Immunohematology JOURNAL of BLOOD GROUP SEROLOGY and EDUCATION

Total Page:16

File Type:pdf, Size:1020Kb

Immunohematology JOURNAL of BLOOD GROUP SEROLOGY and EDUCATION Immunohematology JOURNAL OF BLOOD GROUP SEROLOGY AND EDUCATION V OLUME 22, NUMBER 4, 2006 Immunohematology JOURNALOFBLOODGROUPSEROLOGYANDEDUCATION VOLUME 22, NUMBER 4, 2006 CONTENTS 161 Efficacy of murine monoclonal antibodies in RBC phenotyping of DAT-positive samples E. LEE, K. HART, G. BURGESS, G.R. HALVERSON,AND M.E. REID 166 Case report: moderate hemolytic disease of the newborn due to anti-G A.R. HUBER, G.T.LEONARD, R.W.DRIGGERS, S.B. LEARN,AND C.W.GILSTAD 171 Review: molecular basis of MNS blood group variants P.PALACAJORNSUK 183 Chimerism and mosaicism are important causes of ABO phenotyping discrepancies D. CHO, J.S. LEE, M.H.YAZER, J.W.SONG, M.G. SHIN, J.H. SHIN, S.P.SUH, M.J. JEON, J.Y.KIM, J.T.PARK,AND D.W.RYANG 188 Update on HDFN: new information on long-standing controversies A.F.EDER 196 In search of the Holy Grail: comparison of antibody screening methods T.S.CASINA 203 COMMUNICATIONS Letter to the editors Anti-Cra: pregnancy and transfusion support N.WIN AND M. NEEDS 205 Letter to the editors A reminder that ZZAP reagent removes complement in addition to IgG from coated RBCs R.M. LEGER AND G. GARRATTY 207 Letters from the editors Thank you to contributors to the 2006 issues Changes in the journal 209 211 212 ANNOUNCEMENTSCLASSIFIEDADADVERTISEMENTS 215 INSTRUCTIONSFORAUTHORS 216 INDEX — VOLUME 22, NOS. 1, 2, 3, 4, 2006 EDITORS-IN-CHIEF MANAGING EDITOR Sandra Nance, MS, MT(ASCP)SBB Cynthia Flickinger, MT(ASCP)SBB Philadelphia, Pennsylvania Philadelphia, Pennsylvania Connie M.Westhoff, MT(ASCP)SBB, PhD Philadelphia, Pennsylvania TECHNICAL EDITORS SENIOR MEDICAL EDITOR Christine Lomas-Francis, MSc Geralyn M. Meny, MD New York City, New York Philadelphia, Pennsylvania Dawn M. Rumsey,ART(CSMLT) Glen Allen, Virginia ASSOCIATE MEDICAL EDITORS David Moolton, MD Ralph R.Vassallo, MD Philadelphia, Pennsylvania Philadelphia, Pennsylvania EDITORIAL BOARD Patricia Arndt, MT(ASCP)SBB W.John Judd, FIBMS, MIBiol Mark Popovsky, MD Pomona, California Ann Arbor, Michigan Braintree, Massachusetts James P.AuBuchon, MD Christine Lomas-Francis, MSc Marion E. Reid, PhD, FIBMS Lebanon, New Hampshire New York City, New York New York City, New York Geoffrey Daniels, PhD Gary Moroff, PhD Susan Rolih, MS, MT(ASCP)SBB Bristol, United Kingdom Rockville, Maryland Cincinnati, Ohio Richard Davey, MD Ruth Mougey, MT(ASCP)SBB S. Gerald Sandler, MD Washington, District of Columbia Carrollton, Kentucky Washington, District of Columbia Sandra Ellisor, MS, MT(ASCP)SBB John J. Moulds, MT(ASCP)SBB David F.Stroncek, MD Anaheim, California Shreveport, Louisiana Bethesda, Maryland George Garratty, PhD, FRCPath Marilyn K. Moulds, MT(ASCP)SBB Marilyn J.Telen, MD Pomona, California Houston, Texas Durham, North Carolina Brenda J. Grossman, MD Paul M. Ness, MD St. Louis, Missouri Baltimore, Maryland EDITORIAL ASSISTANT PRODUCTION ASSISTANT Judith Abrams Marge Manigly COPY EDITOR ELECTRONIC PUBLISHER Lucy Oppenheim Paul Duquette Immunohematology is published quarterly (March, June, September, and December) by the American Red Cross, National Headquarters,Washington, DC 20006. Immunohematology is indexed and included in Index Medicus and MEDLINE on the MEDLARS system. The contents are also cited in the EBASE/Excerpta Medica and Elsevier BIOBASE/Current Awareness in Biological Sciences (CABS) databases. The subscription price is $30.00 (U.S.) and $35.00 (foreign) per year. Subscriptions, Change of Address, and Extra Copies: Immunohematology, P.O. Box 40325 Philadelphia, PA 19106 Or call (215) 451-4902 Web site: www.redcross.org/pubs/immuno Copyright 2006 by The American National Red Cross ISSN 0894-203X Efficacy of murine monoclonal antibodies in RBC phenotyping of DAT-positive samples E. LEE, K. HART, G. BURGESS, G.R. HALVERSON,AND M.E. REID Determining