Case 13-13087-KG Doc 82 Filed 12/02/13 Page 1 of 215 Case 13-13087-KG Doc 82 Filed 12/02/13 Page 2 of 215
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides
Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides by Younghee Lee B.S., Seoul National University, l999 M.S., Seoul National University, 2001 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2015 This thesis entitled: Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides written by Younghee Lee has been approved for the Department of Chemistry and Biochemistry Professor Steven M. George Professor Carl A. Koval Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Lee, Younghee (Ph.D., Chemistry) Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides Thesis directed by Professor Steven M. George Atomic control of thin film growth and removal is essential for semiconductor processing. Atomic layer deposition (ALD) is a thin film deposition technique that is based on self-limiting surface reactions that deposit thin conformal films with atomic scale precision. The ALD of metal fluorides has been limited by the difficulty of handling the hydrogen fluoride (HF) precursor that is necessary for metal fluoride film growth. The use of HF-pyridine as an HF reservoir has allowed the development of metal fluoride ALD processes such as AlF3, LiF, lithium ion conducting (AlF3)(LiF)x alloy, ZrF4, HfF4, MnF2, MgF2, and ZnF2. -
UAW-GM National Agreement
® Agreement Between the UAW and GENERAL MOTORS LLC ® October 16, 2019 (Effective October 28, 2019) INDEX Paragraph Page No. No. Additional Bargaining Units ........................... 2, 2a 1 Address List of Employees............................... 74a 59 Administration of the Agreement – Review Procedures...................................... 5a 12 Agency Shop...................................................... 4g1, 4g2 4 Appeal Committee............................................ 39 31 Appendix A – Employee Placement................ 161 Appendix B – Date of Entry Status – Apprentices and JITs ................................. 187 Appendix C – Skilled Trades Seniority as Affected by Certain Leaves; Computing Time Credited in a Skilled Trades Classification.................................... 188 Appendix D – Computing Credit Toward Acquiring Seniority ....................... 190 Appendix F – Maintenance Sub- Contracting ................................................. 192 Appendix F-1 – Sub-Contracting Work........... 194 Appendix F-2 – Sub-Contracting – Special Procedure........................................ 197 Appendix I – Special Skilled Trades Representative............................................. 198 Appendix K – Memorandum Of Understanding............................................. 202 Appendix L – Sourcing ..................................... 206 Apprentices .......................................................119-151 100-119 Approval of Local Seniority Agreements ....... 59 43-44 Approval of Shift Preference Agreements..... -
The United Nations University L.J::J National Energy Authority
fIT=! ORKUSTOFNUN @ THE UNITED NATIONS UNIVERSITY L.J::J NATIONAL ENERGY AUTHORITY ~~~~ SiJ~V~iJ1f1l ~ [N] [D) lUJ C lE: D IP (Q) ~fo\ ~ ~ ~fo\ii ~ (0 [N] 9 fo\[N][g ~lE[br~ lPOir~~ii~fo\l. lMJ~'fHOD~ ~lNl ~lEOillHIlE~[M]fo\~ ~~lPlL(Q)~fo\T~O[N] 5tanley H. Ward and William R Sill UNU Geothermal Training Programme, Iceland. Report /983-3 ... I I. ,: ... -.:..~ .... I' ~t ~ RESISTIVITY, INDUCED POLARIZATION, AND SELF-POTENTIAL METHODS IN GEOTHERMAL EXPLORATION by Stan 1ey H. Ward and William R. Sill Earth Science laboratory University of Utah Research Institute and Department of Geology and Geophysics University of Utah TABLE OF CONTENTS ABSTRACT • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• 1 1.0 INTRODUCTION • ••• ... • .•••• •• . •• •••.•.• •••• ••.•••• ••.•• •••• • •••••.••••• 3 2.0 BASIC ELECTROMAGNETIC THEORY ••••••••••••••••••••••••••••••••••••••••• 5 2.1 Introduct ion .............•...................................... 5 2.2 Maxwell's Equations ....•••..............•.......•.•.••.......••. 5 2.3 The Constitutive Relations •..•• .•• ••..••... ••••. ••. •.••• ••.••..• 7 2.4 The Wave Equations .......•.•......•....•.•..............•••..... 9 2.5 Complex Conductivity, Magnetic Permeability, and Dielectric Pennittivity................ ....................... 11 3.0 ELECTRICAL PROPERTIES OF EARTH MATERIALS •••••••••••••••••••••••••••• 13 3.1 Introduction ...............................•................... 13 3.2 Aqueous Electrolyte Conduction ••••••.••...••••••.••.•.••....... 13 3.2.1 Nonnal Mode of Conduction •. -
