Onychophora (ZOOA CC-2-3-TH) Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Onychophora (ZOOA CC-2-3-TH) Introduction Onychophora (ZOOA CC-2-3-TH) Introduction - Onychophorans or velvet worms are carnivorous, terrestrial invertebrates, which inhabit tropical and temperate forests of the southern hemisphere and around the equator, where they are mainly found in rotted logs and leaf litter (Ruhberg 1985, Reid 1996, Mayer 2007, Oliveira et al. 2012a). So far, about 200 species of Onychophora have been described (Mayer and Oliveira 2011, 2013, Oliveira et al. 2012a, 2013a). They are classified in two major subgroups, the Peripatidae and Peripatopsidae, which diverged prior to the break-up of Gondwana over 175 million years ago (Hamer et al. 1997, Allwood et al. 2010, Braband et al. 2010, Jeffery et al. 2012, Mayer and Oliveira 2013, Murienne et al. 2014). Onychophorans have a typical worm- shaped body with 13–43 pairs of stumpy, unjointed legs (= lobopods), the number of which varies inter- or intra-specifically (Ruhberg 1985, Reid 1996, Oliveira et al. 2012a, 2012b). The anterior-most limbs have been modified to three pairs of specialized cephalic appendages: the sensory antennae, the jaws situated within the mouth cavity, and the slime papillae, which are used for defence and prey capture (Manton and Heatley 1937, Read and Hughes 1987, Storch and Ruhberg 1993, Mayer et al. 2010, Oliveira and Mayer 2013). Onychophorans are predators that use a sticky slime secretion produced in large glands and ejected via the slime papillae to entangle the prey, such as crickets and other small invertebrates (Manton and Heatley 1937, Lavallard and campiglia 1971, Ruhberg and Storch 1977, Read and Hughes 1987, Baer and Mayer 2012). After the prey has been immobilized using the glue-like slime, its cuticle is punctured with the jaws and digestive saliva is injected into its body (Manton and Heatley 1937, Baer and Mayer 2012). The liquefied contents are then ingested using a sucking pharynx (Mayer et al. 2013a, Nielsen 2013). Besides the pharynx and the mouth cavity containing the jaws and the tongue, the digestive tract of onychophorans exhibits atubular oesophagus, followed by a thick-walled, straight midgut, and a short posterior hindgut (Balfour 1883, Lavallard 1986, Storch et al. 1988, Mayer et al. 2013a). The hindgut opens to the exterior via a terminal anus. The renal organs (= nephridia) of onychophorans are segmental structures that typically open to the exterior at the basis of each leg (Gabe 1957, Storch et al. 1978, Lavallard 1981, Mayer & Koch 2005, Mayer 2006a). The salivary, anal, uterine, and accessory genital glands, as well as the gonoducts, are generally regarded as derivatives of nephridia of the corresponding body segments (Storch et al. 1978, 1979, Reid 1996, Mayer and Koch 2005, Mayer 2006a, 2007). In females, the gonoducts are associated with paired uteri that are connected to the ovarian tubes via a pair of oviducts, whereas the testes of males are associated with large seminal vesicles (Herzberg et al. 1980, Storch and Ruhberg 1990, Storch et al. 1995, Brockmann et al. 1997, 2001, Walker et al. 2006, Mayer and tait 2009). The male and female genital tracts open to the exterior via an unpaired genital opening, which is located either between the last leg pair in peripatopsids or the penultimate leg pair in peripatids (Storch and Ruhberg 1993, Oliveira et al. 2012b, Ruhberg and Mayer 2013). The body wall of onychophorans exhibits well-developed musculature consisting of an outer circular layer followed by diagonal and inner longitudinal muscle layers (Hoyle and Williams 1980). The longitudinal musculature is organized into two dorsal, two lateral, and three ventral bundles without any metameric arrangement, whereas the muscles associated with limbs are clearly segmental (Hoyle and Williams 1980, Oliveira