the phenotype of patient RBCs that are positive by the use chloroquine diphosphate (CDP), a combination DAT may prove problematic. Antigen typing of RBCs coated with enzyme/reducing agent (ZZAP,National Blood Service IgG requires direct agglutinating reagents or chemical treatment (such as chloroquine diphosphate [CDP] or citric acid) to remove Reagents, Birmingham, UK) which is composed of DTT sufficient IgG to permit testing with IAT-reactive reagents. The and papain, or EDTA/citric acid (Elu-Kit II, Gamma citric acid elution method is commonly used in the United States; Biologicals, Inc., Houston, TX). Several other methods however, antigens in the Kell system are altered to the extent that they may appear to be absent by this method. There are a limited are available to remove the antibody for serologic number of direct agglutinating monoclonal antibodies available. testing; however the RBCs are not suitable for testing Murine monoclonal antibodies provide an additional tool for typing after these treatments.1–5 RBCs with a positive DAT. Five murine monoclonal IgG antibodies (anti-K: MIMA-22, MIMA-23; anti-Kpa: MIMA-21, MIMA-27; anti-Fya: CDP and enzyme/reducing agent (ZZAP, National MIMA-19) were used in this study. Donor RBCs with known Blood Service Reagents) treatments can cause damage phenotypes were sensitized in vitro with alloanti-D, alloanti-c, and to the RBCs, resulting in the loss of some RBC antigens alloanti-K and with 20 autoantibodies (autoanti-D [n=3], autoanti-e 6–8 [n=5], autoanti-Ce/e [n=5], autoanti-e+D+E [n=1], autoanti-I [n=1], and possible invalid typing results. Additionally,CDP and nonspecific [n=5]) to simulate a positive in vivo DAT. The may not totally remove the coating autoantibody from sensitized RBCs were treated with CDP to remove IgG. To the RBCs and it does not remove complement determine the efficacy of the murine monoclonal antibodies when component 3 (C3).1 The proteolytic enzyme,papain,in testing DAT-positive samples, both sensitized and CDP-treated RBCs were tested with these monoclonal antibodies by the IAT using the enzyme/reducing agent product denatures some anti-mouse IgG. No discrepancies were noted with the MNS and Duffy antigens. The reducing agent, DTT, unsensitized, sensitized, or CDP-treated RBCs. An exception was denatures the antigens in Kell and Yt systems among noted with a potent autoanti-I, where direct agglutination of the sensitized RBCs was obtained.This study demonstrates the value of others. RBCs treated with the reagent combining both using murine monoclonal antibodies to determine the phenotype these chemicals (ZZAP, National Blood Service of RBCs with a positive DAT caused by autoantibodies (e.g., in Reagents), therefore, have limited applications for use autoimmune hemolytic anemia) and supports previous studies 9 showing that RBCs sensitized in vivo can be typed without in phenotyping studies. The citric acid elution chemical manipulation. Immunohematology 2006;22:161–165. method is commonly used in the United States, a major drawback being that antigens of the Kell system are Keys Words: blood groups, murine monoclonal significantly weakened by this method. The antibodies, anti-mouse IgG, autoantibodies, DAT, development of murine monoclonal antibodies has chloroquine diphosphate provided an additional tool to allow DAT-positive RBCs to be antigen typed.10,11 Determining an accurate RBC phenotype for patients whose RBCs are positive by the DAT can be problematic because these RBCs are already coated in Materials and Methods vivo with immunoglobulin, complement, or both; all Selected patient samples containing alloantibodies tests performed will be positive by IAT with antihuman and autoantibodies were obtained from the samples IgG reagents. There are very few IgM directly routinely referred to the Red Cell Immunohaematology agglutinating reagents available for the clinically Laboratory, National Blood Service, Colindale