Rmks System of Units
LESSON PLAN Prepared By PALLABI GOGOI SIBSAGAR POLYTECHNIC, Department Of Electrical SUBJECT NAME: ELECTRICAL DEMOW Engineering MEASUREMENT AND MEASURING INSTRUMENTS I ( EMMI- I) DATE:5.04.2020 SUBJECT CODE: EL- 403 SEMESTER: 4th SEMESTER CHAPTER 1: UNITS, DIMENSIONS AND STANDARDS 1st hour Basics of Physical Quantities ❖ What do you mean by physical quantities? All those quantities that can be measured directly or indirectly is called a physical quantity. ❖ Name some physical quantities Mass, Length, Time, Temperature, etc ❖ Why are physical quantities so important? Give me your opinions UNITS, DIFFERENT TYPES OF UNITS ➢ Define unit The standard measure of each kind of physical quantity is called a unit. Examples- kilogram,metre,second,kelvin, etc. ➢ Define absolute unit An absolute system of unit is defined as a system in which the various units are expressed in terms of small number of fundamental units. DIFFERENT TYPES OF UNIT ▪ Fundamental units ▪ Derived units 2nd hour ▪ Define Fundamental units- The units whose value can be measured without the help of any other physical quantities are called fundamental units. Examples- Metre, Second, Kilogram( Units of length,time and mass respectively) . ▪ Define Derived units- The units which are expressed with the help of one or more fundamental units are called derived units. Examples- m3, m/s , m/s2 ( Units of volume, velocity and acceleration respectively). DIFFERENT SYSTEMS OF UNIT • S.I system • C.G.S system • M.K.S system • R.M.K.S system • R.M.K.S.A system S.I system of unit The eleventh general conference of weights and measures which met in October,1960 recommended a unified systematically constituted, coherent system of fundamental, supplementary and derived units for international use. -
RELATIVISTIC UNITS Link To
RELATIVISTIC UNITS Link to: physicspages home page. To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment. Post date: 14 Jan 2021. One of the key ideas drummed into the beginning physics student is that of checking the units in any calculation. If you are working out the value of some quantity such as the speed of a car or the kinetic energy of a falling mass, if the units don’t work out to the correct combination for the quantity you’re calculating, you’ve done something wrong. The standard unit systems provide units for mass, distance and time, and the most commonly used systems in physics courses are the MKS system (metre-kilogram-second), also known as the SI (for Systeme Internationale) system, and the CGS system (centimetre-gram-second). Most other units used in physics are a combination of the three basic units and can be derived from the formula defining that particular unit. For example, the unit of energy can be derived from the formula for ki- 1 2 netic energy, which is T = 2 mv . The unit of velocity is (distance)/(time), so the unit of energy is (mass)(distance)2(time)−2. In the MKS system, this comes out to kg · m2s−2 and the MKS unit of energy is named the joule. This system of units works well for most practical applications of physics in the everyday world, since the units were chosen to be of magnitudes similar to those sorts of things we deal with on a daily basis. -
LESSON 6 Topic: “UNITS of MEASUREMENT (Continuation
LESSON 6 Topic: “UNITS OF MEASUREMENT (continuation)” Lead-in List all physical quantities you know. Main stage Reading practice pp. 53-54 Reading: “Units of Measurement (continuation)”. UNITS OF MEASUREMENT (Continuation) Mass, length, time, area, velocity, acceleration - all of these are physical quantities. Whenever we measure one of these we are finding its magnitude. To find a magnitude of a physical quantity we must measure it. The magnitude of any physical quantity is expressed as number times a unit of measure. Time is a physical concept and its definition is related to certain laws of physics. The laws of physics say that the average time it takes for the sun to move from its noon position on one day to its noon position the next day must be constant and is called the mean solar day. The laws of physics say also that the period of oscillation of a vibrating slab of crystal in a crystal oscillator should remain constant if the temperature and other external conditions are kept constant. So an electronic crystal oscillator can be made into a very accurate clock. The same is true of the vibrational frequency of atoms in a molecule. In fact atomic clocks counting up these vibrations are the most accurate of all. The basic unit of time used in both the English and the metric systems is the second, the latter being 1/60 x 1/60 x 1/24 = 1/86.400 of a mean solar day. That is why we divide the mean solar day into 86.400 equal parts to get the unit used to measure time, namely 1 second. -
