Mines, France, and Onychophoran Terrestrialization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Onychophora, Peripatidae) Feeding on a Theraphosid Spider (Araneae, Theraphosidae)
2009. The Journal of Arachnology 37:116–117 SHORT COMMUNICATION First record of an onychophoran (Onychophora, Peripatidae) feeding on a theraphosid spider (Araneae, Theraphosidae) Sidclay C. Dias and Nancy F. Lo-Man-Hung: Museu Paraense Emı´lio Goeldi, Laborato´rio de Aracnologia, C.P. 399, 66017-970, Bele´m, Para´, Brazil. E-mail: [email protected] Abstract. A velvet worm (Peripatus sp., Peripatidae) was observed and photographed while feeding on a theraphosid spider, Hapalopus butantan (Pe´rez-Miles, 1998). The present note is the first report of an onychophoran feeding on ‘‘giant’’ spider. Keywords: Prey behavior, velvet worm, spider Onychophorans, or velvet worms, are organisms whose behavior on the floor forests (pers. obs.). Onychophorans are capable of preying remains poorly understood due to their cryptic lifestyle (New 1995) on animals their own size, although the quantity of glue used in an attack and by the fact they are rare in the Neotropics (Mcglynn & Kelley increases up to about 80% of the total capacity for larger prey (Read & 1999). Consequently reports on hitherto unknown aspects of the Hughes 1987). It may be that encounters with larger prey items, such as biology and life history of onychophorans are urgently needed. that observed by us, are more common than previously supposed. Onychophorans are almost all carnivores that prey on small invertebrates such as snails, isopods, earth worms, termites, and other ACKNOWLEDGMENTS small insects (Hamer et al. 1997). They are widely distributed in Thanks to G. Machado (USP), T.A. Gardner (Universidade southern hemisphere temperate regions and in the tropics (Reinhard Federal de Lavras), and C.A. -
The Early Amber Caught the Wormª a 100 Million-Year-Old Onychophoran Reveals Past Migrations
The early amber caught the wormª A 100 million-year-old onychophoran reveals past migrations The split of the supercontinent Pangaea into southern Gondwana and northern Laurasia divided the fauna of these two regions. Therefore, the present-day occurrence of supposedly Gondwanan organisms in Laurasian-derived regions remains a puzzle of palaeobiogeographical history. We studied the oldest amber-embedded species of velvet worms (Onychophora) in order to illuminate the colonisation of Southeast Asia by Gondwanan lineages of these animals. Our results indicate that an early Eurogondwanan migration is the most likely scenario for Onychophora, while an ‘Out-of-India’ colonisation of Southeast Asia would instead be incompatible with the age of the amber fossil studied. This suggests a recent colonisation of India by onychophorans and refutes their Gondwanan relict status in this region. Burmese amber from Myanmar is known not only for its hypothesis recently named the Eurogondwana model [4]. physical beauty but also for preserving one of the richest Alternatively, since onychophorans are poor dispersers, it palaeobiota in the world, being arguably the most relevant was proposed that the Indian subcontinent acted as a raft fossil resin for studying terrestrial diversity during the mid- during its northward drift and brought Gondwanan species of Cretaceous period, approximately 100 million years ago [1]. Peripatidae to Southeast Asia after the so-called ‘India–Asia Among the most consequential organisms found in Burmese collision’, a biogeographical model commonly called ‘Out– amber is the oldest amber-embedded representative of of–India’ [5]. Accordingly, the only onychophoran species Onychophora — a small group of soft-bodied, terrestrial reported from India, Typhloperipatus williamsoni [6], is invertebrates pivotal for understanding animal evolution and putatively described as being a Gondwanan relict that survived biogeography. -
A Prospectus for BIOL228 Organismal Biology Basic Information
A prospectus for BIOL228 Organismal Biology Basic information • BIOL228 and 229 succeed 208 (Animal Structure and Function) and 210 (Plant Structure and Function) • Both new units to be offered in S1 2017 • Prereqs are 114 and 115 • 208's enrolment in S1 2016 was > 150 Handbook description "This unit explores the biological diversity of plants and animals. Relationships between structure and function are emphasised. The unit also discusses how organisms have adapted to specific environments. There is a strong emphasis on evolutionary processes and how these have generated biological diversity. A comparative approach is taken, with adaptation discussed in the context of evolutionary trees and the fossil record. The unit is suitable for students interested in organismal biology, science education, and research." Handbook description "This unit explores the biological diversity of plants and animals. Relationships between structure and function are emphasised. The unit also discusses how organisms have adapted to specific environments. There is