Centre, significant antibodies (i.e., anti-K, -Jka, -Jkb, -S, and -Fya). UK. Samples from three antenatal women with high One option is to chemically treat the DAT-positive RBCs titers of anti-D, -c, and –K, respectively, were selected to remove IgG autoantibodies. These treatments may for testing. A total of 20 autoantibodies from patients IMMUNOHEMATOLOGY, VOLUME 22, NUMBER 4, 2006 161 E. LEE ET AL. with autoimmune hemolytic anemia (AIHA) were also Bellshill, Scotland) at a 2% suspension. Both treated selected:anti-D (n=3),anti-e (n=5),anti-Ce/e (n=5),anti- and untreated RBCs were tested with murine e+D+E (n=1), anti-I (n=1), and nonspecific (n=5). monoclonal antibodies by IAT (40 µL:40 µL) and (See Table 1 as an example of phenotyping results incubated at 20°C for 30 minutes using a sheep-derived using murine monoclonal antibodies with IgG reagent directed at mouse IgG (sheep-anti-mouse unsensitized, sensitized, and CDP-treated RBCs for IgG,The Binding Site, Birmingham, UK, code PC271.X). sample 2). All samples were collected in EDTA and The sheep-derived reagent was diluted at a ratio of 1 in were tested within 5 days of collection. The murine 50 in a bovine serum albumin solution (1% BSA, monoclonal antibodies used included MIMA-19: Serologicals, Kankakee, IL) in PBS. (anti-Fya), MIMA-21: (anti-Kpa), MIMA-22: (anti-K), MIMA-23: (anti-K), and MIMA-27: a Table 1. An example of phenotype results of murine monoclonal antibodies with (anti-Kp ). Ten different commercial human unsensitized, sensitized, and CDP-treated RBCs (Sample 2)* monoclonal antibodies were also tested; anti-C, -c, -E, and -e (MS-24, MS-33, MS-258/ 906, MS-16/MS-21/MS-63 respectively, Biotest AG, Dreiech, Germany); anti-Cw, -Jka, b -Jk , and -S (MS-110, MS-15, MS-8, MS-94 MIMA-21 MIMA-27 Sample 2 Donor’s Treated or (5T72) Bio-Rad MIMA-19 a a respectively, Serologicals Ltd., Livingston, Alloanti-K Phenoytpe Untreated a a Scotland), anti-K (MS-56, Lorne Laboratories, RBCs Rh K Fya Kpa Anti-Fy Anti-Kp Anti-K MIMA-22 Anti-K MIMA-23 Anti-K (MS56) Lorne Anti-Fy Reading, UK), and anti-Fya (5T72, Bio-Rad, Anti-Kp DAT 0 Donor 1 R1R1 ++0Unsensitized 44404NT 0 Marines La Coquette, France).
Recommended publications
  • Biological and Clinical Aspects of ABO Blood Group System
    174 REVIEW Biological and clinical aspects of ABO blood group system Eiji Hosoi Department of Cells and Immunity Analytics, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan Abstract : The ABO blood group was discovered in 1900 by Austrian scientist, Karl Land- steiner. At present, the International Society of Blood Transfusion (ISBT) approves as 29 human blood group systems. The ABO blood group system consists of four antigens (A, B, O and AB). These antigens are known as oligosaccharide antigens, and widely ex- pressed on the membranes of red cell and tissue cells as well as, in the saliva and body fluid. The ABO blood group antigens are one of the most important issues in transfusion medicine to evaluate the adaptability of donor blood cells with bone marrow transplan- tations, and lifespan of the hemocytes. This article reviews the serology, biochemistry and genetic characteristics, and clini- cal application of ABO antigens. J. Med. Invest. 55 : 174-182, August, 2008 Keywords : ABO blood group, glycosyltransferase, ABO allele, cisAB allele, PASA : PCR amplification of spe- cific alleles INTRODUCTION The genes of ABO blood group has been deter- mined at chromosome locus 9 (6-9), and Yamamoto, The ABO blood group system was discovered by et al. cloned and determined the structures. It has Austrian scientist, Karl Landsteiner, who found made it possible to analyze genetically ABO blood three different blood types (A, B and O) in 1900 group antigens using molecular biology techniques from serological differences in blood called the Land- (7, 10 - 18). steiner Law (1). In 1902, DesCasterllo and Sturli dis- covered the fourth type, AB (2).