et al. 2013b). The transverse musculature and the pericardial septum subdivide the body cavity of onychophorans (= haemocoel) into one large perivisceral sinus, two lateral sinuses, and one dorsal pericardial sinus, which contains a tube-shaped, longitudinal dorsal vessel (= heart) (campiglia and Lavallard 1975, Seifert and Rosenberg 1977, nylund et al. 1988, Storch and Ruhberg 1993, Ruhberg and Mayer 2013). during embryogenesis, the haemocoel of onychophorans arises by mixocoely, i.e. a fusion of the primary and secondary (= coelomic) body cavities (von Kennel 1888, Mayer et al. 2004, 2005, Mayer 2006a). Together with tardigrades (water bears), onychophorans are regarded as the closest relatives of arthropods (spiders, centipedes, crustaceans, insects and allies) – the largest and most diverse animal groups on Earth. However, in contrast to arthropods, the anatomy of onychophorans has changed little since the Early Cambrian , rendering them important for addressing various evolutionary and other scientific questions, for example: • How did the panarthropod ancestor look like? • What are the origins of vision and colour vision? • How are the major arthropod groups related to each other? • What is the developmental basis of animal segmentation? • What is the phylogenetic position of tardigrades? • How did the arthropod head evolve? • What are the origins of the arthropod nervous system? • How did the mitochondrial genomes evolve? • To what extent are velvet worms useful for conservation? • What is the actual species diversity of Onychophora? • Can the onychophoran slime be used for bioengineering? Time of origin: Onychophora evolved from the marine fossil onychophoran-like organism Aysheaia pedunculata from the Mid-Cambrian period about 520 million years ago. Zoological Importance of Onychophora: Onychophora show a great zoological importance because: 1. They furnish an example of discontinuous distribution and 2. They represent an example of living connecting link between the two phyla— Annelida and Arthropoda. Anatomical Peculiarities of Onychophora: A. Primitive features: 1. Onychophora are worm-like body covered with thin, flexible, chitinous cuticle. 2. Onychophora are sluggish in nature. 3. Head segments are comparatively small (3 head segments in onychophores but in true arthropods head segments are 5 or 6). 4. Presence of segmentally arranged nephridia. 5. Presence of cilia in the reproductive tracts. 2. Onychophora are sluggish in nature. 3. Head segments are comparatively small (3 head segments in onychophores but in true arthropods head segments are 5 or 6). 4. Presence of segmentally arranged nephridia. 5. Presence of cilia in the reproductive tracts. B. Sole peculiarities: 1. Segmentation indistinct on external surface. 2. Head appendages include a pair of antennae, a pair of jaws and a pair of oral papillae. 3. Texture of the skin is present. 4. Numerous, un-jointed, stumpy walking legs, terminated into a pair of claws, quite unlike the parapodia of polychaeta. 5. Tracheae and disposition of the tracheal apertures are not arthropod-like. 6. Presence of a pair of slime glands opening at the ends of the oral papillae that secrete proteinaceous adhesive substance and helps to capture the prey. 7. Lacking of blood pigments. 8. Subcutaneous haemal channels. C. Salient features: 1. Caterpillar-like body, ranging from 5 mm to 15 cm in length. 2. Body soft and covered by a thin, flexible, chitinous cuticle which is moulted periodically. 3. Indistinct segmentation externally and marked only by the presence of paired, un-jointed, hollow stumpy appendages (13 to 43 pairs according to species). These un-jointed walking legs are called lobopods. 4. Each walking leg terminates in a pair of curved claws. 5. Integument with fine transverse wrinkles and with numerous conical large and small tubercles. 