Arthropod Research Activity

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Research Activity WLHS/Marine Biology/Oppelt Name ______________________ Arthropod Research Activity DIRECTIONS: Read through the following questions. Choose 3 of the 5 questions to answer. Using the internet, type a paragraph on the following topics. Make sure to use your OWN words. Plagiarism will result in a 0. Cite the sources you found your information for each section. 1. Report on the farming of shrimp, crab, lobster, or crayfish. Compare the size, the technology, and the economic importance of this kind of farming in your state and other states. Compare crustacean farming with fish farming. What environmental issues affect crustacean farming? 2. Learn more about where crabs or shrimp live in natural environments. How, if at all, are their bodies adapted to their habitats? What do they eat and, in turn, what animals prey on them (in other words, eat them)? 3. Many people think that barnacles are mollusks. Read references to learn about the anatomy and life history of barnacles. Explain what makes them arthropods. Learn of their economic impact on the shipping industry, which must cope with barnacles growing on ship hulls. 4. Find out what commercial and medicinal products are extracted from arthropod by-products. An example is chitoson, which is extracted from the carapaces of crabs for use in making fibers, films, and artificial human skin. 5. What is the nutritional value of shrimp, crabs, and lobster? How do they compare with fish in protein, fat, and calories? Do you have to eat more crustaceans to get the same nutritional value as fish or vice versa? Which do you think can feed more people and WHY? (Hint: think about factors like number of offspring produced, how long does it take for them to mature, etc..) .
Recommended publications
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, Respectively Hermiston Research and Extension Center, Hermiston, Oregon
    Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, respectively Hermiston Research and Extension Center, Hermiston, Oregon Member of the Phyllum Arthropoda can be found in the seas, in fresh water, on land, or even flying freely; a group with amazing differences of structure, and so abundant that all the other animals taken together are less than 1/6 as many as the arthropods. Well-known members of this group are the Kingdom lobsters, crayfish and crabs; scorpions, spiders, mites, ticks, Phylum Phylum Phylum Class the centipedes and millipedes; and last, but not least, the Order most abundant of all, the insects. Family Genus The Phylum Arthropods consist of the following Species classes: arachnids, chilopods, diplopods, crustaceans and hexapods (insects). All arthropods possess: • Exoskeleton. A hard protective covering around the outside of the body (divided by sutures into plates called sclerites). An insect's exoskeleton (integument) serves as a protective covering over the body, but also as a surface for muscle attachment, a water-tight barrier against desiccation, and a sensory interface with the environment. It is a multi-layered structure with four functional regions: epicuticle (top layer), procuticle, epidermis, and basement membrane. • Segmented body • Jointed limbs and jointed mouthparts that allow extensive specialization • Bilateral symmetry, whereby a central line can divide the body Insect molting or removing its into two identical halves, left and right exoesqueleton • Ventral nerve
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • The Arthropod Phylum Phyla a Major Groups of Organisms
    Lab 1: Arthropod Classification Name: _______________________________ Hierarchical Classification System Classification systems enable us to impart order to a complex environment. In biology, organisms may be grouped according to their overall similarity (a classification method known as phenetics) or according to their evolutionary relationships (a classification system known as cladistics). Most modern scientists tend to adopt a cladistic approach when classifying organisms. In biology, organisms are given a generic name (reflecting the genus of the organisms), and a specific name (reflecting the species of the organism). A genus is a group of closely related organisms. Genera which are closely related are grouped into a higher (less specific) category known as a family. Families are grouped into orders, and orders into classes. Classes of organisms are grouped into phyla, and phyla are grouped into kingdoms. Domains are the highest taxonomic rank of organisms. Domain Bacteria, Eubacteria, Eukarya Kingdom Plants, Animals, Fungus, Protists Phylum Cnidaria, Annelida, Arthropoda Class Insecta, Arachnida, Crustacea Order Coleoptera, Lepidoptera, Diptera Family Tipulidae, Apidae, Scarabeidae Genus Scaptia, Euglossa, Anastrangalia Species beyonceae, bazinga, laetifica Glossary of Phylogenetic Terms Phylogeny: interrelationships of organisms based on evolution Systematics: the study of the diversity of organisms, which attempts to organize or rationalize diversity in terms of phylogeny Taxonomy: the technical aspects of systematics, dealing with the formal description of species, establishing rankings of groups, and general principles of classification and naming Phylogenetic Tree (cladogram): a diagrammatic representation of the presumed line of descent of a group of organisms. Thus, a phylogenetic tree is actually a hypothesis regarding the evolutionary history of a group of organisms.