    [Show full text]
  • Iraqi Academic Scientific Journals
    Baghdad Science Journal Vol.11(2)2014 Gene frequencies of ABO and rhesus blood groups in Sabians (Mandaeans), Iraq Alia E. M. Alubadi* Asmaa M. Salih** Maisam B. N. Alkhamesi** Noor J.Ali*** Received 20, December, 2012 Accepted 3, March, 2014 Abstract: The present study aimed to determine the frequency of ABO and Rh blood group antigens among Sabians (Mandaeans) population. This paper document the frequency of ABO and Rh blood groups among the Sabians (Mandaeans) population of Iraq.There is no data available on the ABO/Rh (D) frequencies in the Sabians (Mandaeans) population. Total 341 samples analyzed; phenotype O blood type has the highest frequency 49.9%, followed by A 28.7%, and B 13.8% whereas the lowest prevalent blood group was AB 7.6%. The overall phenotypic frequencies of ABO blood groups were O>A>B>AB. The allelic frequencies of O, A, and B alleles were 0.687, 0.2 and 0.1122 respectively. Rhesus study showed that with a percentage of 96.2% Rh (D) positive is by far the most prevalent, while Rh (d) negative is present only in 3.8% of the total population. The Sabians (Mandaeans) ethnic group showed the same distribution of ABO and Rh blood groups with others ethnic groups in Iraqi population. Key words: Gene, ABO, rhesus blood groups, Sabians, Gene frequencies Introduction: We are very thankful to Shakoori of pre-Arab and pre-Islamic origin. Farhan dakhel and Nisreen Iehad Badri They are Semites and speak a dialect for their support and guidelines in of Eastern Aramaic known as Mandaic.
    [Show full text]
  • ABO in the Context of Blood Transfusion and Beyond
    1 ABO in the Context of Blood Transfusion and Beyond Emili Cid, Sandra de la Fuente, Miyako Yamamoto and Fumiichiro Yamamoto Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Badalona, Barcelona, Spain 1. Introduction ABO histo-blood group system is widely acknowledged as one of the antigenic systems most relevant to blood transfusion, but also cells, tissues and organs transplantation. This chapter will illustrate a series of subjects related to blood transfusion but will also give an overview of ABO related topics such as its genetics, biochemistry and its association to human disease as well as a historical section. We decided not to include much detail about the related Lewis oligosaccharide antigens which have been reviewed extensively elsewhere (Soejima & Koda 2005) in order to focus on ABO and allow the inclusion of novel and exciting developments. A/B antigens on ABO group Anti-A/-B in serum Genotype red blood cells O None Anti-A and Anti-B O/O A A Anti-B A/A or A/O B B Anti-A B/B or B/O AB A and B None A/B Table 1. Simple classification of ABO phenotypes and their corresponding genotypes. As its simplest, the ABO system is dictated by a polymorphic gene (ABO) whose different alleles encode for a glycosyltransferase (A or B) that adds a monosaccharide (N-acetyl-D- galactosamine or D-galactose, respectively) to a specific glycan chain, except for the protein O which is not active. The 3 main alleles: A, B and O are inherited in a classical codominant Mendelian fashion (with O being recessive) and produce, when a pair of them are combined in a diploid cell, the very well known four phenotypic groups (see Table 1).