6. Simple eyes, similar with that of an-nelidan polychaetes. 7. Head with 3 pairs of appendages including a pair of annulated antennae, a pair of claw-like mandibles (jaws) which are the modified 2nd pair of appendages and a pair of oral papillae (3rd pair of appendage). 8. A pair of slime glands are present inside the body which open to the tip of the oral papillae that discharge the adhesive material, used for to capture prey and defence. 9. Body wall dermomuscular. Muscles are un-striated. 10. Reduced coelom. 11. Haemocoelomic body cavity. 12. Open circulatory system with lateral valvular ostia on the heart. 13. Elongated tubular heart which is surrounded by pericardial sinus occurring the entire length of the body. 14. Delicate un-branched, rarely branched tracheal tubes open by means of small spiracles, scattered irregularly. Spiracles are without any closing device. 15. A single pair of nephridia in each segment except the genital opening bearing segment. 16. Ladder-like nervous system. Brain is large, bilobed and situated dorsal to the pharynx. 17. Reproductive and excretory ducts are ciliated. 18. Dorsal coelomic gonads. 19. Sexes separate (gonochoristic). 20. Fertilization internal. 21. Oviparous or ovoviviparous with yolky or non-yolky eggs. 22. Viviparous with placenta. 23. Cleavage holoblastic in the eggs of viviparous species and superficial in the oviparous forms which lay their eggs in moist condition. 24. Development direct. 25. Nocturnal and carnivorous in habit. Characters of the living families: I. Peripatopsidae: Number of legs varies from 14-19 pairs; legs with complete spinous pads are 3; the absence of a diastema on the inner side of the jaws; primary dermal papillae without a constriction nephridial opening on 4th and 5th pairs of legs in between third spinous pads; genital opening between or behind last pair of legs, oviparous or ovoviviparous. II. Family Peripatidae: Number of legs varies from 19-43 pairs; legs
Recommended publications
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings of the Royal Society of Tasmania, Volume l 25, 1991 11 ECOLOGY AND CONSERVATION OF TASMANIPATUS BARRETT/ AND T. ANOPHTHALMUS, PARAPATRIC ONYCHOPHORANS (ONYCHOPHORA: PERIPATOPSIDAE) FROM NORTHEASTERN TASMANIA by R. Mesibov and H. Ruhberg (with two text-figures and four plates) MESIBOV, R. & RUHBERC, H., 1991 (20:xii): Ecology and conservation of Tasmanipatus barretti and T anophthalmus, parapacric onychophorans (Onychophora: Peripatopsidae) from northeastern Tasmania. Pap. Proc. R. Soc. Tasm. 125: 11- 16. https://doi.org/10.26749/rstpp.125.11 ISSN 0080- 4703. PO Box 431, Smithton, Tasmania, Australia 7330 (RM); and Zoologischcs lnstitut und Zoologischcs Museum, Universitat Hamburg, Martin-Luther-King-Platz 3, D-2000 Hamburg 13, Germany (HR). Tasmanipatus barretti and T anophthalmus are parapatrically distributed in northeasternTasmania with known ranges of about 600 km2 and 200 km2 respectively. Both species occur in wet sclerophyll forest. Both appear to tolerate habirat disturbance such as occasional bushfires, but are eliminated by forestclearing foragriculture or pine plantations. Both are found in forest reserves, and are to be furtherprotected by a habitat management programme devised by the Tasmanian Forestry Commission. Key Words: Onychophorans, northeastern Tasmania, parapatry, sderophyii forest, conservation. INTRODUCTION and (i) records ofincidental collections by RM during private field trips, 1984-90 (13 localities). Two rare and unusual species of peripatopsid onychophorans At each site visited in studies (a), (b), (d) and (h), have recently been found in northeastern Tasmania. One onychophorans were hunted by gently breaking apart rotting species, Tasmanipatus barretti, locally known as the giant logs and stumps. Less thorough inspections were made velvet worm, is the largest Tasmanian onychophoran.