Introduction
CinChE Units Conversion Primer Methods and Techniques Introduction Throughout your career as a chemical engineer you will be presented with quantities or measurements in a particular set of units, for example, 55 miles per hour, but in order to solve a problem you will need to convert that quantity or measurement to an equivalent magnitude in a different system of units. Thus, in this appendix you will review the concepts and skills involved in converting a magnitude with a particular set of units to an equivalent magnitude in a second system of units. First, the three major systems of units, the cgs, mks, and fps will be discussed. Next, you will be introduced to the concept of an equivalence relationship and how to form a units conversion factor from the appropriate equivalence relationship. Then, the procedures for using the unit conversion factors as part of a dimensional equation will be presented. B.1 Systems of Units Three systems of units are of importance to you as a chemical engineer. They are the cgs, mks, and fps systems. As you will see below, the respective names for each of these systems indicate the units used for the primary quantities of length, mass, and time in each of them. B.1.1 The cgs System of Units The cgs system of units, also known as the common scientific system, derives its name from the units for length, mass, and time in the system: the centimeter, the gram, and the second respectively. Primary Quantity Unit length centimeter (cm) mass gram (g) time second (s) B.1.2 The mks System of Units The mks system of units, which is known as the SI system, also derives its name from the units for length, mass, and time used in the system: the meter, the kilogram, and the second respectively. -
An Introduction to Waves, Rays and Radiations in Plasma Media, By
The book is rather unusual, because it deals completely with all aspects of the subject starting from the elementary BOOKS mathematical and physical data, and particularly because it follows a single guide line throughout iand never loses sight An introduction to waves, rays and radiations in of the overall aspect of the phenomena studied, even plasma media, by Julius J. Brandstatter (London, McGraw- though it gives comprehensive calculations. Accordingly, Hill Publishing Co. Ltd., 1963; £5 16s. 6d.). each chapter opens with an abstract. The author gathers together in his text ideas and techniques from many fields The publishers tell us that the author has worked as of mathematics and physics ; the mathematical forms used a mathematician and physicist in industry and has also been (vectors, matrixes, tensors) also make the description of a lecturer. His varied experience probably explains why the problems clear. this basic handbook gives such a coherent account of the subject : waves, rays and radiation in plasma media. The To sum up, this is a basic handbook for anyone work approach is clearly mathematical, but the author has always ing on ionized media. It forms a coherent whole, the quot kept in mind the physical aspects of the problems con ing of references always being subordinated to the clarity sidered, and as a whole the book is extremely clear. of the text, and an ample bibliography is given at the end of each chapter. The titles of the chapters give an idea of the wide range of subjects treated : This handsome 690-page book finishes with a set of — The homogeneous electron plasma in a uniform magnetic problems on each subject. -
I : Units, Dimensions and Standards
I : Units, Dimensions and Standards Recall 3 Fundamental and Derived Units 4 Units in Electrical Engineering 4 Derived Units 4 CGS esu and emu Systems of Unit 4 The MKS (or Giorgi) System of Units 5 Rationalised MKS System 6 Definitions of Some Units in Rationalised MKS System 7 International Units 10 Dimensions of Units 11 Units Pertaining to Mechanical Quantities 11 Dimensions in Electrostatic and Electromagnetic Systems 12 Dimensions of Electrical and Magnetic Quantities 14 Dimensions of Electrical and Magnetic Quantities in Rationalised MKS System 17 Standards 20 Classification of Standards 21 Absolute Standards 21 Primary Standards 21 Practical or Laboratory Standards 23 Worked