    [Show full text]
  • US 2017/0020926 A1 Mata-Fink Et Al
    US 20170020926A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0020926 A1 Mata-Fink et al. (43) Pub. Date: Jan. 26, 2017 (54) METHODS AND COMPOSITIONS FOR 62/006,825, filed on Jun. 2, 2014, provisional appli MMUNOMODULATION cation No. 62/006,829, filed on Jun. 2, 2014, provi sional application No. 62/006,832, filed on Jun. 2, (71) Applicant: RUBIUS THERAPEUTICS, INC., 2014, provisional application No. 61/991.319, filed Cambridge, MA (US) on May 9, 2014, provisional application No. 61/973, 764, filed on Apr. 1, 2014, provisional application No. (72) Inventors: Jordi Mata-Fink, Somerville, MA 61/973,763, filed on Apr. 1, 2014. (US); John Round, Cambridge, MA (US); Noubar B. Afeyan, Lexington, (30) Foreign Application Priority Data MA (US); Avak Kahvejian, Arlington, MA (US) Nov. 12, 2014 (US) ................. PCT/US2O14/0653O4 (21) Appl. No.: 15/301,046 Publication Classification (22) PCT Fed: Mar. 13, 2015 (51) Int. Cl. A6II 35/28 (2006.01) (86) PCT No.: PCT/US2O15/02O614 CI2N 5/078 (2006.01) (52) U.S. Cl. S 371 (c)(1), CPC ............. A61K 35/28 (2013.01); C12N5/0641 (2) Date: Sep. 30, 2016 (2013.01): CI2N 5/0644 (2013.01); A61 K Related U.S. Application Data 2035/122 (2013.01) (60) Provisional application No. 62/059,100, filed on Oct. (57) ABSTRACT 2, 2014, provisional application No. 62/025,367, filed on Jul. 16, 2014, provisional application No. 62/006, Provided are cells containing exogenous antigen and uses 828, filed on Jun. 2, 2014, provisional application No.
    [Show full text]
  • Glycophorins and the MNS Blood Group System: a Narrative Review
    16 Review Article Page 1 of 16 Glycophorins and the MNS blood group system: a narrative review Genghis H. Lopez1,2, Catherine A. Hyland1,3, Robert L. Flower1,3 1Clinical Services and Research Division, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia; 2School of Medical Science, Griffith Health, Griffith University, Gold Coast, Queensland, Australia; 3School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Genghis H. Lopez, PhD. Clinical Services and Research Division, Australian Red Cross Lifeblood, 44 Musk Avenue, Kelvin Grove, Queensland 4059, Australia. Email: [email protected]. Abstract: The MNS blood group system, International Society of Blood Transfusion (ISBT) 002, is second after the ABO system. GYPA and GYPB genes encode MNS blood group antigens carried on glycophorin A (GPA), glycophorin B (GPB), or on variant glycophorins. A third gene, GYPE, produce glycophorin E (GPE) but is not expressed. MNS antigens arise from several genetic mechanisms. Single nucleotide variants (SNVs) contribute to the diversity of the MNS system. A new antigen SUMI (MNS50), p.Thr31Pro on GPA has been described in the Japanese population. Unequal crossing-over and gene conversion are the mechanisms forming hybrid glycophorins, usually from parent genes GYPA and GYPB. GYPE also contributes to gene recombination previously only described with GYPA. Recently, however, GYPE was shown to recombine with GYPB to form a GYP(B-E-B) hybrid.
    [Show full text]
  • Genetic Characterisation of Human ABO Blood Group Variants with a Focus on Subgroups and Hybrid Alleles Hosseini Maaf, Bahram
    Genetic Characterisation of Human ABO Blood Group Variants with a Focus on Subgroups and Hybrid Alleles Hosseini Maaf, Bahram 2007 Link to publication Citation for published version (APA): Hosseini Maaf, B. (2007). Genetic Characterisation of Human ABO Blood Group Variants with a Focus on Subgroups and Hybrid Alleles. Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Genetic Characterisation of Human ABO Blood Group Variants with a Focus on Subgroups and Hybrid
    [Show full text]
  • 1.1 Introduction Screening of Blood Is Mandatory for Transfusion Transmitted Diseases and Is Routinely Done in the Blood Banks
    1.1 Introduction Screening of blood is mandatory for transfusion transmitted diseases and is routinely done in the blood banks. As blood is the major source of transmission of hepatitis B(HBV), hepatitis C (HCV), human immunodeficiency virus(HIV) & many other diseases. The hazards can be minimized by effective donor selection and screening. Blood transfusion is a life-saving measure in various medical and surgical emergencies. Transfusion medicine, apart from being important for the medical treatment of individual, also has great public health importance (Giri PA1, et al ,2012 Jan) Blood transfusion has been and continues to be a possible source of disease transmission. A myriad of agents can potentially be transmitted through blood transfusions, including bacteria, viruses, and parasites Mudassar Zia, MD; ( Emmanuel C Besa, Jun 2012) Despite progress made in the prevention of transfusion-transmitted infections (TTIs) over the last few years, they continue to be a problem in many parts of the world, particularly in multitransfused patients. (El-Faramawy AA1,et al ,2012). Failures of blood screening due to low test quality or poor laboratory technique increase the risk of transfusion-transmitted infections.( Mourant AE,et al ,2013). Mourant et al. concluded that the differences in frequencies of blood Groups A and B are the result of random genetic drift and founder effects as well as of natural selection, arising from differences in fitness between the various blood groups .(Davis. J. Anstee. 2010 June). ABO blood group has been previously found to be associated with the risk of several malignancies, including gastric cancer, pancreatic cancer, epithelial ovarian and skin cancer .