    [Show full text]
  • Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, Respectively Hermiston Research and Extension Center, Hermiston, Oregon
    Phylum Arthropod Silvia Rondon, and Mary Corp, OSU Extension Entomologist and Agronomist, respectively Hermiston Research and Extension Center, Hermiston, Oregon Member of the Phyllum Arthropoda can be found in the seas, in fresh water, on land, or even flying freely; a group with amazing differences of structure, and so abundant that all the other animals taken together are less than 1/6 as many as the arthropods. Well-known members of this group are the Kingdom lobsters, crayfish and crabs; scorpions, spiders, mites, ticks, Phylum Phylum Phylum Class the centipedes and millipedes; and last, but not least, the Order most abundant of all, the insects. Family Genus The Phylum Arthropods consist of the following Species classes: arachnids, chilopods, diplopods, crustaceans and hexapods (insects). All arthropods possess: • Exoskeleton. A hard protective covering around the outside of the body (divided by sutures into plates called sclerites). An insect's exoskeleton (integument) serves as a protective covering over the body, but also as a surface for muscle attachment, a water-tight barrier against desiccation, and a sensory interface with the environment. It is a multi-layered structure with four functional regions: epicuticle (top layer), procuticle, epidermis, and basement membrane. • Segmented body • Jointed limbs and jointed mouthparts that allow extensive specialization • Bilateral symmetry, whereby a central line can divide the body Insect molting or removing its into two identical halves, left and right exoesqueleton • Ventral nerve
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • The Arthropod Phylum Phyla a Major Groups of Organisms
    Lab 1: Arthropod Classification Name: _______________________________ Hierarchical Classification System Classification systems enable us to impart order to a complex environment. In biology, organisms may be grouped according to their overall similarity (a classification method known as phenetics) or according to their evolutionary relationships (a classification system known as cladistics). Most modern scientists tend to adopt a cladistic approach when classifying organisms. In biology, organisms are given a generic name (reflecting the genus of the organisms), and a specific name (reflecting the species of the organism). A genus is a group of closely related organisms. Genera which are closely related are grouped into a higher (less specific) category known as a family. Families are grouped into orders, and orders into classes. Classes of organisms are grouped into phyla, and phyla are grouped into kingdoms. Domains are the highest taxonomic rank of organisms. Domain Bacteria, Eubacteria, Eukarya Kingdom Plants, Animals, Fungus, Protists Phylum Cnidaria, Annelida, Arthropoda Class Insecta, Arachnida, Crustacea Order Coleoptera, Lepidoptera, Diptera Family Tipulidae, Apidae, Scarabeidae Genus Scaptia, Euglossa, Anastrangalia Species beyonceae, bazinga, laetifica Glossary of Phylogenetic Terms Phylogeny: interrelationships of organisms based on evolution Systematics: the study of the diversity of organisms, which attempts to organize or rationalize diversity in terms of phylogeny Taxonomy: the technical aspects of systematics, dealing with the formal description of species, establishing rankings of groups, and general principles of classification and naming Phylogenetic Tree (cladogram): a diagrammatic representation of the presumed line of descent of a group of organisms. Thus, a phylogenetic tree is actually a hypothesis regarding the evolutionary history of a group of organisms.
    [Show full text]
  • Onychophora, Peripatidae) Feeding on a Theraphosid Spider (Araneae, Theraphosidae)
    2009. The Journal of Arachnology 37:116–117 SHORT COMMUNICATION First record of an onychophoran (Onychophora, Peripatidae) feeding on a theraphosid spider (Araneae, Theraphosidae) Sidclay C. Dias and Nancy F. Lo-Man-Hung: Museu Paraense Emı´lio Goeldi, Laborato´rio de Aracnologia, C.P. 399, 66017-970, Bele´m, Para´, Brazil. E-mail: [email protected] Abstract. A velvet worm (Peripatus sp., Peripatidae) was observed and photographed while feeding on a theraphosid spider, Hapalopus butantan (Pe´rez-Miles, 1998). The present note is the first report of an onychophoran feeding on ‘‘giant’’ spider. Keywords: Prey behavior, velvet worm, spider Onychophorans, or velvet worms, are organisms whose behavior on the floor forests (pers. obs.). Onychophorans are capable of preying remains poorly understood due to their cryptic lifestyle (New 1995) on animals their own size, although the quantity of glue used in an attack and by the fact they are rare in the Neotropics (Mcglynn & Kelley increases up to about 80% of the total capacity for larger prey (Read & 1999). Consequently reports on hitherto unknown aspects of the Hughes 1987). It may be that encounters with larger prey items, such as biology and life history of onychophorans are urgently needed. that observed by us, are more common than previously supposed. Onychophorans are almost all carnivores that prey on small invertebrates such as snails, isopods, earth worms, termites, and other ACKNOWLEDGMENTS small insects (Hamer et al. 1997). They are widely distributed in Thanks to G. Machado (USP), T.A. Gardner (Universidade southern hemisphere temperate regions and in the tropics (Reinhard Federal de Lavras), and C.A.
