Publications for Benjamin Eggleton 2021 2020
Total Page:16
File Type:pdf, Size:1020Kb
Publications for Benjamin Eggleton 2021 Bogaerts, W., Eggleton, B., Casas Bedoya, A., Marpaung, D. Liu, Y., Choudhary, A., Ren, G., Choi, D., Casas Bedoya, A., (2021). Versatile silicon microwave photonic spectral shaper. Morrison, B., Ma, P., Nguyen, T., Mitchell, A., Madden, S., APL Photonics, 6(3), 36106. <a Eggleton, B., et al (2021). Circulator-Free Brillouin Photonic href="http://dx.doi.org/10.1063/5.0033516">[More Planar Circuit. Laser and Photonics Reviews, 15(5), 2000481. Information]</a> <a href="http://dx.doi.org/10.1002/lpor.202000481">[More Zarifi, A., Merklein, M., Liu, Y., Choudhary, A., Eggleton, B., Information]</a> Corcoran, W. (2021). Wide-range optical carrier recovery via Li, C., Merklein, M., Liu, Y., Choudhary, A., Eggleton, B., broadened Brillouin filters. Optics Letters, 46(2), 166-169. <a Corcoran, B. (2021). Effective linewidth reduction in self- href="http://dx.doi.org/10.1364/OL.411482">[More homodyne coherent reception by stimulated Brillouin scattering- Information]</a> based optical carrier recovery. Optics Express, 29(16), 25697- 25708. <a href="http://dx.doi.org/10.1364/OE.430439">[More 2020 Information]</a> Zhang, Z., Liu, Y., Burla, M., Eggleton, B. (2020). 5.6-GHz- Li, C., Merklein, M., Liu, Y., Choudhary, A., Eggleton, B., Bandwidth Photonic Stepped-Frequency Radar using MHz- Corcoran, B. (2021). Effective Linewidth Reduction in Self- Level Frequency-Shifting Modulation. 2020 Conference on Homodyne Coherent Reception Enabled by stimulated Brillouin Lasers and Electro-Optics (CLEO 2020), San Jose: Optical scattering. 2021 Optical Fiber Communications Conference and Society of America. <a Exhibition (OFC 2021), San Francisco: Institute of Electrical href="http://dx.doi.org/10.1364/CLEO_AT.2020.AF3M.5">[Mo and Electronics Engineers (IEEE). re Information]</a> Liu, Y., Choudhary, A., Marpaung, D., Eggleton, B. (2021). McKay, L., Merklein, M., Choudhary, A., Liu, Y., Jenkins, M., Integrated Microwave Photonic Filters. 2021 Optical Fiber Middleton, C., Cramer, A., Chilton, A., Devenport, J., Vu, K., Communications Conference and Exhibition (OFC 2021), San Eggleton, B., et al (2020). Broadband Brillouin Phase Shifter Francisco: Institute of Electrical and Electronics Engineers Utilizing RF Interference: Experimental Demonstration and (IEEE). Theoretical Analysis. Journal of Lightwave Technology, 38(14), 3624-3636. <a Merklein, M., Stiller, B., Vu, K., Ma, P., Madden, S., Eggleton, href="http://dx.doi.org/10.1109/JLT.2020.2980308">[More B. (2021). On-chip broadband nonreciprocal light storage. Information]</a> Nanophotonics, 10(1), 75-82. <a href="http://dx.doi.org/10.1515/nanoph-2020-0371">[More Zarifi, A., Merklein, M., Liu, Y., Choudhary, A., Eggleton, B., Information]</a> Corcoran, B. (2020). Broadband SBS Filter for Optical Carrier Recovery Applications in Telecommunication Systems. 2020 Tong, A., Sorrell, T., Black, A., Caillaud, C., Chrzanowski, W., Conference on Lasers and Electro-Optics (CLEO 2020), San Li, E., Martinez-Martin, D., McEwan, A., Wang, R., Motion, Jose: Optical Society of America. <a A., Casas Bedoya, A., Huang, J., Azizi, L., Eggleton, B., href="http://dx.doi.org/10.1364/CLEO_SI.2020.SM1P.4">[Mor Andersen, T., Baillie, A., Barratt, A., Boehm, C., Britton, P., e Information]</a> Chadban, S., Chow, C., Fleming, S., Fox, G., Gordon, L., Ho- Baillie, A., Howell, M., Hickie, I., Hunt, N., Iredell, J., Jin, C., Zhang, Z., Liu, Y., Burla, M., Eggleton, B. (2020). Centimetre- Kairaitis, K., Kavehei, O., Kritharides, L., Leon-Saval, S., Spatial-Resolution Photonics-Based Stepped-Frequency Radar: Lindley, R., Maguire, S., McCluskey, M., McKay, N., Mifsud, Implementation and Comparison. 