    [Show full text]
  • Canine Blood Group Prevalence and Geographical Distribution Around the World: an Updated Systematic Review
    animals Review Canine Blood Group Prevalence and Geographical Distribution around the World: An Updated Systematic Review Sara Mangiaterra 1, Giacomo Rossi 1 , Maria Teresa Antognoni 2, Matteo Cerquetella 1 , Andrea Marchegiani 1 , Arianna Miglio 2 and Alessandra Gavazza 1,* 1 School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; [email protected] (S.M.); [email protected] (G.R.); [email protected] (M.C.); [email protected] (A.M.) 2 Department of Veterinary Medicine, Blood Bank and Transfusion Unit EMOVET-UNIPG, University of Perugia, 06126 Perugia, Italy; [email protected] (M.T.A.); [email protected] (A.M.) * Correspondence: [email protected] Simple Summary: “Blood group” or “blood type” refers to the blood group system comprising red blood cell antigens and a specific pattern. Many studies have characterized dog blood groups by the prevalence of the Dog Erythrocyte Antigen (DEA), Kai, and Dal antigens in different geographic areas and by using a variety of methods. Some pioneering studies on blood groups, upon which others were subsequently based, were conducted by Bowdler, Colling, and Hall in the 1970s and 1980s. Our results show that most relevant studies covered the European and American continents, and the methods used to identify DEA, Kai, and Dal groups evolved from 1999 to 2020, albeit without a single method based upon specificity and sensitivity. However, the existence of rapid commercial kits for the determination of the DEA 1 group makes this group the most widely used in clinical Citation: Mangiaterra, S.; Rossi, G.; practice. Through a systematic review, our aim was to illustrate the countries in the world where Antognoni, M.T.; Cerquetella, M.; different blood groups have been identified with reference to the different methods used and the Marchegiani, A.; Miglio, A.; prevalence of those groups among dog breeds.
    [Show full text]
  • Proposed O-Galnac/Gal Glycosylation Path- Ways in Blood Group O and Non-O Blood Group Phenotypes During Plasmodium Falciparum In- Fections Driving Evolution
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 January 2021 doi:10.20944/preprints202005.0321.v2 Proposed O-GalNAc/Gal glycosylation path- ways in blood group O and non-O blood group phenotypes during Plasmodium falciparum in- fections driving evolution Peter Arend a, b, c⁎ ORCID ID: https://orcid.org/0000-0002-4000-4167 a) Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany b) Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA c) Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany. Correspondence to: Dr. Peter Arend, Am Oberen Stötchen 14, 57462 Olpe, Germany. E-Mail: [email protected] ⁎ where the experiments of the author were performed. © 2021 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 January 2021 doi:10.20944/preprints202005.0321.v2 2 Abstract The coevolution of species drives diversity in animals and plants and contributes to natural selection, whereas in host–parasite coevolution, a parasite may complete an incomplete evolutionary/developmental function by utilizing the host cell’s machin- ery. Analysis of related older data suggests that Plasmodium falciparum (P. falcipa- rum), the pathogen of malaria tropica, cannot survive outside its human host because it is unable to perform the evolutionarily first protein glycosylation of serologically A-like, O-GalNAcα1-Ser/Thr-R, Tn antigen (“T nouvelle”) formation, owing to its inability for synthesizing the amino sugar N-acetyl-d-galactosamine (GalNAc). This parasite breaks the species barrier via hijacking the host's physiological A-like/Tn formation through abundantly expressing serine residues and creating hybrid A- like/Tn structures, which in the human blood group O(H) are attacked by the germline-encoded nonimmune polyreactive immunoglobulin M (IgM), exerting the highly anti-A/B/H-aggressive isoagglutinin activities.