    [Show full text]
  • The Early Amber Caught the Wormª a 100 Million-Year-Old Onychophoran Reveals Past Migrations
    The early amber caught the wormª A 100 million-year-old onychophoran reveals past migrations The split of the supercontinent Pangaea into southern Gondwana and northern Laurasia divided the fauna of these two regions. Therefore, the present-day occurrence of supposedly Gondwanan organisms in Laurasian-derived regions remains a puzzle of palaeobiogeographical history. We studied the oldest amber-embedded species of velvet worms (Onychophora) in order to illuminate the colonisation of Southeast Asia by Gondwanan lineages of these animals. Our results indicate that an early Eurogondwanan migration is the most likely scenario for Onychophora, while an ‘Out-of-India’ colonisation of Southeast Asia would instead be incompatible with the age of the amber fossil studied. This suggests a recent colonisation of India by onychophorans and refutes their Gondwanan relict status in this region. Burmese amber from Myanmar is known not only for its hypothesis recently named the Eurogondwana model [4]. physical beauty but also for preserving one of the richest Alternatively, since onychophorans are poor dispersers, it palaeobiota in the world, being arguably the most relevant was proposed that the Indian subcontinent acted as a raft fossil resin for studying terrestrial diversity during the mid- during its northward drift and brought Gondwanan species of Cretaceous period, approximately 100 million years ago [1]. Peripatidae to Southeast Asia after the so-called ‘India–Asia Among the most consequential organisms found in Burmese collision’, a biogeographical model commonly called ‘Out– amber is the oldest amber-embedded representative of of–India’ [5]. Accordingly, the only onychophoran species Onychophora — a small group of soft-bodied, terrestrial reported from India, Typhloperipatus williamsoni [6], is invertebrates pivotal for understanding animal evolution and putatively described as being a Gondwanan relict that survived biogeography.
    [Show full text]
  • Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Bio-Protection & Ecology Division Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal Mike Bowie Lincoln University Wildlife Management Report No. 47 ISSN: 1177‐6242 ISBN: 978‐0‐86476‐222‐1 Lincoln University Wildlife Management Report No. 47 Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal Mike Bowie Bio‐Protection and Ecology Division P.O. Box 84 Lincoln University [email protected] Prepared for: Lake Rotokare Scenic Reserve Trust October 2008 Lake Rotokare Scenic Reserve Invertebrate Ecological Restoration Proposal 1. Introduction Rotokare Scenic Reserve is situated 12 km east of Eltham, South Taranaki, and is a popular recreation area for boating, walking and enjoying the scenery. The reserve consists of 230 ha of forested hill country, including a 17.8 ha lake and extensive wetland. Lake Rotokare is within the tribal area of the Ngati Ruanui and Ngati Tupaea people who used the area to collect food. Mature forested areas provide habitat for many birds including the fern bird (Sphenoeacus fulvus) and spotless crake (Porzana tabuensis), while the banded kokopu (Galaxias fasciatus) and eels (Anguilla australis schmidtii and Anguilla dieffenbachii) are found in streams and the lake, and the gold‐striped gecko (Hoplodactylus chrysosireticus) in the flax margins. In 2004 a broad group of users of the reserve established the Lake Rotokare Scenic Reserve Trust with the following mission statements: “To achieve the highest possible standard of pest control/eradication with or without a pest‐proof fence and to achieve a mainland island” “To have due regard for recreational users of Lake Rotokare Scenic Reserve” The Trust has raised funds and erected a predator exclusion fence around the 8.4 km reserve perimeter.
