risks of all the complications, being of great importance, among others, Cochlea the alterations in language development and social interactions. Magnetic resonance imaging Resumen Existe una gran variedad de malformaciones congénitas que pueden afectar al Palabras clave (DeCS) oído interno, con distintas fisiopatologías, diferentes estructuras alteradas y edad Oído de aparición de los síntomas. Por lo anterior, es necesario conocer e identificar Oído interno dichas alteraciones, con el fin de actuar oportunamente y reducir el riesgo de las Pérdida auditiva Vestíbulo del laberinto complicaciones, entre otras —de gran importancia— las alteraciones en el área del Cóclea lenguaje y en el ámbito social. Imagen por resonancia magnética 1. Epidemiology • Hyperbilirubinemia Ear malformations occur in 1 in 10,000 or 20,000 • Respiratory distress from meconium aspiration cases (1). One in every 1,000 children has some degree • Craniofacial alterations (3) of sensorineural hearing impairment, with an average • Mechanical ventilation for more than five days age at diagnosis of 4.9 years. The prevalence of hearing • TORCH Syndrome (4) impairment in newborns with risk factors has been determined to be 9.52% (2).
    [Show full text]
  • Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: a Review
    Review Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review Sebastian Roesch 1 , Gerd Rasp 1, Antonio Sarikas 2 and Silvia Dossena 2,* 1 Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] (S.R.); [email protected] (G.R.) 2 Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-(0)662-2420-80564 Abstract: Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of Citation: Roesch, S.; Rasp, G.; patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of Sarikas, A.; Dossena, S.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]