a strong emphasis on evolutionary processes and how these have generated biological diversity. A comparative approach is taken, with adaptation discussed in the context of evolutionary trees and the fossil record. The unit is suitable for students interested in organismal biology, science education, and research." Program-level learning outcomes 1. Explain the theory of evolution and why it can be regarded as the central unifying concept in biology 2. Compare and contrast form and function of key biological units at sub-cellular to ecosystem scales 3. Describe key features of the Australian biota and the processes that have given rise to these 4. Evaluate historical developments in biology, as well as current and contemporary research directions and challenges Unit-specific learning outcomes 1. -
Onychophorology, the Study of Velvet Worms
Uniciencia Vol. 35(1), pp. 210-230, January-June, 2021 DOI: http://dx.doi.org/10.15359/ru.35-1.13 www.revistas.una.ac.cr/uniciencia E-ISSN: 2215-3470 [email protected] CC: BY-NC-ND Onychophorology, the study of velvet worms, historical trends, landmarks, and researchers from 1826 to 2020 (a literature review) Onicoforología, el estudio de los gusanos de terciopelo, tendencias históricas, hitos e investigadores de 1826 a 2020 (Revisión de la Literatura) Onicoforologia, o estudo dos vermes aveludados, tendências históricas, marcos e pesquisadores de 1826 a 2020 (Revisão da Literatura) Julián Monge-Nájera1 Received: Mar/25/2020 • Accepted: May/18/2020 • Published: Jan/31/2021 Abstract Velvet worms, also known as peripatus or onychophorans, are a phylum of evolutionary importance that has survived all mass extinctions since the Cambrian period. They capture prey with an adhesive net that is formed in a fraction of a second. The first naturalist to formally describe them was Lansdown Guilding (1797-1831), a British priest from the Caribbean island of Saint Vincent. His life is as little known as the history of the field he initiated, Onychophorology. This is the first general history of Onychophorology, which has been divided into half-century periods. The beginning, 1826-1879, was characterized by studies from former students of famous naturalists like Cuvier and von Baer. This generation included Milne-Edwards and Blanchard, and studies were done mostly in France, Britain, and Germany. In the 1880-1929 period, research was concentrated on anatomy, behavior, biogeography, and ecology; and it is in this period when Bouvier published his mammoth monograph. -
Onychophora) (Doi: 10.1242/Jeb.175802) John D
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb186551. doi:10.1242/jeb.186551 CORRECTION Correction: Low-resolution vision in a velvet worm (Onychophora) (doi: 10.1242/jeb.175802) John D. Kirwan, Josefine Graf, Jochen Smolka, Georg Mayer, Miriam J. Henze and Dan-Eric Nilsson There was an error published in Journal of Experimental Biology (2018) 221, jeb175802 (doi: 10.1242/jeb.175802). In Materials and Methods, ‘Object taxis’, the final sentence should read: ‘An animal contributed only one trial to each experiment except for the two smaller bar targets, for which individuals were assessed up to four times.’ In addition, there were typing errors in the ‘Individual’ column (rows 89, 90 and 91) and ‘Target arc angle’ column (row 248) in Table S2; these values have been corrected. None of the changes affects the conclusions of the paper. The authors apologise for any inconvenience this may have caused. Journal of Experimental Biology 1 © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb175802. doi:10.1242/jeb.175802 RESEARCH ARTICLE Low-resolution vision in a velvet worm (Onychophora) John D. Kirwan1, Josefine Graf1, Jochen Smolka1, Georg Mayer2, Miriam J. Henze1,3,*,‡ and Dan-Eric Nilsson1,*,‡ ABSTRACT tardigrades are microscopic animals (Gross et al., 2015), which Onychophorans, also known as velvet worms, possess a pair of makes it challenging to study their behaviour. Furthermore, they simple lateral eyes, and are a key lineage with regard to the evolution display many characteristics that are possibly derived because of of vision. -
Phylum Onychophora
Lab exercise 6: Arthropoda General Zoology Laborarory . Matt Nelson phylum onychophora Velvet worms Once considered to represent a transitional form between annelids and arthropods, the Onychophora (velvet worms) are now generally considered to be sister to the Arthropoda, and are included in chordata the clade Panarthropoda. They are no hemichordata longer considered to be closely related to echinodermata the Annelida. Molecular evidence strongly deuterostomia supports the clade Panarthropoda, platyhelminthes indicating that those characteristics which the velvet worms share with segmented rotifera worms (e.g. unjointed limbs and acanthocephala metanephridia) must be plesiomorphies. lophotrochozoa nemertea mollusca Onychophorans share many annelida synapomorphies with arthropods. Like arthropods, velvet worms possess a chitinous bilateria protostomia exoskeleton