2020 Conference on Lasers G., Palomba, S., Pettigrew, A., Postnova, S., Prinable, J., and Electro-Optics Pacific Rim (CLEO-PR 2020), Sydney: Rabeau, J., Rees, M., Richmond, K., Scholes Robertson, N., Optical Society of America. <a Seppelt, I., Shaw, T., Sintchenko, V., Snelling, T., Teixeira- href="http://dx.doi.org/10.1364/CLEOPR.2020.C6C_2">[More Pinto, A., Tovey, E., Tuniz, A., Varamini, P., Wang, A., Wang, Information]</a> K., Wise, S., Zoellner, H., et al (2021). Research priorities for McKay, L., Merklein, M., Liu, Y., Cramer, A., Maksymow, J., COVID-19 sensor technology. Nature Biotechnology, 39(2), Chilton, A., Vu, K., Choi, D., Ma, P., Madden, S., Eggleton, B., 144-153. <a href="http://dx.doi.org/10.1038/s41587-021-00816- et al (2020). Chip-based broadband true-time delay using 8">[More Information]</a> Brillouin scattering and phase amplification. 2020 Conference Cao, Y., Sahin, E., Choi, J., Xing, P., Chen, G., Ng, D., on Lasers and Electro-Optics Pacific Rim (CLEO-PR 2020), Eggleton, B., Tan, D. (2021). Thermo-optically tunable spectral Sydney: Optical Society of America. <a broadening in a nonlinear ultra-silicon-rich nitride Bragg href="http://dx.doi.org/10.1364/CLEOPR.2020.C8D_2">[More grating. Photonics Research, 9(4), 596-604. <a Information]</a> href="http://dx.doi.org/10.1364/PRJ.411073">[More Kotecha, S., Zafiri, A., Merklein, M., Liu, Y., Choudhary, A., Information]</a> Eggleton, B., Corcoran, B. (2020). Clamping of noise from a Xu, B., De Boo, G., Johnson, B., Ran?i?, M., Casas Bedoya, A., stimulated Brillouin scattering amplifier through optical Morrison, B., McCallum, J., Eggleton, B., Sellars, M., Yin, C., injection locking. 2020 Conference on Lasers and Electro- et al (2021). Ultrashallow Junction Electrodes in Low-Loss Optics Pacific Rim (CLEO-PR 2020), Sydney: Optical Society Silicon Microring Resonators. Physical Review Applied, 15(4), of America. <a 44014. <a href="http://dx.doi.org/10.1364/CLEOPR.2020.C11G_4">[Mor href="http://dx.doi.org/10.1103/PhysRevApplied.15.044014">[ e Information]</a> More Information]</a> Stiller, B., Merklein, M., Wolff, C., Vu, K., Ma, P., Madden, S., Guo, X., Liu, Y., Yin, T., Morrison, B., Pagani, M., Daulay, O., Eggleton, B. (2020). Coherently refreshing hypersonic phonons for light storage. Optica, 7(5), 492-497. <a Information]</a> href="http://dx.doi.org/10.1364/OPTICA.386535">[More Zhang, Y., Merklein, M., Zhu, Z., Shu, C., Vu, K., Ma, P., Information]</a> Choi, D., Madden, S., Eggleton, B. (2020). Tailoring the Phase- Zarifi, A., Merklein, M., Liu, Y., Choudhary, A., Eggleton, B., Matching Condition of Four-Wave Mixing via Brillouin Corcoran, B. (2020). EDFA-band Coverage Broadband SBS Scattering in a Chalcogenide Waveguide. 2020 Conference on Filter for Optical Carrier Recovery. 