    [Show full text]
  • Distribution of Abo and Rh (D) Blood Groups and Associated Traits: a Study of the College of Nursing and Midwifery, Obangede, Kogi State
    DISTRIBUTION OF ABO AND RH (D) BLOOD GROUPS AND ASSOCIATED TRAITS: A STUDY OF THE COLLEGE OF NURSING AND MIDWIFERY, OBANGEDE, KOGI STATE By ABDULGANIYU ADEIZA ALIYU DEPARTMENT OF HUMAN ANATOMY FACULTY OF MEDICINE AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA OCTOBER, 2016 DISTRIBUTION OF ABO AND RH (D) BLOOD GROUPS AND ASSOCIATED TRAITS: A STUDY OF THE COLLEGE OF NURSING AND MIDWIFERY, OBANGEDE, KOGI STATE By Abdulganiyu Adeiza ALIYU (BSc ABU, ZARIA 2000) P15MDHA8019 MSC/MED/02139/2010-11 A DISSERTATION SUBMITTED TO SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN HUMAN ANATOMY DEPARTMENT OF HUMAN ANATOMY FACULTY OF MEDICINE AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA OCTOBER, 2016 ii DECLARATION I, Abdulganiyu Adeiza Aliyu declare that the work in the dissertation titled ‗‗Distribution of ABO and Rh(D) Blood Groups and associated traits: A study of the College of Nursing and Midwifery, Obangede, Kogi State‖ was carried out by me in the Department of Human Anatomy, Faculty of Medicine, Ahmadu Bello University, Zaria. The information used for my literature review was fully acknowledged in the text and references. This dissertation has not been presented in any Scientific gathering, neither has it been presented for another degree or diploma at any University. __________________ _________________ Abdulganiyu Adeiza Aliyu Signature Date iii CERTIFICATION The project thesis titled Distribution of ABO and Rh(D) Blood Groups and associated traits: A study of the College of Nursing and Midwifery, Obangede, Kogi State by Abdulganiyu Adeiza ALIYU meets the regulations governing the award of degree of Master of Science in Ahmadu Bello University, Zaria and is approved for its contribution to knowledge and literacy presentation.
    [Show full text]
  • Molecular Genetics and Genomics of the ABO Blood Group System
    19 Review Article Page 1 of 19 Molecular genetics and genomics of the ABO blood group system Fumiichiro Yamamoto Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain Correspondence to: Fumiichiro Yamamoto. Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. Email: [email protected]. Abstract: The A and B oligosaccharide antigens of the ABO blood group system are produced from the common precursor, H substance, by enzymatic reactions catalyzed by A and B glycosyltransferases (AT and BT) encoded by functional A and B alleles at the ABO genetic locus, respectively. In 1990, my research team cloned human A, B, and O allelic cDNAs. We then demonstrated this central dogma of ABO and opened a new era of molecular genetics. We identified four amino acid substitutions between AT and BT and inactivating mutations in the O alleles, clarifying the allelic basis of ABO. We became the first to achieve successful ABO genotyping, discriminating between AA and AO genotypes and between BB and BO, which was impossible using immunohematological/serological methods. We also identified mutations in several subgroup alleles and also in the cis-AB and B(A) alleles that specify the expression of the A and B antigens by single alleles. Later, other scientists interested in the ABO system characterized many additional ABO alleles. However, the situation has changed drastically in the last decade, due to rapid advances in next- generation sequencing (NGS) technology, which has allowed the sequencing of several thousand genes and even the entire genome in individual experiments. Genome sequencing has revealed not only the exome but also transcription/translation regulatory elements.
    [Show full text]
  • Red Blood Cell Molecular Testing AHS-M2170
    Corporate Medical Policy Red Blood Cell Molecular Testing AHS-M2170 File Name: red_blood_cell_molecular_testing Origination: 7/2020 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service The first successful blood transfusion can be dated back to the 1600s (Osterman & Arora, 2017), and molecular testing methods to analyze blood samples were introduced to the transfusion medicine community in the 1990s (Westhoff, 2006). Several ailments may warrant a blood transfusion, and the phenotypic and genotypic determination of red blood cell antigens assist in limiting immune responses in transfusion patients. Agglutination tests via serology have been the gold standard for determining blood group antigens for more than 100 years (Boccoz, Le Goff, Blum, & Marquette, 2015), yet newer molecular techniques may grant added specificity (Elite, 2015a). Related Policies: Prenatal Screening AHS-G2035 Genetic Testing for Alpha- and Beta Thalassemia AHS-M2131 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for red blood cell molecular testing when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Red Blood Cell Molecular testing is covered Red cell genotyping (including C, c, D, E, e, K, k, Jka, Jkb, Fya, Fyb, S, s,U) is considered medically necessary for the following: a.
    [Show full text]