that necessitates molting. The nemata ecdysozoa also possess a tracheal system similar to that nematomorpha of insects and myriapods. Onychophorans panarthropoda have an open circulatory system with tardigrada hemocoels and a ventral heart. As in arthropoda arthropods, the fluid-filled hemocoel is the onychophora main body cavity. However, unlike the arthropods, the hemocoel of onychophorans is used as a hydrostatic acoela skeleton. Onychophorans feed mostly on small invertebrates such as insects. These prey items are captured using a special “slime” which is secreted from large slime glands inside the body and expelled through two oral papillae on either side of the mouth. This slime is protein based, sticking to the cuticle of insects, but not to the cuticle of the velvet worm itself. Secreted as a liquid, the slime quickly becomes solid when exposed to air. Once a prey item is captured, an onychophoran feeds much like a spider. -
An Approach Towards a Modern Monograph
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des naturwissenschaftlichen-medizinischen Verein Innsbruck Jahr/Year: 1992 Band/Volume: S10 Autor(en)/Author(s): Ruhberg Hilke Artikel/Article: "Peripatus" - an Approach towards a Modern Monograph. 441- 458 ©Naturwiss. med. Ver. Innsbruck, download unter www.biologiezentrum.at Ber. nat.-med. Verein Innsbruck Suppl. 10 S. 441 - 458 Innsbruck, April 1992 8th International Congress of Myriapodology, Innsbruck, Austria, July 15 - 20, 1990 "Peripatus" — an Approach towards a Modern Monograph by' Hilke RUHBERG Zoologisches Institut und Zoologisches Museum, Abi. Entomologie, Martin-Luther-King Pfalz 3, D-2000 Hamburg 13 Abstract: What is a modern monograph? The problem is tackled on the basis of a discussion of the compli- cated taxonomy of Onychophora. At first glance the phylum presents a very uniform phenotype, which led to the popular taxonomic use of the generic name "Peripatus" for all representatives of the group. The first description of an onychophoran, as an "aberrant mollusc", was published in 1826 by GUILDING: To date, about 100 species have been described, and Australian colleagues (BRISCOE & TAIT, in prep.), using al- lozyme electrophoretic techniques, have discovered large numbers of genetically isolated populations of as yet un- described Peripatopsidae. The taxonomic hislory is reviewed in brief. Following the principles of SIMPSON, MAYR, HENNIG and others, selected taxonomic characters are discussed and evaluated. Questions arise such as: how can the pioneer classification (sensu SEDGWICK, POCOCK, and BOUVIER) be improved? New approaches towards a modern monographic account are considered, including the use of SEM and TEM and biochemical methods. -
Phylum Onychophora Grube, 1853*
Zootaxa 3703 (1): 015–016 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:C6A8B357-AD5D-41F6-9244-37A5C30F1367 Phylum Onychophora Grube, 1853* GEORG MAYER 1 & IVO DE SENA OLIVEIRA 2 1 Institute of Biology, Animal Evolution & Development, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany. E-mail: [email protected] 2 Institute of Biology, Animal Evolution & Development, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany. E-mail: [email protected] * In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703, 1–82. Extant representatives of Onychophora (velvet worms) have been classified into two major subgroups or families, the Peripatidae and the Peripatopsidae. According to our previous estimate, a total of 179 nominal species and twelve additional infraspecific taxa of Onychophora had been described, including numerous “subspecies”, “variations” and “mutations (Mayer & Oliveira 2011). However, the validity of most of these taxa was uncertain. Since this last estimate, a comprehensive world checklist of Onychophora has been published, along with a revision of the nomenclatural status of names (Oliveira et al. 2012a). This study revealed that many previous synonyms and infraspecific taxa might constitute valid species. At the same time, it also has shown that ~10% of the described species of Onychophora show major taxonomical problems and therefore should be regarded as nomina dubia, following the provisions of the International Code of Zoological Nomenclature (ICZN 1999). -
Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group. -
Phylogeny, Biogeography and Reproductive Trends in the Onychophora