    [Show full text]
  • Onychophorology, the Study of Velvet Worms
    Uniciencia Vol. 35(1), pp. 210-230, January-June, 2021 DOI: http://dx.doi.org/10.15359/ru.35-1.13 www.revistas.una.ac.cr/uniciencia E-ISSN: 2215-3470 [email protected] CC: BY-NC-ND Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Onicoforología, el estudio de los gusanos de terciopelo, tendencias históricas, hitos e investigadores de 1826 a 2020 (Revisión de la Literatura) Onicoforologia, o estudo dos vermes aveludados, tendências históricas, marcos e pesquisadores de 1826 a 2020 (Revisão da Literatura) Julián Monge-Nájera1 Received: Mar/25/2020 • Accepted: May/18/2020 • Published: Jan/31/2021 Abstract Velvet worms, also known as peripatus or onychophorans, are a phylum of evolutionary importance that has survived all mass extinctions since the Cambrian period. They capture prey with an adhesive net that is formed in a fraction of a second. The first naturalist to formally describe them was Lansdown Guilding (1797-1831), a British priest from the Caribbean island of Saint Vincent. His life is as little known as the history of the field he initiated, Onychophorology. This is the first general history of Onychophorology, which has been divided into half-century periods. The beginning, 1826-1879, was characterized by studies from former students of famous naturalists like Cuvier and von Baer. This generation included Milne-Edwards and Blanchard, and studies were done mostly in France, Britain, and Germany. In the 1880-1929 period, research was concentrated on anatomy, behavior, biogeography, and ecology; and it is in this period when Bouvier published his mammoth monograph.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]
  • (Includes Insects) Myriapods Pycnogonids Limulids Arachnids
    N. Dean Pentcheff Insect Friends and Relations Regina Wetzer What do we know How do we know that? about arthropod relationships? Examples of lines of evidence: Onychophorans Genetics and Genomics Genomic approaches The figures at left show the can look at patterns protein structure of opsins Common of occurrence of (visual pigments). Yellow iden- tifies areas of the protein that Ancestor of whole genes across Crustaceans (includes Insects) have important evolutionary Panarthropoda taxa to identify pat- terns of common and functional differences. This ancestry. provides information about how the opsin gene family has Cook, C. E., Smith, M. L., evolved across different taxa. Telford, M. J., Bastianello, Myriapods A., Akam, M. 2001. Hox Porter, M. L., Cronin, T. W., McClellan, Panarthropoda genes and the phylogeny D. A., Crandall, K. A. 2007. Molecular of the arthropods. Cur- characterization of crustacean visual rent Biology 11: 759-763. pigments and the evolution of pan- crustacean opsins. Molecular Biology This phylogenetic tree of the Arthropoda and Evolution 24(1): 253-268. Arthropoda Pycnogonids outlines our best current knowledge about relationships in the group. Dunn, C.W. et al. 2008. Broad phylogenetic sampling improves resolution of the animal tree of life. Nature Morphology 452: 745-749. Limulids Comparing similarities and differences among arthropod appendages is a fertile source of infor- Chelicerata mation about patterns of ancestry. Morphological Arachnids evidence can be espec- ially valuable because it is available for both living Unraveling arthropod phylogeny and fossil taxa. There are about 1,100,000 described arthropods – 85% of multicellular animals! Segmentation, jointed appendages, and the devel- opment of pattern-forming genes profoundly affected arthropod evolution and created the most morphologically diverse taxon on [Left:] Cotton, T.