    [Show full text]
  • A Prospectus for BIOL228 Organismal Biology Basic Information
    A prospectus for BIOL228 Organismal Biology Basic information • BIOL228 and 229 succeed 208 (Animal Structure and Function) and 210 (Plant Structure and Function) • Both new units to be offered in S1 2017 • Prereqs are 114 and 115 • 208's enrolment in S1 2016 was > 150 Handbook description "This unit explores the biological diversity of plants and animals. Relationships between structure and function are emphasised. The unit also discusses how organisms have adapted to specific environments. There is a strong emphasis on evolutionary processes and how these have generated biological diversity. A comparative approach is taken, with adaptation discussed in the context of evolutionary trees and the fossil record. The unit is suitable for students interested in organismal biology, science education, and research." Handbook description "This unit explores the biological diversity of plants and animals. Relationships between structure and function are emphasised. The unit also discusses how organisms have adapted to specific environments. There is a strong emphasis on evolutionary processes and how these have generated biological diversity. A comparative approach is taken, with adaptation discussed in the context of evolutionary trees and the fossil record. The unit is suitable for students interested in organismal biology, science education, and research." Program-level learning outcomes 1. Explain the theory of evolution and why it can be regarded as the central unifying concept in biology 2. Compare and contrast form and function of key biological units at sub-cellular to ecosystem scales 3. Describe key features of the Australian biota and the processes that have given rise to these 4. Evaluate historical developments in biology, as well as current and contemporary research directions and challenges Unit-specific learning outcomes 1.
    [Show full text]
  • Onychophorology, the Study of Velvet Worms
    Uniciencia Vol. 35(1), pp. 210-230, January-June, 2021 DOI: http://dx.doi.org/10.15359/ru.35-1.13 www.revistas.una.ac.cr/uniciencia E-ISSN: 2215-3470 [email protected] CC: BY-NC-ND Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Onicoforología, el estudio de los gusanos de terciopelo, tendencias históricas, hitos e investigadores de 1826 a 2020 (Revisión de la Literatura) Onicoforologia, o estudo dos vermes aveludados, tendências históricas, marcos e pesquisadores de 1826 a 2020 (Revisão da Literatura) Julián Monge-Nájera1 Received: Mar/25/2020 • Accepted: May/18/2020 • Published: Jan/31/2021 Abstract Velvet worms, also known as peripatus or onychophorans, are a phylum of evolutionary importance that has survived all mass extinctions since the Cambrian period. They capture prey with an adhesive net that is formed in a fraction of a second. The first naturalist to formally describe them was Lansdown Guilding (1797-1831), a British priest from the Caribbean island of Saint Vincent. His life is as little known as the history of the field he initiated, Onychophorology. This is the first general history of Onychophorology, which has been divided into half-century periods. The beginning, 1826-1879, was characterized by studies from former students of famous naturalists like Cuvier and von Baer. This generation included Milne-Edwards and Blanchard, and studies were done mostly in France, Britain, and Germany. In the 1880-1929 period, research was concentrated on anatomy, behavior, biogeography, and ecology; and it is in this period when Bouvier published his mammoth monograph.
    [Show full text]
  • Onychophora) (Doi: 10.1242/Jeb.175802) John D
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb186551. doi:10.1242/jeb.186551 CORRECTION Correction: Low-resolution vision in a velvet worm (Onychophora) (doi: 10.1242/jeb.175802) John D. Kirwan, Josefine Graf, Jochen Smolka, Georg Mayer, Miriam J. Henze and Dan-Eric Nilsson There was an error published in Journal of Experimental Biology (2018) 221, jeb175802 (doi: 10.1242/jeb.175802). In Materials and Methods, ‘Object taxis’, the final sentence should read: ‘An animal contributed only one trial to each experiment except for the two smaller bar targets, for which individuals were assessed up to four times.’ In addition, there were typing errors in the ‘Individual’ column (rows 89, 90 and 91) and ‘Target arc angle’ column (row 248) in Table S2; these values have been corrected. None of the changes affects the conclusions of the paper. The authors apologise for any inconvenience this may have caused. Journal of Experimental Biology 1 © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb175802. doi:10.1242/jeb.175802 RESEARCH ARTICLE Low-resolution vision in a velvet worm (Onychophora) John D. Kirwan1, Josefine Graf1, Jochen Smolka1, Georg Mayer2, Miriam J. Henze1,3,*,‡ and Dan-Eric Nilsson1,*,‡ ABSTRACT tardigrades are microscopic animals (Gross et al., 2015), which Onychophorans, also known as velvet worms, possess a pair of makes it challenging to study their behaviour. Furthermore, they simple lateral eyes, and are a key lineage with regard to the evolution display many characteristics that are possibly derived because of of vision.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]