Zoological Journal of the Linnean Society (1995), 114: 21–60. With 10 figures Onychophora: past and present. Edited by M. H. Walker and D. B. Norman Phylogeny, biogeography and reproductive trends in the Onychophora JULIAN MONGE-NAJERA Biologı´a Tropical, Universidad de Costa Rica, Costa Rica A cladistic analysis places the Onychophora between Polychaeta and Arthropoda. The ‘Uniramia’ concept is not supported. No justification was found for either onychophoran family to be considered ancestral. A cladogram of fossil genera indicates the common ancestor to have long oncopods, armoured plates and an annulated body. Later forms show adaptations to life in reduced spaces. Physiological data suggest that the Onychophora became adapted to land via the littoral zone, before the Late Ordovician. Adhesive glands evolved for defence on land. Peripatopsidae and Peripatidae were distinct by the late Triassic. The occurrence of onychophorans probably dates from post-Pliocene in New Guinea and southern Australia, and post-Early Cretaceous in Chile, the southern half of Southeast Asia, Mesoamerica and the Caribbean. After the Early Cretaceous, the peripatids of tropical Africa lost terrestrial contact with those of South America. A new biogeographic technique, formalized here under the name retrovicariance, indicates that the Peripatidae of Equatorial Africa and the Neotropics are sister-groups. Typical inbreeding adaptations found in some onychophorans include: female-biased sex ratios; gregarious development; relatively constant time of development and number of offspring in each clutch; male polygamy and shorter life span; frequent sibmating in the microhabitat of development, and sperm storage by females, so that a single insemination fertilizes all ova. ADDITIONAL KEY WORDS:—Cambrian lobopods – vicariance – retrovicariance – fossil – oncopodophores – mating systems – cladistics – evolution. -
Symposia and Workshops in Malacology
Revision: February 2021 Annotated Catalog of Malacological Meetings, Including Symposia and Workshops in Malacology Eugene V. Coan Santa Barbara Museum of Natural History, 2559 Puesta del Sol Road, Santa Barbara, California 93105, U.S.A.; [email protected] & Alan R. Kabat Museum of Comparative Zoology, Harvard University; [email protected] ABSTRACT As a much needed bibliographic tool, an annotated catalog is given of the symposia and workshops that have been held at malacological and generalist meetings over the past eight decades, together with their resulting publications. Particularly detailed emphasis is given to the meetings of Unitas Malacologica, the American Malacological Union/Society, and the Western Society of Malacologists. INTRODUCTION This paper catalogues the symposia and workshops that have taken place at malacological meetings over the last eight decades, as well as those that have occurred at other venues. The publications that resulted from these meetings and symposia are listed, chiefly because this information can be difficult for researchers to obtain. This catalog is not complete, and it emphasizes natural history and systematics. We have not endeavored to document every malacological meeting, particularly those before 1930, and those of European and Asian national societies that do not seem to have had symposia or have resulted in publications. Moreover, we have not thoroughly covered meetings on shellfisheries, mariculture, agricultural or other pests, and mollusk-borne diseases, nor those of shell-collectors’ groups. These organizations may want to provide their own listings for the historical record. In 1996, when this paper was originally published (Coan & Kabat, 1996), we did not include symposia, meetings, and workshops relating to the Cephalopoda, other than those occurring at Unitas Malacologica, the American Malacological Society, or other meetings already covered in detail as we did not have sufficient information about them. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 65, NUMBER 1 The Present Distribution of the Onychophora, a Group of Terrestrial Invertebrates BY AUSTIN H. CLARK (Publication 2319) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION JANUARY 4, 1915 Z$t £orb Qgattimovt (preee BALTIMORE, MD., U. S. A. THE PRESENT DISTRIBUTION OF THE ONYCHOPHORA, A GROUP OF TERRESTRIAL INVERTEBRATES. By AUSTIN H. CLARK CONTENTS Preface I The onychophores apparently an ancient type 2 The physical and ecological distribution of the onychophores 2 The thermal distribution of the onychophores 3 General features of the distribution of the onychophores 3 The distribution of the Peripatidae 5 Explanation of the distribution of the Peripatidae 5 The distribution of the American species of the Peripatidae 13 The distribution of the Peripatopsidae 17 The distribution of the species, genera and higher groups of the ony- chophores in detail 20 PREFACE A close study of the geographical distribution of almost any class of animals emphasizes certain features which are obscured, or some- times entirely masked, in the geographical distribution of other types, and it is therefore essential, if we would lay a firm foundation for zoogeographical generalizations, that the details of the distribution of all types should be carefully examined. Not only do the different classes of animals vary in the details of their relationships to the present land masses and their subdivisions, but great diversity is often found between families of the same order, and even between genera of the same family. Particularly is this true of nocturnal as contrasted with related diurnal types. As a group the onychophores have been strangely neglected by zoologists.