    [Show full text]
  • Study Questions 2 (Through Arthropod 1)
    Study Questions 2 (through Arthropod 1) 1. Name the three embryonic germ layers found in all triploblastic animals. 2. What is a coelom? Which Phyla that we have discussed thus far have a true coelom? 3. Define cephalization. What is the name of the most primitive Phylum we have discussed that displays cephalization? 4. How is the digestive system of a Turbellarian similar to the digestive system of a Hydrozoan? Describe one way that they are different. 5. What is the function of flame cells? 6. How is the nervous system of a flatworm (Phylum Platyhelminthes) different from that of a Cnidarian? 7. Which two classes of flatworms are entirely parasitic? Describe some adaptations for parasitism that are found in these classes. 8. What are some of the major differences between Nemertine worms (Phylum Nemertea) and flatworms (Phylum Platyhelminthes)? In what major way are these two phyla similar? 9. What is a pseudocoelom? What are some of the functions of the pseudocoelom in Phylum Nematoda? 10. Nematodes have move in a characteristic whip like fashion. What aspect of their anatomy is responsible for this type of movement? 11. Describe the general structure of the Nematode nervous system. How is it different from the nervous system of Platyhelminthes? 12. What is unique about Nematode muscle cells? 13. What is unique about the way Nematode sperm move? 14. Many Nematodes are parasitic. Describe some adaptations that Nematodes have for parasitism. 15. What characteristics of the Nematode Caenorhabditis elegans make such an important model organism for the study of developmental genetics? 16. List two functions of the Rotifer corona.
    [Show full text]
  • Volatile Cues Influence Host-Choice in Arthropod Pests
    animals Review Volatile Cues Influence Host-Choice in Arthropod Pests Jacqueline Poldy Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia; [email protected]; Tel.: +61-2-6218-3599 Received: 1 October 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Many significant human and animal diseases are spread by blood feeding insects and other arthropod vectors. Arthropod pests and disease vectors rely heavily on chemical cues to identify and locate important resources such as their preferred animal hosts. Although there are abundant studies on the means by which biting insects—especially mosquitoes—are attracted to humans, this focus overlooks the veterinary and medical importance of other host–pest relationships and the chemical signals that underpin them. This review documents the published data on airborne (volatile) chemicals emitted from non-human animals, highlighting the subset of these emissions that play a role in guiding host choice by arthropod pests. The paper exposes some of the complexities associated with existing methods for collecting relevant chemical features from animal subjects, cautions against extrapolating the ecological significance of volatile emissions, and highlights opportunities to explore research gaps. Although the literature is less comprehensive than human studies, understanding the chemical drivers behind host selection creates opportunities to interrupt pest attack and disease transmission, enabling more efficient pest management. Abstract: Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts’ ‘volatilome’. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic.
    [Show full text]
  • Arthropod Mesograzers Reduce Epiphytic Overgrowth of Subtidal Coralline Turf
    Vol. 515: 123–132, 2014 MARINE ECOLOGY PROGRESS SERIES Published November 18 doi: 10.3354/meps11025 Mar Ecol Prog Ser Arthropod mesograzers reduce epiphytic overgrowth of subtidal coralline turf A. K. Berthelsen*, R. B. Taylor Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand ABSTRACT: Benthic primary producers such as seaweeds and seagrasses are often inhabited by high densities of small arthropods, but little is known about the impact of these animals on their hosts, which could be positive if they keep them free of fouling epiphytes. We assessed the impact of small arthropods on algal epiphytes growing on coralline algal turf on a shallow, wave-exposed, rocky reef in warm temperate northeastern New Zealand. Plaster blocks impregnated with the insecticide carbaryl were used to reduce arthropod densities (by 96% relative to unmanipulated controls in the case of amphipods). By the end of the ~3.5 mo experiment total epiphyte cover was 88% when arthropods were excluded compared to 38% in unmanipulated controls, a 2.3-fold increase. Brown (Colpomenia spp.), green (Ulva spp.) and ‘filamentous and microscopic’ algal epi- phyte taxa were responsible for the increase, while the cover of red foliose algal epiphytes decreased slightly. Hyalid amphipods (Protohyale spp.) were likely responsible for suppressing the epiphytes, as they were the most abundant arthropod mesograzer taxon and ate both Colpomenia spp. and Ulva spp. in a laboratory no-choice feeding assay. During the field experi- ment 2 large storms removed most of the epiphytes that had grown in the mesograzer exclusion treatment. Overall, our results indicate that the amphipods prevented overgrowth of the turf by epiphytes during calm periods.