2020 Conference on Lasers Lasers and Electro-Optics (CLEO 2020), San Jose: Optical and Electro-Optics Pacific Rim (CLEO-PR 2020), Sydney: Society of America. <a Optical Society of America. <a href="http://dx.doi.org/10.1364/CLEO_SI.2020.SM4L.4">[Mor href="http://dx.doi.org/10.1364/CLEOPR.2020.C9G_3">[More e Information]</a> Information]</a> Blanco-Redondo, A., Wang, M., Doyle, C., Bell, B., Collins, Garrett, M., Liu, Y., Ma, P., Choi, D., Madden, S., Eggleton, B. M., Magi, E., Eggleton, B., Segev, M. (2020). Topologically (2020). Fully Reconfigurable Chip-Based Brillouin Microwave Protected Path-Entangled Photonic States. 2020 Conference on Photonic Multi-Passband Filter with High RF Link Gain. 2020 Lasers and Electro-Optics (CLEO 2020), San Jose: Optical Conference on Lasers and Electro-Optics (CLEO 2020), San Society of America. <a Jose: Optical Society of America. <a href="http://dx.doi.org/10.1364/CLEO_AT.2020.JM3A.2">[Mo href="http://dx.doi.org/10.1364/CLEO_SI.2020.SW3O.3">[Mor re Information]</a> e Information]</a> 2019 Zhu, Z., Choi, D., Madden, S., Eggleton, B., Merklein, M. (2020). High-conversion-gain and deep-image-rejection Eggleton, B. (2019). A Renaissance in Brillouin Photonics for Brillouin chip-based photonic RF mixer. Optics Letters, 45(19), On-Chip Signal Processing and Sensing. 24th Microoptics 5571-5574. <a Conference (MOC 2019), Toyama: Institute of Electrical and href="http://dx.doi.org/10.1364/OL.400511">[More Electronics Engineers (IEEE). <a Information]</a> href="http://dx.doi.org/10.23919/MOC46630.2019.8982811">[ More Information]</a> Liu, Y., Choudhary, A., Marpaung, D., Eggleton, B. (2020). Integrated microwave photonic filters. Advances in Optics and Guo, X., Yin, T., Liu, Y., Morrison, B., Cantaloube, C., Photonics, 12(2), 485-555. <a Bogaerts, W., Eggleton, B., Marpaung, D., Casas Bedoya, A. href="http://dx.doi.org/10.1364/AOP.378686">[More (2019). All-integrated universal RF photonic spectral shaper. Information]</a> 2019 Asia Communications and Photonics Conference (ACP 2019), Chengdu: OSA (Optical Society America). McKay, L., Merklen, M., Liu, Y., Cramer, A., Maksymow, J., Chilton, A., Yan, K., Choi, D., Madden, S., Desalvo, R., Sahin, E., Blanco Redondo, A., Xing, P., Ng, D., Png, C., Tan, Eggleton, B. (2020). Integrated microwave photonic true-time D., Eggleton, B. (2019). Bragg Soliton Compression and delay with interferometric delay enhancement based on Fission on CMOS-Compatible Ultra-Silicon-Rich Nitride. Brillouin scattering and microring resonators. Optics Express, Laser and Photonics Reviews, 13(8), 1-9. <a 28(24), 36020-36032. <a href="http://dx.doi.org/10.1002/lpor.201900114">[More href="http://dx.doi.org/10.1364/OE.408617">[More Information]</a> Information]</a> Eggleton, B., Poulton, C., Rakich, P., Steel, M., Bahl, G. Garrett, M., Liu, Y., Ma, P., Choi, D., Madden, S., Eggleton, B. (2019). Brillouin integrated photonics. Nature Photonics, (2020). Low-RF-loss and large-rejection reconfigurable 13(10), 664-677. <a href="http://dx.doi.org/10.1038/s41566- Brillouin-based RF photonic bandpass filter. Optics Letters, 019-0498-z">[More Information]</a> 45(13), 3705-3708. <a McKay, L., Merklein, M., Casas Bedoya, A., Choudhary, A., href="http://dx.doi.org/10.1364/OL.395477">[More Jenkins, M., Middleton, C., Cramer, A., Devenport, J., Klee, A., Information]</a> Desalvo, R., Eggleton, B. (2019). Brillouin-based phase shifter Wang, K., Bell, B., Solntsev, A., Neshev, D., Eggleton, B., in a silicon waveguide. Optica, 6(7), 907-913. <a Sukhorukov, A. (2020). Multidimensional synthetic chiral-tube href="http://dx.doi.org/10.1364/OPTICA.6.000907">[More lattices via nonlinear frequency conversion.