Examples 30 2 Electrical Measuring Instruments and Measurements Units, Dimensions and Standards 3 I UNITS, DIMENSIONS AND STANDARDS RECALL Units have been associated with physical quantities from the ancient times, inadvertently or with full awareness by way of trade or exchange. They have had special significance in engineering, increasingly so with the continual advances and developments of technology. Thus, whilst in the beginning units generally pertained to simple entities such as mass, distance and assorted articles, as well as time, there are now more important physical quantities like force, pressure, current, potential and so on which involve a variety of units associated with them. The process of measurement of a quantity – electrical or non-electrical – in particular cannot be considered complete, however elaborately and accurately the measurement might have been carried out, unless associated with the proper unit. Accordingly, the result of measurement of a physical quantity must be expressed both in terms of quantum and a unit. -
Numbers 1 to 100
Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number) -
2020 Corrective Action Baseline
2020 Corrective Action Baseline: 3,779 facilities sorted by facility name * 1,814 out of 3,779 facilities have reached Remedy Construction as of April 22, 2013 Facility Name Region State EPA ID Remedy Construction 1 K C Industries Properties Llc 4 FL FLD004106811 2 101St Airborne Division (Air Assault) & Ft Campbell 4 TN TN5210020140 3 1033 Kings Highway Llc 2 NY NYD000233510 Remedy Construction 4 189 Tonawanda St Corp 2 NY NYD980526818 Remedy Construction 5 1990 Bay Road 9 CA CAT000611350 Remedy Construction 6 21St Century Env Man Inc Of Illinois 5 IL ILD981531643 Remedy Construction 7 21St Century Environmental Mgmt Inc 1 RI RID980906986 8 21St Century Environmental Mgt. Of Nv Llc 9 NV NVD980895338 9 27 Sow Afsoc Usaf Cannon Afb Nm 6 NM NM7572124454 10 2910 W Beaver St Llc 4 FL FLD020982716 Remedy Construction 11 3358471 Los Angeles Refinery Wilmington 9 CA CAD008237679 12 3D Investment Inc 7 NE NED986368728 Remedy Construction 13 3M ‐ Cottage Grove 5 MN MND006172969 14 3M Columbia 7 MO MOD054950670 Remedy Construction 15 3M Company 4 AL ALD004023164 Remedy Construction 16 3M Company Brownwood 6 TX TXD001806868 Remedy Construction 17 3M Copley Chemical 5 OH OHD000716910 18 3M Cordova 5 IL ILD054236443 Remedy Construction 19 5200 East Cork St Investors Llc 5 MI MID001876663 20 914Th Airlift Wing (Afrc) 2 NY NY0570024273 Remedy Construction 21 A & B Enterprises 5 WI WID006103899 22 A American Environmental L L C 9 CA CAD089446710 Remedy Construction 23 A B Carter Inc 4 NC NCD003154010 Remedy Construction 24 A J Tuck Co 1 CT CTD001451855 25 A M P Inc 3 PA PAD980550172 Remedy Construction 26 A T F Davidson Co Inc 1 MA MAD046128559 27 A. -
In the Iowa District Court in and for Polk County State
E-FILED 2017 OCT 26 11:33 AM POLK - CLERK OF DISTRICT COURT IN THE IOWA DISTRICT COURT IN AND FOR POLK COUNTY STATE OF IOWA ex rel. THOMAS J. MILLER, ATTORNEY GENERAL OF IOWA EQUITY NO. EQCE082171 PLAINTIFF, v. CONSENT JUDGMENT ENTRY AND ORDER GENERAL MOTORS COMPANY. DEFENDANT. Plaintiff, State of Iowa, acting by and through Attorney General Thomas J. Miller has brought this action pursuant to provisions of the Consumer Fraud Act, Iowa Code § 714.16 (the “Iowa Consumer Fraud Act”), having filed a complaint against General Motors Company (“GM”). Plaintiff and GM, by their counsel, have agreed to the entry of this Agreed Consent Judgment (“Consent Judgment”) without trial or adjudication of any issue of fact or law and without admission by GM of any wrongdoing or admission of any of the violations of the Iowa Consumer Fraud Act or any other law as alleged by Plaintiff. Contemporaneous with the filing of this Consent Judgment, GM is entering into similar agreements with the Attorneys General of Alabama, Alaska, Arkansas, California, Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Mississippi, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia, Vermont, Washington, West 1 E-FILED 2017 OCT 26 11:33 AM POLK - CLERK OF DISTRICT COURT Virginia, Wisconsin, and Wyoming (hereinafter collectively referred to as “Attorneys General” or “Signatory Attorneys General”). 1 PRELIMINARY STATEMENT 1.1 In 2014, an Attorneys General Multistate Working Group (“MSWG”)—of which Iowa is a member—initiated an investigation (the “Investigation”) into certain business practices of GM 1 concerning GM’s issuance of the following Recalls: NHTSA Recall Nos.