    [Show full text]
  • Evolutionary Crossroads in Developmental Biology: Annelids David E
    PRIMER SERIES PRIMER 2643 Development 139, 2643-2653 (2012) doi:10.1242/dev.074724 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: annelids David E. K. Ferrier* Summary whole to allow more robust comparisons with other phyla, as well Annelids (the segmented worms) have a long history in studies as for understanding the evolution of diversity. Much of annelid of animal developmental biology, particularly with regards to evolutionary developmental biology research, although by no their cleavage patterns during early development and their means all of it, has tended to concentrate on three particular taxa: neurobiology. With the relatively recent reorganisation of the the polychaete (see Glossary, Box 1) Platynereis dumerilii; the phylogeny of the animal kingdom, and the distinction of the polychaete Capitella teleta (previously known as Capitella sp.); super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus and the oligochaete (see Glossary, Box 1) leeches, such as for studying this phylum has arisen. As one of the major phyla Helobdella. Even within this small selection of annelids, a good within Lophotrochozoa, Annelida are playing an important role range of the diversity in annelid biology is evident. Both in deducing the developmental biology of the last common polychaetes are marine, whereas Helobdella is a freshwater ancestor of the protostomes and deuterostomes, an animal from inhabitant. The polychaetes P. dumerilii and C. teleta are indirect which >98% of all described animal species evolved. developers (see Glossary, Box 1), with a larval stage followed by metamorphosis into the adult form, whereas Helobdella is a direct Key words: Annelida, Polychaetes, Segmentation, Regeneration, developer (see Glossary, Box 1), with the embryo developing into Central nervous system the worm form without passing through a swimming larval stage.
    [Show full text]
  • Dichotomous Keys to Arthropod Orders
    Caterpillars Count! caterpillarscount.unc.edu May 2016 Dichotomous Keys to Arthropod Orders Modified from the American Museumof Natural History http://www.amnh.org/learn/biodiversity_counts/ident_help/Text_Keys/text_keys_index.htm Key A: Arthropods with Six Legs, with Well Developed Wings Key B: Arthropods with Six Legs, with Tiny or Missing Wings Key C: Arthropods with More Than Six Legs. Orders important for Caterpillars Count! are highlighted in RED! Tips: Only adult arthropods are included, and certain uncommon orders are not included. To use a key, read both descriptions in a couplet (for instance, 1a and 1b). Decide which sounds most like your critter, and move to the next couplet indicated. Should you reach a dead-end, use the numbers in parentheses to backtrack until you reach a couplet that you felt unsure about, and try following the other path. Some orders are found more than once in the keys, because the arthropods occur in different forms. Key A: Arthropods with Six Legs, with Well-Developed Wings. STEP FROM CHARACTERS ORDER / CLASS 1a One pair of wings. go to 2 1b Two pairs of wings. go to 3 Hind wings reduced to tiny knobs (halteres), tip of 2a 1a abdomen without 2-3 thread-like tails DIPTERA (Flies) Hind wings not reduced to tiny knobs, tip of abdomen 2b 1a with 2-3 thread-like tails (caudal filaments) EPHEMEROPTERA (Mayflies) Page 1 of 10 Caterpillars Count! caterpillarscount.unc.edu May 2016 Front and hind wings have similar texture. 3a 1b go to 4 Front wings a rigid or leathery covering for clear hind 3b 1b wings.
    [Show full text]